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The novel coronavirus SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor as
an entry point to the cell. Cardiovascular disease (CVD) is a risk factor for COVID-19
with poor outcomes. We tested the hypothesis that the rate of angiotensin-converting
enzyme inhibitor (ACEI) and angiotensin receptor blocker (ARB) use is associated with
the rate of COVID-19−confirmed cases and deaths. We conducted a geospatial, ecological
study using publicly available county-level data. The Medicare ACEI and ARB prescrip-
tion rate was exposure. The COVID-19−confirmed case and death rates were outcomes.
Spatial autoregression models were adjusted for the rate of births and deaths; Group
Quarters population; percentage of female; percentage of Native American, Pacific
Islander, Hispanic, and Black; percentage of children and older (>65 years) adults; per-
centage of uninsured; percentage of those living in poverty; percentage of those who are
obese, smoking, admitting insufficient sleep, and those with at least some college degree;
median household income; air quality index; CVD hospitalization rate in Medicare benefi-
ciaries; and CVD death rate in a total county population. After adjustment for confound-
ers, the ACEI use rate did not associate with COVID-19−confirmed case rate (direct
county-own effect + 0.027%; 95% confidence interval [CI] �1.080 to 1.134; p = 0.962;
indirect spillover effect + 0.26%; 95% CI �70.0 to 70.5; p = 0.994). Similarly, the ARB use
rate was not associated with COVID-19−confirmed case rate (direct effect + 0.029%;
95% CI �0.803 to 0.862; p = 0.945; indirect effect + 0.19%; 95% CI �52.8 to 53.2;
p = 0.994). In both unadjusted and adjusted Bayesian zero inflation Poisson analysis, nei-
ther ACEI nor ARB use rates were associated with COVID-19 death rates. In conclusion,
ACEI and ARB use rates were not associated with COVID-19 infectivity and death rate in
this ecological study. © 2021 Elsevier Inc. All rights reserved. (Am J Cardiol
2022;165:101−108)
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Despite available vaccines, the pandemic of the novel
COVID-19 caused by the SARS-CoV-2 virus remains a
threat.1 It has been shown that SARS-CoV-2 uses the angio-
tensin-converting enzyme (ACE) 2 receptor as an entry
point into a cell.2 With the ACE2 receptor acting as a bind-
ing site for SARS-CoV-2, the renin-angiotensin-aldosterone
system, and the medications affecting it become important
points of discussion.3 ACE inhibitors (ACEIs) and angio-
tensin receptor blockers (ARBs) are 2 classes of medica-
tions widely used in patients with hypertension, diabetes
mellitus, cardiovascular disease (CVD), and latent or mani-
fest left ventricular dysfunction, who are at risk for severe
COVID-19 cases and deaths.4 Previous experiments
showed that ACE2 expression was associated with
susceptibility to SARS-CoV-2 infection.5 The consensus is
reached about the importance of the continuation of ACEI
and ARB use in the COVID-19 pandemic.6,7 However, con-
troversy remains whether clinically indicated use of ACEI
and ARB improves or worsens infectivity or the course of
COVID-19. To address this need, we conducted an ecologi-
cal study. We hypothesized that in the geospatial analysis,
the rate of ACEI and ARB use is associated with the num-
ber of confirmed COVID-19 cases and deaths in the United
States.
Methods

An individual county in the United States was an obser-
vation unit in this study. We used a Federal Information
Processing Standard (FIPS) county code to link the data.
Data with missing FIPS codes were excluded from the
study. Geographic information about each county was
obtained from the cartographic boundary files (shapefiles)
provided by the United States Census Bureau’s MAF/
TIGER (Master Address File/Topologically Integrated
Geographic Encoding and Referencing) geographic
database.8

We used the 2018 Centers for Medicare & Medicaid
Services public dataset, the Medicare Provider Utilization

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amjcard.2021.10.050&domain=pdf
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and Payment Data: Part D Prescriber Public Use File, with
information on prescription drugs prescribed by individual
physicians and other health care providers and paid for
under the Medicare Part D Prescription Drug Program in
2018.9 The dataset included the total number of prescrip-
tions that were dispensed (total day supply), which include
original prescriptions and any refills, and therefore reflects
ACEI and ARB usage.

The Medicare dataset only includes city and state informa-
tion and not county information. To map the Medicare pre-
scription data to their corresponding FIPS Code, we used the
Google Geocoding application programming interface.10 We
then loaded the Medicare data and geocoded data into the
SQLite database to produce the final datasets with prescrip-
tion counts per county. Prescriptions from county-equivalents
(independent cities) were manually matched with their corre-
sponding FIPS code. Medicare prescriptions with misspelled
cities or prescriptions that lacked valid city and state descrip-
tions, if unable to be assigned, were excluded. Excluded pre-
scriptions accounted for <0.01% of the data.

We calculated a drug class use rate as a sum of the total
day supply in a county for all drugs comprising a particular
class (Supplementary Table 1), normalized by the total
county population estimate. We used the United States Cen-
sus Annual Resident Population Estimates for July 1, 2019.

The primary outcome was confirmed COVID-19 cases.
The secondary outcome was COVID-19 deaths. We
imported the raw COVID-19 data from the Johns Hopkins
GitHub repository.11 The number of confirmed COVID-19
cases and deaths in each county as reported for February 6,
2021, was divided by the total population in each county
(2019 county population estimate) and multiplied by
100,000 to convert to cases and deaths per 100,000 popula-
tion. We decided to use February 6, 2021, COVID-19 data
because, by that date, the pandemic had sufficiently played
out without the significant confounding effect of the vacci-
nation, which began at the end of December 2020.

We used the United States Census County Population
Estimates, released in March 2020, and included reported
deaths and births from July 1, 2018, to June 30, 2019.12

Because of the known negative impact of COVID-19 on the
population of nursing homes and prisons/jails, we included
July 1, 2019, Group Quarters total population estimate.
Group Quarters Facilities include correctional facilities for
adults, nursing homes, college/university student housing,
military quarters, and group homes. Group Quarters data
were gathered from an estimated 20,000 randomly selected
facilities. Data were then collected through resident inter-
views of these selected facilities using the American Com-
munity Survey conducted by the United States Census
Bureau.12 The total 2019 county population estimate12 nor-
malized all demographic characteristics.

To characterize socioeconomic characteristics, we used
the 2018 median household income expressed as a percent
of the state total and percent of the total population in pov-
erty, as reported by the Economic Research Service of the
United States Department of Agriculture.13 We also used
the data compiled by the County Health Rankings & Road-
maps program, which is a collaboration between the Robert
Wood Johnson Foundation and the University of Wisconsin
Population Health Institute.14
Descargado para BINASSS BINASSS (pedidos@binasss.sa.cr) en National Library
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To characterize CVD prevalence and severity, we used
the Centers for Disease Control and Prevention (CDC) esti-
mates15 of total CVD death rate per 100,000 population
(2016 to 2018), total CVD hospitalizations (2015 to 2017)
per 1,000 Medicare beneficiaries, heart failure (HF) death
rate per 100,000 population (2016 to 2018), HF hospitaliza-
tion rate per 1,000 Medicare beneficiaries (2015 to 2017),
coronary heart disease (CHD) death rate per 100,000 popu-
lation (2016 to 2018), CHD hospitalization rate per 1,000
Medicare beneficiaries (2015 to 2017), and age-adjusted
diabetes mellitus percentage in adults (age >20 years).
These data were obtained from the Interactive Atlas of
Heart Disease and Stroke, published by the CDC. Within
this atlas, death rates were gathered from the National Vital
Statistics Program (Deaths), hospitalization rates were gath-
ered from the CMS Medicare Provider Analysis and
Review File Part A, and diabetes mellitus percentages were
collected from the Division of Diabetes Translation.15

To characterize the use of cardiovascular (CV) medica-
tions, we calculated the rate of CV medications use, which
included original prescriptions and any refills (total day
supply), as reported in the 2018 Centers for Medicare &
Medicaid Services Part D Medicare Prescriber Public Use
File.9 We considered the total day supply data for 20 medi-
cation groups (Supplementary Table 1): ACEI; ARB; beta
blockers; alpha and beta blockers; alpha blockers; Class I,
III, and V antiarrhythmic medications; dihydropyridine
and nondihydropyridine calcium channel blockers; aldoste-
rone antagonists; central acting antihypertensive medica-
tions; vasodilators; diuretics; lipid-lowering drugs;
insulins; oral hypoglycemic agents; anticoagulants; and
antiplatelet medications. We normalized the CV medi-
cations’ day supply for each county by the 2019 county
population estimate.12

A detailed description of statistical analysis methods is
provided in the Supplementary Material. To model an eco-
logical association of exposure with outcomes, we used dif-
ferent models for COVID-19−confirmed case rate and
death rate to obtain the best fit and satisfy the assumptions.
As COVID-19 is a contagious disease, confirmed cases and
deaths in neighboring counties are spatially correlated.
Therefore, we used the spatial autoregression model16 that
allows modeling the spatial dependence in the outcomes,
covariates, and unobserved errors.17 The spatial autoregres-
sion model used the generalized spatial 2-stage (method-of-
moment), least-squares estimator.18,19 As we confirmed
(Supplementary Figure 1) nearly normal distribution of
standardized confirmed case rates, which had no 0 values,
we used Gaussian likelihood. The model included spatial
lags of the outcome variable, spatial lags of covariates, and
spatially autoregressive errors. The lag operator was a spa-
tial weighting (inverse-distance) matrix, which summarized
spatial relations between counties based on the distance
between county centroids. The weighting matrix was scaled
so that its largest eigenvalue is 1, which guarantees nonsin-
gularity in the model estimation. We constructed cross-sec-
tional spatial autoregressive models. The estimator treated
the errors as heteroskedastic, thus relaxing the assumption
that errors represent identically distributed disturbance. We
conducted the Moran test to determine whether exposure,
outcome, and covariates are spatially dependent.
 of Health and Social Security de ClinicalKey.es por Elsevier en febrero 14, 
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Table 1

Average characteristics of counties

Characteristic Mean § SD

Population in 2019 104,502 § 333,504

Births in 2019 per 100,000 population 1,098.7 § 240.5

Deaths in 2019 per 100,000 population 1,041.3 § 269.8

Group Quarters population in 2019 per 100,000

population

3,375.5 § 4,411.8

% poverty 15.2§ 6.1

Median household income as % of state total 89.4§ 20.1

% Adults with self-reported poor or fair health 17.9§ 4.7

% Adult smoking 17.5§ 3.6

% Adult obesity 32.9§ 5.4

% Physical inactivity 27.4§ 5.7

% Excessive drinking 17.5§ 3.1

% uninsured (all) 11.5§ 5.1

% with some college education 57.9§ 11.8

Air pollution index 8.98§ 2.01

% of households with high housing costs 11.1§ 3.7

% Food insecurity 13.2§ 4.0

% insufficient sleep 33.0§ 4.2

% population age <18 years 22.1§ 3.5

% population age >65 years 19.3§ 4.7

% non-Hispanic Black 9.0 § 14.3

% Native Americans 2.3 § 7.7

% Asians 1.6 § 3.0

% Pacific Islanders 0.1 § 0.4

% Hispanics 9.7 § 13.8

% non-Hispanic White 76.0§ 20.2

% female 49.9§ 2.2

CVD hospitalization rate per 1,000 Medicare 59.5§ 16.7

Miscellaneous/Geospatial Study of ACEI and ARB in COVID-19 103
First, we constructed unadjusted spatial autoregression
models, to investigate a geospatial association of the county
population characteristics with the ACEI and ARB use rate.
Next, we constructed unadjusted and bivariate spatial autor-
egression models to evaluate a geospatial association of the
county population characteristics with the rate of COVID-
19−confirmed cases. We constructed adjusted spatial autor-
egression models to answer the main study question:
whether there is an independent association of ACEI or
ARB use rates with COVID-19−confirmed case rate. The
selection of covariates for adjustment was guided by con-
founders observed in this study and model fit. Models with
COVID-19−confirmed case rate outcome were adjusted for
the rate of births and deaths; Group Quarters population;
percentage of female, Native American, Pacific Islander,
Hispanic, and Black non-Hispanic county residents; per-
centage of county residents younger than 18 and older than
65 years of age; percentage of uninsured, living in poverty,
residents with at least some college degree; median house-
hold income as a percent of the state total; percentage of
obese, smoking, admitting insufficient sleep residents; air
quality index; CDC-reported CVD hospitalization rate in
Medicare beneficiaries; and CVD death rate in a total
county population.

Because there were counties without documented
COVID-19 deaths, to account for multimodal distribution
(mixture of distributions) of COVID-19 death outcome, we
constructed Bayesian zero-inflated Poisson models20,21

with noninformative prior. Models were adjusted for the
rate of births and deaths, Group Quarters population, per-
centage of Hispanic residents, living in poverty, with at
least some college degree, and admitting insufficient sleep,
as well as air quality index, CDC-reported CVD hospitali-
zation rate in Medicare beneficiaries, and CVD death rate
in a total county population.

Cross-sectional geospatial analysis is susceptible to
reverse causality bias. It is well-documented that patients
with CVD and CV risk factors have a higher rate of
COVID-19−confirmed cases and deaths. The rate of ACEI
and ARB use indirectly indicates CVD prevalence and
severity. While we adjusted our models for the broad range
of confounders, including CVD mortality in a total county
population, and CVD hospitalization rate in Medicare bene-
ficiaries, reverse causality remained a concern. To assess
the possibility and extent of reverse causality bias, we con-
structed the models for the use rate of other CV medications
for each class of drugs separately, one by one. Statistical
analyses were performed using STATA MP 16.1 (Stata Sta-
tistical Software: Release 16. (College Station, Texas. Sta-
taCorp LLC.). The study dataset and STATA code are
provided at https://github.com/Tereshchenkolab/geospatial.
beneficiaries

CVD death rate per 100,000 population 239.9 § 51.5

Heart failure hospitalization rate per 1,000 Medicare

beneficiaries

15.2§ 6.5

Heart failure death rate per 100,000 population 107.9 § 25.8

CHD hospitalization rate per 1,000 Medicare

beneficiaries

13.1§ 4.0

CHD death rate per 100,000 population 102.7 § 32.1

Diabetes mellitus age-adjusted percentage (age > 20

years)

10.4§ 3.8

CHD = coronary heart disease; CVD = cardiovascular disease.
Results

We analyzed the data of 3,141 counties and county-
equivalents in the 50 states and the District of Columbia.
The ACEI group was the second most ubiquitous medica-
tion, surpassed only by lipid-lowering drugs
(Supplementary Table 1). Average county characteristics
are reported in Table 1. Figure 1 shows the ACEI and ARB
total day supply rates across the United States. On average,
Descargado para BINASSS BINASSS (pedidos@binasss.sa.cr) en National Library
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the total daily supply rate was higher for ACEI than for
ARB The Moran test indicated that the rates of ACEI and
ARB use were spatially dependent (p <0.0001).

In unadjusted spatial autoregression analysis
(Supplementary Table 2), as expected, CVD prevalence,
general demographic characteristics, uninsured rate, and air
quality were associated with the use of both ACEI and
ARB. A higher percentage of the total population in poverty
and the lower Group Quarters population were associated
with higher use of ACEI, but not ARB. A higher percentage
of residents with at least some college degree was associ-
ated with the use of ARB, but not ACEI.

COVID-19−confirmed case and death rates (Figure 2)
had similar geographic distributions. As of February 6,
2021, in an average county, there was a median of 8,498.1
(interquartile range 6,742.6 to 10,201.6) confirmed cases
per 100,000 population. Every county had confirmed cases.
The lowest rate of confirmed cases was 250.4 per 100,000
population.

In unadjusted spatial autoregression analysis (Table 2),
higher CVD, CHD, and HF hospitalization rates in Medi-
care beneficiaries; higher CVD and HF mortality; a higher
percentage of Black, Hispanic, and Native American
 of Health and Social Security de ClinicalKey.es por Elsevier en febrero 14, 
ación. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.
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Figure 1. ACEI (A) and ARB (B) total day supply rate.

Figure 2. Confirmed COVID-19 cases (A) and deaths (B) in the United States adjusted for a county population size. Data of February 6, 2021.
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Table 2

Unadjusted ecological association of a county’s sociodemographic characteristics with COVID-19−confirmed case rate

Impact factor Direct (county-own) effect Indirect (spillover) effect

per 1% rate increase Marginal effect (95% CI) p value Marginal effect (95% CI) p value

All CVD drugs use +0.016 (0.007 to 0.026) 0.001 �0.98 (�1.45 to �0.50) <0.0001
Births in 2019 +0.45 (0.36 to 0.55) <0.0001 �7.09 (�9.05 to �5.14) <0.0001
Deaths in 2019 �0.08 (�0.16 to �0.005) 0.037 �0.41 (�1.26 to 0.43) 0.337

GQ Population 2019 +0.02 (0.002 to 0.03) 0.027 0.24 (�0.34 to 0.81) 0.424

Poverty +0.01 (0.009 to 0.015) <0.0001 �0.05 (�0.10 to �0.013) 0.01

Median HH income �0.001 (�0.002 to �0.01) 0.004 �0.17 (�0.90 to 0.57) 0.658

Poor/fair health +2.84 (2.43 to 3.25) <0.0001 �21.44 (�31.34 to �11.54) <0.0001
Smoking +2.83 (2.30 to 3.36) <0.0001 �77.0 (�130.5 to �23.6) 0.005

Obesity +1.04 (0.75 to 1.34) <0.0001 �7.02 (�16.40 to 2.35) 0.142

Physical inactivity +0.88 (0.59 to 1.16) <0.0001 +0.36 (�5.05 to 5.76) 0.897

Drinking +0.21 (�0.51 to 0.93) 0.573 �1.29 (�8.71 to 6.14) 0.734

Uninsured (all) +1.07 (0.55 to 1.59) <0.0001 +2.52 (�1.04 to 6.08) 0.165

Some college �0.67 (�0.82 to �0.52) <0.0001 +2.58 (0.99 to 4.17) 0.001

Air pollution index +0.07 (0.06 to 0.09) <0.0001 �1.22 (�1.75 to �0.69) <0.0001
HH with high cost +0.01 (�0.50 to 0.51) 0.984 �34.2 (�41.5 to �26.9) <0.0001
Food insecurity +0.18 (�0.31 to 0.67) 0.474 �8.48 (�14.68 to �2.64) 0.005

Insufficient sleep +2.61 (2.06 to 3.17) <0.0001 �47.5 (�65.9 to �29.2) <0.0001
Population age <18 +2.45 (1.89 to 3.02) <0.0001 +18.05 (16.67 to 19.43) <0.0001
Population age >65 �2.38 (�2.76 to �2.00) <0.0001 +13.56 (9.07 to 18.04) <0.0001
Non-Hispanic Black +0.49 (0.38 to 0.60) <0.0001 �2.73 (�3.94 to �1.51) <0.0001
Native Americans +0.70 (0.48 to 0.92) <0.0001 +31.3 (26.7 to 35.6) <0.0001
Asians �0.26 (�1.25 to 0.73) 0.602 �9.18 (�25.5 to 7.1) 0.270

Pacific Islanders �8.1 (�15.7 to �0.6) 0.034 �369.1 (�656.2 to �81.9) 0.012

Hispanics +1.09 (0.93 to 1.25) <0.0001 �4.6 (�6.8 to �2.3) <0.0001
Non-Hispanic White �0.71 (�0.82 to �0.61) <0.0001 +1.34 (0.47 to 2.21) 0.003

Female �2.31 (�3.02 to �1.61) <0.0001 +32.6 (25.9 to 39.2) <0.0001
CVD hospitalizations +0.004 (0.003 to 0.006) <0.0001 �0.09 (�0.11 to �0.06) <0.0001
CVD death +0.001 (0.0008 to 0.002) <0.0001 �0.01 (�0.018 to �0.003) 0.006

HF hospitalizations +0.01 (0.009 to 0.014) <0.0001 �0.17 (�0.21 to �0.14) <0.0001
HF death +0.0009 (0.0003 to 0.0015) 0.005 +0.001 (�0.008 to 0.010) 0.830

CHD hospitalizations +0.013 (0.007 to 0.018) <0.0001 �0.39 (�0.59 to �0.19) <0.0001
CHD death +0.001 (0.0009 to 0.002) <0.0001 �0.01 (�0.02 to �0.0009) 0.031

Diabetes mellitus +0.01 (0.009 to 0.02) <0.0001 �0.15 (�0.27 to �0.04) 0.010

CHD = coronary heart disease; CI = confidence interval; CVD = cardiovascular disease; HF = heart failure; HH = household.

Statistically significant findings (p<0.05) are highlighted by Bold.
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residents; greater proportions of children (age <18 years); a
higher percentage of residents admitting insufficient sleep,
physical inactivity, smoking, obesity, and poor health; a
higher percentage of uninsured, poverty, and Group Quar-
ters population; and worse air quality were associated with
a higher rate of confirmed COVID-19 cases. In contrast, a
higher median household income, a larger proportion of
county residents with some college education, a greater per-
centage of adults above 65 years of age, females, and non-
Hispanic White residents were associated with a lower rate
of confirmed COVID-19 cases. As expected, we observed
significant indirect (spillover) effects of socioeconomic fac-
tors coming from neighboring counties on confirmed
COVID-19 case rates to a given county.

In unadjusted analysis (Supplementary Table 3), both
ACEI and ARB use rates were associated with confirmed
COVID-19 case rates. The associations of ACEI and ARB
use with COVID-19−confirmed cases were fully explained
by confounders (Table 3). Of note, adjustment fully explained
the indirect (spillover) impact of ACEI and ARB use rates
coming from all neighboring counties on COVID-19−con-
firmed case rates to a given county, whereas all models
Descargado para BINASSS BINASSS (pedidos@binasss.sa.cr) en National Library
2022. Para uso personal exclusivamente. No se permiten otros usos sin autoriz
confirmed strong spatial dependence (Moran test of spatial
terms for all models p <0.00001). Marginal analysis showed
no significant differences in outcomes if ACEI and ARB use
rates would change in the same direction (either increase or
decrease) in all counties (Supplementary Figure 2).

In unadjusted analysis, the use of CV medications
reflects CVD prevalence. As expected, the use of all types
of CV medications was associated with a slightly higher
COVID-19−confirmed case rate (Supplementary Table 3),
similar for different medications. In adjusted analysis
(Table 3), the rate of use of most CV medications had no
statistically significant association with COVID-19−con-
firmed case rate, with few exceptions. The rate of insulin
use, and the rates of using medications with pronounced
vasodilating effect (vasodilators, calcium channel blockers,
alpha blockers), class I antiarrhythmic drugs, anticoagu-
lants, and thiazides remained associated with the COVID-
19−confirmed case rate.

As of February 6, 2021, in an average county, there was
a median of 142.4 (interquartile range 84.4 to 209.3) deaths
per 100,000 population (Figure 2). There were 58 counties
with zero COVID-19 deaths. In both an unadjusted and
 of Health and Social Security de ClinicalKey.es por Elsevier en febrero 14, 
ación. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.



Table 3

Adjusted ecological association of the rate of CV medications use with COVID-19 confirmed case rate

Impact factor Direct (county-own) effect Indirect (spillover) effect

Marginal effect (95% CI) p value Marginal effect (95% CI) p value

ACEI +0.027 (�1.080 to 1.134) 0.962 +0.26 (�70.0 to 70.5) 0.994

ARB +0.029 (�0.803 to 0.862) 0.945 +0.19 (�52.8 to 53.2) 0.994

Lipid-lowering drugs +0.007 (�1.459 to 1.474) 0.992 �0.76 (�93.5 to 92.0) 0.987

CCB dihydropyridine +0.019 (0.0008 to 0.037) 0.041 �0.21 (�1.79 to 1.37) 0.796

CCB nondihydropyridine +0.014 (0.005 to 0.023) 0.002 �0.20 (�0.90 to 0.50) 0.574

Beta blockers +0.020 (�0.070 to 0.110) 0.666 �0.09 (�6.23 to 6.05) 0.977

Alpha blockers +0.015 (0.006 to 0.024) 0.001 �0.221 (�0.796 to 0.353) 0.450

Alpha and beta blockers +0.017 (0.005 to 0.028) 0.005 �0.23 (�1.29 to 0.83) 0.675

Aldosterone antagonists +0.016 (�0.005 to 0.036) 0.138 �0.34 (�1.96 to 1.28) 0.680

Anticoagulants +0.019 (0.010 to 0.028) <0.0001 �0.21 (�0.84 to 0.41) 0.503

Antiplatelets +0.019 (�0.020 to 0.058) 0.331 �0.17 (�3.05 to 2.71) 0.909

AAD class I +0.009 (0.003 to 0.015) 0.002 �0.06 (�0.57 to 0.45) 0.817

AAD class III +0.013 (�0.028 to 0.054) 0.538 �0.31 (�3.25 to 2.63) 0.837

AAD class V +0.013 (�0.030 to 0.055) 0.553 �0.19 (�3.07 to 2.69) 0.897

Vasodilators +0.009 (0.005 to 0.014) <0.0001 �0.14 (�0.70 to 0.42) 0.615

Central +0.014 (�0.0005 to 0.029) 0.058 �0.17 (�1.43 to 1.09) 0.793

Loop diuretics +0.015 (�0.043 to 0.073) 0.615 �0.35 (�4.42 to 3.72) 0.866

Thiazides, other diuretics +0.019 (0.006 to 0.032) 0.005 �0.28 (�1.54 to 0.98) 0.661

Insulins +0.018 (0.008 to 0.028) <0.0001 �0.25 (�1.03 to 0.53) 0.532

Oral hypoglycemic drugs +0.022 (�0.268 to 0.311) 0.881 �0.003 (�18.7 to 18.7) 1.000

AAD = antiarrhythmic drug; ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; CCB = calcium channel blocker;

CI = confidence interval.

Statistically significant findings (p<0.05) are highlighted by Bold.
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adjusted Bayesian zero inflation Poisson analysis
(Supplementary Table 4), neither ACEI nor ARB use rates
were associated with COVID-19 death rates. Similarly, no
other CV medications were statistically significantly associ-
ated with the COVID-19 death rate.
Discussion

Our study established that there was no statistically sig-
nificant ecological association between the rate of ACEI/
ARB use and COVID-19−confirmed case and death rate.
Our results highlight the safety of ACEI/ARB use for
patients with clinical indications for ACEI/ARB in the
COVID-19 era, consistently with small patient-level stud-
ies.22−25

Our results also highlight how socioeconomic factors
and medical co-morbidities affect the COVID-19−con-
firmed case rate. A recent study26 showed increased odds of
COVID-19 infection in patients with hypertension not on
antihypertensive therapy in comparison to similar patients
taking commonly prescribed antihypertensive medications,
suggesting that barriers to receiving medications, such as
being uninsured or being from a racial minority, are more
important than the use of a specific hypertensive drug class
during COVID-19. Our results also indicated that the popu-
lations with a significant prevalence of comorbidities might
have an increased risk of COVID-19 infection. Reverse
causality bias likely at least partially explains an association
of some classes of CV medication use with the COVID-19
−confirmed case rate.

Although the Medicare Part D Prescriber Public Use File
has a wealth of information, the dataset has several limita-
tions. The data may not be representative of a physician’s
Descargado para BINASSS BINASSS (pedidos@binasss.sa.cr) en National Library
2022. Para uso personal exclusivamente. No se permiten otros usos sin autoriz
entire practice or all of Medicare, as it only includes infor-
mation on beneficiaries enrolled in the Medicare Part D pre-
scription drug program (approximately two-thirds of all
Medicare beneficiaries). In addition, available data were for
the year 2018 and did not reflect the most recent use of
medications in 2020. Notably, we measured exposure
before the outcome, which is essential for the interpretation
and supports the validity of the study findings. However, in
our earlier analysis,27 we used the only available data for
earlier exposure (2017) and outcome (June 11, 2020) at the
time of preprint writing, which exacerbated biases.

Furthermore, we did not adjust for adherence to med-
ications. Nevertheless, a recent geospatial study of
ACEI/ARB adherence28 showed a relatively consistent
geographic distribution of ACEI/ARB adherence across
the United States. An observational cross-sectional eco-
logical study is susceptible to reverse causality bias. To
address this limitation, we analyzed all classes of CV
medications, which helped identify and assess the
strength of the reverse causality bias. In addition, unob-
served confounding was likely present in this observa-
tional study. The most apparent missing data included
the rate of COVID-19 testing. Therefore, observed effect
sizes have to be interpreted with caution. Finally, eco-
logical bias because of within-county variability in
exposures and confounders was likely present in this
ecological study. Notably, the observed county-level
ecological associations should not be interpreted at the
individual level. However, these ecological study results
add to the totality of evidence supporting the safety of
ACEI and ARB medications. Ecological study design
complements other, more traditional methods in CV
research, playing an increasingly important role by
 of Health and Social Security de ClinicalKey.es por Elsevier en febrero 14, 
ación. Copyright ©2022. Elsevier Inc. Todos los derechos reservados.
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informing policy makers and health system managers
and providing a unique insight into scientific ques-
tions.29 The strength of ecological studies includes
avoiding the “individualistic fallacy” of assuming that
individuals are unaffected by the community, geographi-
cal region, or health care system’s characteristics.

In conclusion, in this ecological study, ACEI and ARB
use rates were not associated with COVID-19 infectivity
and death rate. Our findings support the safety of ACEI and
ARB use in patients with CVD in the COVID-19 era. Sig-
nificant ecological association of numerous socioeconomic
characteristics of counties with COVID-19−confirmed case
rates underscores the importance of public health policies
to minimize the impact of COVID-19 on socioeconomically
disadvantaged neighborhoods.
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