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Abstract

Oxytocin regulates a variety of centrally-mediated functions,
ranging from socio-sexual behavior, maternal care, and affili-
ation to fear, stress, anxiety. In the past years, both clinical and
preclinical studies characterized oxytocin for its modulatory
role on reward-related neural substrates mainly involving the
interplay with the mesolimbic and mesocortical dopaminergic
pathways. This suggests a role of this nonapeptide on the
neurobiology of addiction raising the possibility of its thera-
peutic use. Although far from a precise knowledge of the un-
derlying mechanisms, the putative role of the bed nucleus of
the stria terminalis as a key structure where oxytocin may
rebalance altered neurochemical processes and neuro-
plasticity involved in dependence and relapse has been high-
lighted. This view opens new opportunities to address the
health problems related to drug misuse.
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Introduction

The nonapeptide oxytocin (OXT) is synthesized by
parvocellular and magnocellular neurons allocated in the
paraventricular (PVN) and supraoptic nucleus (SON) of
the hypothalamus and it has been traditionally known for
its well-established peripheral effects on gestation,
lactation, and parturition. However, more recently, it has
been implicated in a broad array of centrally-mediated
functions ranging from sexual behavior and feeding to

social interaction, maternal care and affiliative behaviors,
motor activity, fear, stress, anxiety, yawning, as well as
(social) memory and reward processes [1—9] reflected by
the distribution of extrahypothalamic oxytocin pro-
jections and oxytocin receptors (OXTRs) in the Central
Nervous System (CNS). Accordingly, several mapping
studies evidenced oxytocin and OXTRs expression in
limbic brain areas such as the ventral tegmental area
(VTA), amygdala, bed nucleus of the stria terminalis
(BNST), hippocampus (HPC), nucleus accumbens
(NAc), prefrontal cortex (mPFC) [10], that are part of a
complex circuit playing a key role in the regulation of
motivated behavior (i.e., goal-directed behavior) [11].
Here, oxytocin interacts locally with other neurotrans-
mitters and neuropeptides to modulate the emotional/
motivational aspects of the above-mentioned functions by
both direct excitatory influences and indirect regulation
on core pathways of the reward circuit such as the
mesolimbic dopamine (IDA) pathways and their projec-
tion areas [2,3,12—16] and these interactions are thought
to be the neurochemical link between the motivational
and consummatory aspects of rewarding behaviors [17—
19]. The broad modulatory function exerted by oxytocin
on reward-related neural substrates and behaviors has
attracted in recent years the attention of scientists on a
possible role of this peptide on addiction-related neural
substrates and mechanisms. In this regard, the develop-
ment of pharmaceutical approaches based on intranasal
delivery poses a real possibility to utilize the neuropep-
tide as a therapeutic agent for the treatment of addiction-
related conditions. However, the current knowledge is
still far away from a precise characterization of the brain
sites and mechanisms of action of the potential positive
effects of oxytocin-based treatments for addiction. This
review tries to briefly summarize the most recent ad-
vances in the field with the final aim to propose directions
for future research and strategic applicative development.

Oxytocin efficacy in substance use
disorders

Preclinical studies have shown that oxytocin can influ-
ence addictive behaviors and might interact with the
DArgic system, which is a pivotal component of addic-
tive behaviors (see Table 1 for a summary of the more
recent preclinical studies on oxytocin actions in addic-
tion models). Although oxytocin chemical instability
and fast pharmacokinetics, its intranasal administration
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Table 1

Preclinical studies on oxytocin effect on different classes of drugs of abuse (2015-2020).

Substance Species, Gender Oxytocin Dosage Regimen Main findings References
Alcohol OxtR KO, female N/A Oxytocin receptors are involved in the conditioned effects of an ethanol-  [81]
associated social stimulus.

C57BL/6 mice, male N/A Pharmacological and genetic modulation of the oxytocin receptor can  [82]
modulate the acquisition, extinction, and reinstatement of conditioned
reinforcing effects of ethanol.

Sprague—Dawley rats, male 0.05-0.5 mg/kg IP Decrease of ethanol intake. [83]

Prairie Voles, male and female 1-10 mg/kg IP Reduction of alcohol consumption. [84]

Wistar rats, male 1 pg ICV Blockade of Ethanol-induced dopamine release and reduced EtOH [85]
self-administration.

C57BL/6J mice, male 0.3—3 or 10 mg/kg IP Reduction of EtOH Self-Administration in different models, at doses not  [86]
effective on sucrose SA.

Wistar rats, male 10 nM ICV Reduction of cue-induced reinstatement of alcohol-seeking in [38]
dependent rats, but not in non-dependent rats.

C57BL/6J mice, male and female 0.1—-1 mg/kg, IP Attenuation of stress-induced reinstatement of alcohol seeking. [871]

Wistar and SD rats, male 0.125—1 mg/kg IP Decrease of enhanced motivation for alcohol in alcohol dependence; [88]

0.25—1 mg/kg/20 pl IN blockade of alcohol effects on GABAergic transmission in the central
3-30 pg ICV amygdala.

OF1 mice, male 1 mg/kg IP Reduction of the negative effects of social stress on ethanol [89]
consumption and the neuroinflammatory process.

Prairie Voles, male and female 3 mg/kg, IP Temporarily reduction of alcohol consumption but not alcohol [90]
preference in the presence of peers that are not receiving similar
treatment; assessment by radio frequency tracking.

OxtR KO Mice, male and female N/A In females, disruptions in oxytocin signaling may contribute to [91]
increased voluntary alcohol consumption.

Methamphetamine  SD rats, male 0.5—4.5 pmol/NAc core Decrease of METH-primed reinstatement in a dose-dependent [92]
manner.

SD rats, female 1 mg/kg IP daily during adolescence  Adolescent exposure inhibits responsiveness for METH under a PR [93]
reinforcement schedule, and reduces METH-primed reinstatement.

SD rats, male 1 mg/kg IP Acute treatment suppresses METH-seeking exacerbated by stress. [94]

SD rats, male and female 1 mg/kg IP 0.6 nmol/0.25 pl/NAc core  Systemic injection or infusion into the NAc core decreased responding  [95]
to meth-associated cues.

SD rats, male and female 1 mg/kg IP Attenuation of METH demand and seeking in both sexes, by oxytocin  [96]

0.6 ng/NAc core signaling in the NAc core.

Long Evans rats, female 0.3 mg/kg IP prior to SA session Chronic treatment can reduce motivation for METH. [97]

SD rats, male 1 pg/PrL Reduction of both cue-induced and METH-primed relapse to METH- [98]
seeking behaviors.

SD rats, male and female 1.0 mg/kg i.p. Attenuation of incubation and METH-primed reinstatement in both sex [99]
and reduction of anxiety phenotype.

Cocaine C57BL/6J mice, male N/A Brain region-specific neuroadaptations of the oxytocin system after [100]

cocaine abstinence may contribute to an abstinence-induced negative
emotional state.

(continued on next page)
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reversal of Hipp DNA hypomethylation induced by oxytocin.

[16]

Downward shift in the dose-response of MP-maintained self-

0.1-2 mg/kg IP

SD rats, male

Methylphenidate

administration behavior in rats and increase of NAc shell DA levels.

allows its direct transport from the nose to the brain
across the blood—brain-barrier and rapid onset of the
therapeutic effects. However, the putative central ac-
tions of peripherally administered oxytocin have been
long time debated [20] and represent a nodal point on
the effective possibilities to develop strategies for the
use of oxytocin as a centrally acting therapeutical agent
[21]. Recent preclinical studies employing innovative
approaches such as knock-out mice for oxytocin [22] or
labeled (i.e., deuterated) oxytocin in rhesus macaques
that allows a reliable assessment of brain oxytocin
penetrance and distribution [23,24] seem to convinc-
ingly confirm that intravenous or intranasal exogenous
oxytocin is able to cross or bypass the blood—brain-
barrier and enter the brain where the interaction with its
own receptors in specific brain areas, can affect a wide
range of behaviors. Moreover, the specific formulation
used (e.g., nanoparticle encapsulation) can significantly
influence the entity and duration of the behavioral ef-
fects induced [25]. A large number of clinical trials are
currently investigating the potential use of oxytocin as a
therapeutical agent for the treatment of addictions (see
for instance https://www.clinicaltrials.gov/;
NCT04306354, NCT01573273, NCT01827332) and a
growing number of research papers have already shown
the potential benefits of oxytocin for different CNS
disorders, including substance use disorders. In partic-
ular, selected papers from 2015 to 2020 suggest that
oxytocin signaling is directly involved in heroin, alcohol,
cocaine, methamphetamine, nicotine, ketamine, and
poly-drug dependence and concomitant affective dis-
orders, as illustrated in Table 2. Among opioid users,
blunted plasma oxytocin levels were associated with
higher craving scores [26] and novelty-seeking [27].
However, other studies revealed increased oxytocin
plasma levels among abstinent heroin users and a direct
correlation with their aggressiveness, anti-social emo-
tions, and mood disorders [28]. Notably, oxytocin levels
were higher in those patients who cease the heroin
detoxification program than in those who accomplished
it [29]. A weak oxytocinergic functioning (i.e., A allele
homozygous in OXTR rs53576 polymorphism) is asso-
ciated with alcohol use and prevalence of alcohol use
disorders in a small group of males at ages 15, 18, and 25
[30] and, although based on self-reports measurements,
these findings are in line with the clinical interviews.
oxytocin system deregulations have been observed after
chronic ketamine abuse, and notably, this seems to be
associated with severe anxiety [31]. On the other hand,
Woolley and coll (2016) [32] showed that a single dose
of intranasal oxytocin did not reduce addiction-related
assessments while Moeini and coll (2019) [33] re-
ported reduced craving score and withdrawal symptoms
in heroin users during the abstinence. Contrasting re-
sults are also provided after methamphetamine [34] and
nicotine studies. oxytocin decreased cue-induced crav-
ings in daily cigarette smokers [35], but did not alter
stress-induced cigarette smoking [36]. The small

Current Opinion in Pharmacology 2021, 58:8—-20

www.sciencedirect.com

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en julio 19, 2021. Para
uso personal exclusivamente. No se permiten otros usos sin autorizacion. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.


www.sciencedirect.com/science/journal/14714892

*SOPBAIISAI SOUYIIAP SO[ SOPO], duU] IAIAIS[H *[Z0ZO WS1Ad0)) "uoIdeZII0INE UIS SOSN SO01J0 UNIULIdd IS ON "JUIWBAISN[OX? [euosIad osn
'IRd "120T ‘61 o1nl ud 101351 10d s9°Ad3[eorur]) ap AJ1INdag [B100S pue yjedH Jo A1e1qi feuoneN ue (e/u) 1os) snowkuouy ered opesressaq

WI09°1081IPBJUBIOS MMM

02—8:8G ‘1202 ABojoorwieyd ui uoiuidQ juaiiny

Table 2

Clinical studies on oxytocin role on addiction (2015-2020).

Subjects Number and Route of administration Main conclusion References
Gender
Opioid users 77, male and female N/A Negative association between the blood level of plasma oxytocin and novelty seeking. [26]

18, male N/A Increased oxytocin levels among abstinent heroin addicts and direct association with aggressive [28]
behavior and mood disorders. Possible role of oxytocin during defensive and “anti-social’ emotions
and behaviors often characterizing the clinical history of addicted patients.

57, male N/A Plasma oxytocin levels were significantly higher in those individuals who dropped out than in those [29]
who completed the detoxification program.

77, male and female N/A Negative association between plasma oxytocin level and heroin craving score in patients under [27]
methadone treatment, stronger effect among patients with a lower level of novelty-seeking.

37, male Intranasal (40 IU) A single dose of oxytocin is well tolerated by patients on opioid replacement therapy; no significant [32]
improvement in craving or Implicit Association Task scores after oxytocin and evidence that social
perception was worsened.

58, male Intranasal (40 1U) Attenuation of craving and withdrawal symptom in heroin-dependent patients; reduction of cortisol [33]
level and improvement of cortisol/DHEAS ratio during abstinence after a single dose of oxytocin.

Alcohol users 593, male and female N/A Oxytocin receptor gene (OXTR rs53576 polymorphism) is associated with alcohol use and the [30]
prevalence of alcohol use disorders in males.

32, male and female Intranasal (40 IU) Improvement of social perception, reduction of cue-induced alcohol craving, and reduction of [1086]
appetitive approach bias in subjects with alcohol abuse.

27, male N/A Oxytocin peptide mMRNA was significantly elevated in the prefrontal cortex of subjects with alcoholuse  [107]
disorder compared to controls. A significant positive correlation between the fold change in oxytocin
peptide mRNA in the prefrontal cortex and both daily alcohol intake and drinks per week was
observed.

15, male Intranasal (24 1U) oxytocin reduces alcohol cue-reactivity in alcoholics; potential anticraving medication. [38]

40, male and female Intranasal (24 1U) Intranasal oxytocin did not significantly reduce the oxazepam dose needed to complete a 3-day [108]
course of alcohol detoxification and withdrawal treatment.

13, male Intranasal (24 1U) Reduction of NAc connectivity during an alcohol cue-reactivity task, which is related to changes in [39]
subjective craving for alcohol.

40, male Intranasal (24 1U) Intranasal oxytocin did not affect actigraphy-recorded motor activity nor sleep in patients with acute  [109]
alcohol withdrawal.

Cocaine users 67, male and female Intranasal (40 1U) Reduction of cue reactivity in cocaine dependence, effect modified by sex and childhood trauma [110]
history.

112, male and female Intranasal (40 1U) Different effects in men and women with Cocaine use disorder (CUD). Women may be at greater risk  [111]
for relapse in response to social stressors, but ovarian hormones may attenuate this effect.

Methamphetamine 50, male Intranasal (40 1U) Oxytocin may safely increase treatment attendance by means of modulation of the autonomic nervous  [112]
users system.

48, male Intranasal (40 1U) Small effect of oxytocin on group cohesion, but not effect on anxiety or craving. [113]

Nicotine users 35, male and female Intranasal (40 1U) Oxytocin decreases some indices of smoking desire and consumption, providing modest support for  [114]

the idea that OT might be effective for reducing cigarette smoking.

(continued on next page)
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number of subjects of each of the studies described
together with differences in the experimental protocols
can account for this discrepancy. Indeed, other studies
showed that the same treatment attenuates alcohol
withdrawal and craving [37—40], decreases stress-
induced craving in marijuana-dependent individuals
[41], mitigates the effect of state anger on cocaine cue-
reactivity [42] or cocaine craving [43] in dependent
individuals. Thus, although OT may exert a common
action on reward processes shared amongst substances
of abuse, there are subtle differences in efficacy based
on the drug, the context of drug use, as well as positive
reinforcement, such as anxiolysis and stress relief
contributing to negative drug-associated reinforcement.

Oxytocin and the brain reward system:
interaction with dopamine

The mesolimbic DA pathway, connecting the VTA to
the NAc, particularly the shell region, is crucially
involved in natural and drug-mediated reward and
motivational processes [44]. Nevertheless, several
studies indicate an association between oxytocin and
the DA system in the regulation of the same rewarding
processes [17]. This is most likely due to the PVN
oxytocin projections onto VIA DA cell bodies whose
optogenetic manipulation affects social reward [14], and
on NAc DA terminals [13], but also to the amygdala [6]
and medial PFC [45] that interact directly with the VTA
and NAc DA neurons. These evidences clearly explain
why a direct injection of oxytocin in the VTA of rats
stimulates DA release in NAc [12] and modulates the
reinforcing properties of social interactions [46] and
intracerebroventricular oxytocin per se may be rewarding
[47]. This aspect is of particular interest for the
common peculiarity of the different classes of drugs of
abuse that, independently from their pharmacological
profile and mechanism of action, are able to preferen-
tially stimulate the release of extracellular DA in the
NAc shell [44]; however, the issue of the effect of
oxytocin on DA transmission in response to drugs of
abuse in brain areas where oxytocin and DA interact to
increase motivated behaviors for natural reward is still
open, as shown by recent preclinical studies on oxytocin
actions in models of addiction ('Table 1). On one hand,
oxytocin was shown to be able to antagonize behavioral
changes (i.e. locomotion, self-administration, tolerance,
conditioned place preference, cue-induced drug-
seeking) induced by opiates, alcohol, cannabinoids, and
psychostimulants such as cocaine or methamphetamine
[48,49]; in addition, when administered directly into
the NAc, oxytocin has been shown to inhibit the in-
crease of DA induced by cocaine and the DA turnover
induced by methamphetamine in the same area [50].
On the other hand, a recent, nicely designed micro-
dialysis study from the lab of G. Tanda showed that both
systemic and locally applied oxytocin robustly potenti-
ated the methylphenidate-induced DA release in the
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NAc shell but not in the core [16]. Notably, oxytocin per
se had no effect on NAc shell DA levels confirming that
it has been administered at not reinforcing doses. The
study is also completed by the intriguing downward shift
of the dose—response curve for intravenous self-
administration of methylphenidate subsequent to the
systemic administration of oxytocin in rats. Micro-
dialysis data underscore the context-dependent effect
of oxytocin on DA signaling selectively in the NAc shell.
The facilitation of NAc shell DA release, possibly by
local OTXRs activation, could also account for an
enhancement of morphine-induced CPP [51]. All these
evidences clearly implicate that oxytocin regulation of
reward circuitry is more complex than a direct linear
action on DA neurotransmission. In fact, OXTRs are
expressed also by GABA and glutamate neurons in the
mesencephalon [3,13,15]. This has been well charac-
terized for the effects of ethanol where both these
neuronal populations modulate in an opposite manner
the activity of VTA DA neurons locally, and alternatively,
through projections to other brain regions, including the
NAc, adjusting either aversion or positive reinforcement
[40].

Differential roles of oxytocin in addiction

Preclinical studies (see Table 1) suggest that the brain
oxytocin system can modulate neuronal systems un-
derlying the different stages of addiction (i.e. binge and
intoxication, negative affect and withdrawal, preoccu-
pation and anticipation) at the basis of its development,
maintenance, and further relapse [52]. In this regard,
the ability of oxytocin to regulate the activity of limbic
structures and the hypothalamic—pituitary—adrenal axis
has been proposed as a potential mechanism for the
ability of oxytocin to inhibit ethanol-induced negative
reinforcement since long-term alcohol intake can down-
regulate oxytocin signaling [53]. According to a postu-
lated role of oxytocin in promoting allostasis [54], an
intriguing hypothesis recently proposed is that oxytocin
can act at the system level as a regulator of impaired
neurochemical signals within these circuits [37,55,56].
What clearly emerges from these studies is that the
potential therapeutical effects of oxytocin on addiction
can be mainly due to its ability to: (i) modulate/recover
altered rewarding processes by promoting the positive
and reinforcing effects of natural rewards (such as social
interactions) by a direct or indirect recovering of an
altered DA mesolimbic and mesocortical functioning;
(i1) modulate/recover altered stress and anxiety pro-
cesses related to dysphoria and negative feelings due to
withdrawal and abstinence by interfering with CRFergic
neurotransmission at the level of the BNST/CeA. Yet, a
general hypothesis postulating oxytocin interference on
NAc DA function seems not to be sufficient per se for the
explanation of its potential therapeutical effects on
addiction and addiction-like states. It should be recalled
in this regard that DA mesolimbic activation codes for
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salient stimuli [57] and is a common feature of several
physiological conditions such as feeding, sexual
behavior, coping to stress, aversion, learning, and social
interactions [46,58,59], as well as pathological ones such
as compulsions and addiction [52]; hence, it appears
clear that there should be something else/more — we are
just now starting to characterize the specificity of the
dopamine neural pathways activated by drug or natural
rewards — that enables the system to recognize different
neurochemical and molecular signals thus redirecting
the behavior towards more adaptive choices in substi-
tution of the abused substance and its rewarding effects.
Moreover, this leading hypothesis, although convinc-
ingly supported by data from both animal and human
studies still lacks knowledge about the precise molec-
ular mechanisms at the basis of these oxytocin effects.
In a recent study oxytocin decreased the reinstatement
of cocaine seeking, increased Fos activation in the PVIN
and central amygdala, but normalized cue-induced Fos
activation in the mPFC, NAc core, and subthalamic
nucleus, thereby demonstrating regionally specific
activation patterns [60]. These and similar results point
out the intriguing possibility that the target of the
oxytocin actions in its ability to recover from addiction is
more complex than previously hypothesized, involving
several structures of the emotional/motivational limbic
system, as well as the stress HPA axis as acting in con-
cert both in physiological and pathological (altered)
conditions. In this regard, an area that deserves partic-
ular attention and that can play a key role in the
neurochemical and behavioral mechanisms at the basis
of the potential therapeutical action of oxytocin in
addiction is the bed nucleus of the stria terminalis
(BNST).

Possible role of the BNST for oxytocin

action in preventing addiction relapse

The BNST is a part of the so-called “extended amyg-
dala” and serves as a key relay connecting limbic fore-
brain structures to hypothalamic and brainstem regions
involved in autonomic and neuroendocrine functions, as
well as in several behavioral responses, such as socio-
sexual and ingestive behaviors, as well as adaptive re-
sponses to stress, fear, and drugs of abuse in laboratory
animals [61—65] and even in humans [66]. The BNST
receives oxytocin innervations from the PVN [67] and
here oxytocin modulates the activity of several neuro-
transmitters such as dopamine, glutamic acid, and nitric
oxide (NO) [63] involved in sexual responses, as well as
CRF neurotransmission involved in maternal behavior
[68] and adaptive fear and anxiety responses [69]
(Figure 1). Long-term neuroplastic adaptations induced
by the addiction process in the BNST and related
structures such as the CeA have been consistently
involved in negative feelings, dysphoria, and stress due
to alcohol, opioids, and cocaine abstinence [70]. Syn-
aptic rearrangements in the BLA-CeA-BNST circuit
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Figure 1
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Schematic representation of the pathways in the rat brain involved in the interplay between oxytocin and CRF at the level of the PVN-BNST-mesolimbic
circuit and at the basis of the possible therapeutical effects of oxytocin in preventing drug relapse. Paraventricular oxytocinergic neurons project to several
extrahypothalamic brain areas such as the VTA, PFC, NAc, BNST, HPC, and AMG where oxytocin modulates motivated behavior by interacting with DA,
GLU, and GABA. In addition, oxytocin interacts bidirectionally with CRF in the PVN and BNST to regulate rewarding and aversive behaviors through
modulation of the activity of the dopamine mesolimbic pathway and peripheral responses to stress through activation of the HPA axis. References are
reported in the main text where appropriate. NAc : nucleus accumbens; AMG : amygdala; BNST : bed nucleus of the stria terminalis; HPC : hippocampus;
PFC : prefrontal cortex; PVN : paraventricular nucleus of the hypothalamus; VTA : ventral tegmental area; CRF : corticotropin releasing factor;

DA : dopamine; GABA : gamma-aminobutyric acid; GLU : glutamic acid; NO : nitric oxide; OXY : oxytocin.

during long-term abstinence [71—73], may exacerbate
the emotional impact of drug-related cues, increasing
proneness to reinstatement and relapse, which provides
support to the view of addiction as an allostatic state
with predominant feelings of anxiety and dysphoria,
together with a generalized hedonic deficit, that can
lead to relapse, even after long-term abstinence [74]. A
major candidate in mediating these effects is the neu-
ropeptide CRE The BNST is the most abundant CFR
brain area and here CRF interacts with several neuro-
transmitters to alter/modulate the connectivity and
responsiveness to stress [75,76]. Notably, chronic acti-
vation of the CRF system in the BNST is thought to be
part of the complex neuroplastic processes at the basis
of stress and anxiety due to abstinence and the main
leading precipitating factor of drug relapse [74]. Hence,
the modulating effects of oxytocin on the addicted
behavior and in particular in its ability to prevent relapse
(see Tables 1 and 2) can be due to its ability to interfere
with BNST CRFergic mediated distress, negative

feelings, and anxiety linked to both early withdrawal and
long-term abstinence and at the basis of an increased
risk of relapse itself. In this regard, it has been shown
that between oxytocin and CRF there are reciprocal
PVN-BNST interactions, with type 2 CRF receptors
located on paraventricular oxytocinergic terminals in the
BNST and cell bodies in the PVN and OXTr mRNA
expressed on BNST CRF neurons suggesting the exis-
tence of a feedback loop where oxytocin can be able to
directly modulate the excitability of the CRFergic
neurons [77]. Moreover, in keeping with the strict
anatomical and functional connections between the
BNST and the PVN with the dopaminergic meso-
corticolimbic system [74] it could be postulated that
oxytocin positively interferes with the above-mentioned
mechanisms: (i) by promoting abstinence distress and
anxiety reduction through its direct action on BNST
CRPFergic activity and (ii) by contributing to recover
adaptive motivational processes through direct PVN
and/or indirect (e.g., glutamatergic) vHPC/BNST/CeA

Current Opinion in Pharmacology 2021, 58:8—-20

www.sciencedirect.com

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en julio 19, 2021. Para
uso personal exclusivamente. No se permiten otros usos sin autorizacion. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.


www.sciencedirect.com/science/journal/14714892

action on the mesocorticolimbic system (see Figure 1).
As regards the molecular mechanisms involved, it can be
suggested that oxytocin-related recovering of the phys-
iological function and prevention of relapse is achieved
by promoting/rearranging (neuro)plastic processes in all
these areas through modifications in LT'P and/or LDP
processes, MAPK/ERK pathway activations and modu-
lation of TEGs and gene expression and (epi)genetic
modifications [10,60,78—80].

Concluding remarks

In recent years is becoming clear that oxytocin can
represent a valid and promising agent for the treatment
of several psychopathological conditions, including
addiction. In this regard, oxytocin intranasal spray de-
livery opened a real possibility for its clinical use as a
therapeutic agent. An appreciable effort has been
recently done in the attempt to shed light on the links
between the molecular, behavioral, and clinical layers of
oxytocin actions. However, although we are now starting
to obtain more precise information about the putative
neural substrates where oxytocin can modulate altered/
dysfunctional circuits in the addicted brain, the molecular
mechanisms at the basis of the oxytocin differential effects
on these systems are almost completely unknown. This
mini-review of the literature highlights that oxytocin
modulation of addiction depends on the specific drug, the
sex/gender, and the study design with particular impor-
tance of drug-associated stressors. However, and in keep-
ing with possible nonspecific actions of oxytocin on the
treatment of addiction, targeting stress-activated pathways
directly involved in the risk of relapse even after long-term
abstinence may lead to therapeutic advancements in the
treatment of substance use disorders, conditions for which
in the past have been already found several, although
ephemeral, panaceas.
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