Cell-based immunotherapies in gynecologic cancers
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Purpose of review

This review provides an update on recent developments in cell-based immunotherapy in gynecologic

cancers.

Recent findings

Chimeric antigen receptor (CAR) technology has made significant progress allowing now for not only
expressing CARs on T-cells, but also on other immune effector cells, such as natural killer cells and
macrophages. Cell-based vaccines have started to show promising results in clinical trials.

Summary

Cell-based immunotherapies in gynecologic cancers continue to evolve with promising clinical efficacy in

select patients.
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INTRODUCTION

Cell therapies have broadened the landscape of ther-
apeutic options in the treatment of cancer, including
gynecologic malignancy. Therapies using cells from
both the innate and adaptive immune system have
been investigated in clinical trials, including tumor-
associated macrophages (TAMs), tumor-associated
neutrophils (TANs), natural killer (NK) cells, and T-
cells [1]. Although prior work has focused largely on
T-cells in both solid tumors and hematologic malig-
nancy [2], more recent work has expanded the scope
of immune-based therapies to include immune effec-
tor cells other than T-cells [1]. Herein, we provide an
update on cell therapies specifically directed toward
gynecologic malignancies.

TUMOR-INFILTRATING LYMPHOCYTES

Tumor-infiltrating lymphocytes (TILs) are T-cells
that infiltrate tumor tissue and are involved in the
antitumor response. TILs have been shown to be a
prognostic biomarker in patients with ovarian can-
cer [3]. A systematic review by Hao et al. which
compared pooled hazard ratios (HRs) from TIL-pos-
itive and TIL-negative patients with high grade
serous ovarian cancer, demonstrated a positive cor-
relation with TIL presence and both progression-free
survival (PFS) and overall survival (OS) [4]. In this
study, pooled HRs revealed that both intra-epithelial
and intra-stromal CD8+ TILs were positively corre-
lated with OS [4].
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TILs can be used for adoptive cell therapy (ACT)
where they are extracted from the tumor, expanded
ex vivo, intravenously infused and act at the site of
the tumor via recognition of tumor-specific antigens
[5,6]. Such therapy has been used previously in both
ovarian and cervical cancer [6-9]. In cervical cancer,
one phase II trial reported a 28% clinical response
rate [10]. A 44% objective response rate and a 89%
disease control rate was achieved with TIL treatment
in recurrent, metastatic or persistent cervical cancer
at a median follow-up of 3.5 months in a separate
trial [11].

In contrast, while TIL therapy in ovarian cancer
is feasible, clinical efficacy is still lacking with one
small study demonstrating initial responses or stable
disease but ultimately disease progression [12]. The
activity of TILs in the tumor microenvironment of
ovarian cancer may be decreased by antigen-pre-
senting cells or tumor cells viaimmune checkpoints,
such as cytotoxic T-lymphocyte-associated-protein-
4 (CTLA-4) [13,14]. In a recent study, the expansion
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KEY POINTS

o Cell-based immunotherapy has evolved to include all
maijor effector cells of the immune system.

o Novel engineering approaches in CAR therapy with bi-
specific CAR molecules may improve efficacy of CAR
therapy in solid tumors.

o Cell-based vaccines are a promising area of clinical
research and may become an effective
therapeutic option.

of TILs from ovarian cancer tissue was enhanced by
CTLA-4 blockade resulting in potent antitumor
CD8+ TILs, compared to standard TILs in autolo-
gous cell lines [14].

At present, a prospective, multicenter, single-
arm, open label study using TILs is enrolling patients
with recurrent, metastatic or persistent cervical car-
cinoma (NCT 03108495). Another phase II trial is
investigating the role of cell therapy with TILs in the
treatment of locally advanced, metastatic or recur-
rent solid cancers and is including malignancies that
are mismatch repair deficient or microsatellite unsta-
ble, including gynecologic cancers (NCT 03935893).

T-CELL RECEPTOR TARGETING

T-cell receptors (TCRs) allow T-cells to recognize
specific tumor-associated antigens on the surface
of tumor cells. The generation of TCR modified T-
cells (TCR-T) involves the expression of tumor-spe-
cific TCR genes in naive T-cells [15-17]. TCR-T-cell
therapy is major histocompatibility complex (MHC)
restricted and the specific tumor antigen must be
present to generate antitumor responses [16].
Although other therapies, such as chimeric antigen
receptor (CAR) T-cell therapy rely solely on recogni-
tion of cell surface proteins, TCR-T-cells are able to
recognize intracellular antigen fragments presented
by the MHC providing them a distinct advantage in
personalized cell-based therapy [15-17].

Several ongoing clinical trials are currently
investigating the clinical efficacy of TCR-T-cell ther-
apy in gynecologic cancers targeting antigens like
Melanoma-associated antigen 4 (MAGE-A4) and
New York esophageal squamous cell carcinoma 1
(NY-ESO-1) expressed in ovarian cancers [15].

TCR-T-cell immunotherapy has also been inves-
tigated for E7 positive cervical dysplasia. In a Phase 1
study, Hinrichs et al. investigated the safety and
efficacy of TCR-T-cells directed against the HPV
associated E7 protein for the treatment of patients
with high grade cervical dysplasia (NCT 04411134);
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however, this study was terminated early due to
similar study’s lack of perceived clinical activity.
Similarly, Norberg et al. sought to determine the
clinical efficacy of E7 TCR-T-cell treatment of stage
IIB-IVA, HPV-16 positive cervical cancers (NCT
04476251). This study was likewise suspended in
early 2021 citing multiple logistical challenges.
There remain several actively recruiting clinical tri-
als for the treatment of HPV-associated cervical
cancer all of which are in early development.
HPV-16 positive metastatic cancers are being treated
with E7 TCR-T-cells along with aldesleukin, a recom-
binant analog of IL-2, to determine safety and clini-
cal efficacy (NCT 02858310). Another ongoing
phase la/Ib, open-label, first in human study of
gene-edited autologous Neo-TCR-T-cells adminis-
tered with or without anti programmed-cell death
(PD)-1 treatment is ongoing in patients with solid
tumors, including ovarian cancer (NCT03970382).
NeoTCR are proprietary cells (PACT Pharma) that
use autologous T-cells to express tumor-specific neo-
epitope TCRs [18]. The NeoTCR-T-cells exhibit T-
memory stem cell and T central memory pheno-
types which allow for their rapid transformation
into highly active tumor-targeting cells [18]. In an
ongoing study, patients will be treated with either
NeoTCR in a single dose; NeoTCR in a single dose
plus nivolumab 480 mg IV every 4 weeks for up to 6
doses; or NeoTCR in a single dose plus IL-2
500,001U/m? twice daily for 7 days.

CHIMERIC ANTIGEN RECEPTOR T-CELLS

CAR T-cells were among the first approved cell
therapies and have demonstrated the greatest clini-
cal efficacy in hematologic malignancies. CAR T-
cells are genetically engineered T-cells that bind
tumor-associated antigens by MHC complex-inde-
pendent mechanisms, subsequently eliciting an
antitumor response [19]. Though effective in hema-
tologic malignancies, solid tumors have shown to be
less responsive to the treatment with CAR T-cells
[19,20]. Preclinical data in ovarian cancer models
have shown promising efficacy but thus far clinical
efficacy and durable responses in ovarian cancer
patients are still lacking [21-23].

Some of the challenges using CAR T-cell therapy
are the variable immune landscape and the presence of
antigen escape, which provides mechanism of resis-
tance in both solid tumors and hematologic malig-
nancies [24,25]. Attempts are currently under way to
improve the efficacy of CAR-T-cell therapy through
multiple-antigen targeting. Prior work demonstrated
efficacy of a bispecific (tandem) CARs targeting both
HER2 and IL13Ra2 in a glioblastoma model showed
superior PFS compared to monotherapy [26]. This
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dual-expression was recently explored in models of
ovarian cancer. Li ef al. paired the glycoprotein mucin
16 (MUC16) with PD-1 to create a tandem-specific
CAR-T target which yielded survival benefits over both
singly specific CAR-T therapy and control when assess-
ing OS (antiMUC16-PD1 CAR-T 80.6+10.3 days; PD1
CAR-T 45.1 £ 6.34 days; antiMUC16 23.0+ 1.55 days;
control 19.8 £2.14days) [27]. Additionally, genera-
tion of dual CAR-T-cell targeting tumor-associated
glycoprotein (TAG)-72, a glycoprotein overexpressed
in adenocarcinomas, and CD47, a cell surface protein
expressed on ovarian cancer cells, demonstrated that
use of a novel dual-expressing CAR-T-cell therapy was
effectively able to eliminate cancer cells that expressed
low levels of TAG-72 in vitro [28]. An engineered
synthetic Notch (synNotch) CAR that recognizes alka-
line phosphatase placental-like 2 (ALPPL2), a tumor-
specific antigen present on solid tumors including
ovarian cancer in combination with HER2, mesothe-
lin or melanoma cell adhesion molecule has been
created and these demonstrated more potent activity
than conventional CAR-T-cells in vitro [29*"]. Together
these preclinical data suggest potential clinical effi-
cacy for dual-antigen targeting CAR-T therapy in clin-
ical practice for gynecologic cancers.

A Phase [ clinical trial of lentiviral-transduced
CAR-T-cells recognizing mesothelin (CART-meso) in
advanced solid tumors, including ovarian cancers, was
shown to be well tolerated but only produced minimal
antitumor activity [30]. An early phase I clinical trial in
China is presently determining the feasibility and
safety of anti-Mesothelin CAR-T-cells in patients with
mesothelin positive ovarian cancer (NCT03799913).
Other novel CAR-T therapies are targeting other anti-
gens including MOv19 (NCT03585764); B7-H3 anti-
gen (NCT04670068); and the dual expression of
MUC16 and membrane-bound IL15 (PRGN-3005)
UltraCAR-T (NCTO03907527). It is noteworthy that
using UltraCAR-T-cells circumvents the need for in
vitro proliferation, and therefore have a much shorter
processing time of one day compared to weeks [15].
This therapy could therefore not only be effective but
also more practical because of shorter
processing times.

NATURAL KILLER CELLS

NK cells are a member of the innate system whose
role is to recognize and induce cell death in a variety
of cells, including cancer cells [31,32]. NK cells
appear to have a dynamic interaction with the
tumor microenvironment. These cells have a dis-
tinct advantage for cell therapy since they do not
induce graft versus host disease and therefore can be
generated from unrelated donors (i.e., allogeneic NK
cells) [33-35].
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Preclinical studies have demonstrated NK cell-
mediated cytotoxicity on ovarian cancer cells [36—
38]. Recent clinical data have suggested that NK cells
may be a prognostic indicator in patients with recur-
rent ovarian cancer, with data suggesting that low
blood levels of NK cells correlate with poorer prog-
nosis [39,40].

Improvement in the functionality of NK cell
therapy continues to be at the forefront of NK cell
research. The modification of NK cells with CAR has
been successful in preclinical murine models
[41,42]. Specifically, mesothelin-specific CAR-NK
cell administration in an in vivo model of ovarian
cancer demonstrated effective regression of tumor
cells and prolonged survival in tumor-bearing mice
[43].

Newer combination therapies are also being
investigated. Oncolytic viruses can infect and selec-
tively replicate within malignant cells, allowing for
direct cytotoxicity and direct triggering of the
innate and adaptive immune system [44,45]. NK-
cell-based immunotherapy has been combined with
oncolytic viruses [44,46,47"]. Promising preclinical
results were reported when assessing the effects of
combining reovirus or vesicular stomatitis virus
(VSV) with NK cell immunotherapy, specifically
using NKT-cells which share both NK and T cell-like
properties, in ID8 murine model of ovarian cancer
which decreased metastatic burden and increased
survival [47"]. An actively recruiting Phase I/II clini-
cal trial is investigating treatment with a double-
deleted vaccinia virus and cytokine induced Kkiller
cells, a sub-population of NK cells, in patients with
advanced solid tumors including ovarian cancer
(NCT04282044).

NK cells have been combined with cytotoxic
therapies in preclinical models and might be effec-
tive even in platinum-resistant ovarian cancers. One
preclinical study of cisplatin alongside NK92M]I, a
human NK cell line, on cisplatin-resistant A2780
ovarian cancer cells (A2780cis) demonstrated an
increased sensitivity to NK92MI after pretreatment
with cisplatin [48%].

One recently closed clinical study assessed the
combination of cryotherapy for percutaneous
ablation of all identifiable tumor using an argon-
helium cryosurgical system with NKimmunother-
apy given IV (NCT02849353). Another phase I
open-label clinical trial, which closed earlier in
2021, assessed intraperitoneal (IP) delivery of
adaptive NK cells (FATE-NK100) with IP IL-2 in
women  with  recurrent ovarian  cancer
(NCT03213964). The INTRO trial study is evaluat-
ing the safety and feasibility of IP infusion of ex
vivo-cultured allogeneic NK cells in recurrent ovar-
ian carcinoma (NCT03539406).
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MACROPHAGES

Macrophages are important effector cells of the
innate immune system and play an important role
in modulating antitumor immune responses [49-
51]. In various solid tumors, including ovarian can-
cer, macrophages can mediate metastasis [52,53].
Macrophages have become an area of increased
interest in cell-based immunotherapy because
unlike lymphocyte cells, monocytes and macro-
phages actively penetrate solid tumors and the sur-
rounding tissue potentially making them more
efficacious as therapy [54].

CAR strategies have been used to both target
immune-suppressive macrophages through CAR-T-
cells as well as create CAR expressing macrophages
(CAR-M cells). A preclinical model has shown that a
subpopulation of TAMs express folate receptor 8 (FRB)
[55]. More recent preclinical data suggest FRB positive
TAMs exist in the ovarian TME and display an M2-like
pro-inflammatory profile [56"]. Further, CAR-T-cell
mediated selective targeting of FRB positive TAMs
slowed tumor progression and prolonged survival in
murine models of ovarian cancer [56].

CAR-M targeting HER2 in a preclinical model
showed improved tumor clearance when compared
with control or M1 polarized macrophages alone in a
xenograft (SKOV3 HER2™") ovarian cancer [57]. Addi-
tionally, CAR-M cells maintained their antitumor
activity in the presence of M2 macrophages while
being able to cross-present tumor antigens [57].
Given these advantages, it is conceivable that CAR-
M therapy might overcome some of the key limita-
tions encountered with CAR-T therapy. Currently, a
phase I, open label clinical trial is recruiting patients
with HER2-overexpressing solid tumors as the first in-
human study of adenoviral transduced autologous
macrophages which have been engineered to contain
an anti-HER2 CAR (NCT04660929).

DENDRITIC CELLS

Dendritic cells are effective antigen-presenting cells
within the innate immune system and can activate
antitumor immunity when loaded with tumor-spe-
cific antigens [58-60]. DCs have been used to create
dendritic cell vaccines for the treatment of various
malignancies [60,61]. Clinical trials have demon-
strated promising efficacy in patients with epithelial
ovarian cancer using dendritic cell therapies [62—-64].

Recently, a case of treatment in chemotherapy-
refractory ovarian cancer has been reported using
intra-nodally injected, neoantigen peptide-pulsed
DCs [58]. In this case, CA-125 values decreased from
~4500 U/mL to just over 1300 U/mL over the course of
4 vaccinations, and evaluation of the patient’s ascites
demonstrated an increase in immune cells and a

1040-872X Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

decrease in tumor cells [58]. In a separate trial, den-
dritic cell-based immunotherapy combined with che-
motherapy in recurrent platinum sensitive ovarian
cancer, demonstrated no differences in PFS between
the study groups. The median OS in the DC vaccine
group compared to the control group was prolonged
(35.5 mo vs 22.1 mo) though the data are not yet
mature [65"].

CONCLUSION

Cell-based immunotherapy continues to make prog-
ress as a potential treatment option for gynecologic
malignancy. Key improvements have been made
across all immune effector cells in attempts to
increase specificity of treatment, identify better
antigen targets, improve tumor infiltration and cre-
ate novel cancer vaccines. It remains to be seen if
newer therapies can overcome challenges in antigen
escape and resistance. Early phase I/II trials across
the immune landscape will continue to provide
information regarding the potential for cell-based
immunotherapy in these solid tumors.
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This clinical trial represents the potential importance of cell-based vaccines in

gynecologic cancers.
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