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The mineralocorticoid receptor (MR) plays a central role in cardiac

physiological function and disease and is thus an attractive

therapeutic target for patients with heart failure. However, the

incidence of significant side effects from mineralocorticoid receptor

antagonist (MRA) treatment has led to investigation of new

mechanisms that may enhance MR targeted therapies. Recent

studies have identified the circadian clock as a novel, reciprocal

interacting partner of the MR in the heart. While the closely related

glucocorticoid receptor (GR) and its ligand, cortisol (corticosterone

in rodents), are established regulators of the circadian clock, new

data suggest that the MR can also regulate circadian clock gene

expressionandtiming.Thisreviewwilldiscusstheroleof theMRand

its ligands in the regulation of the circadian clock in the heart and the

implications of dysregulation of these systems for cardiac disease

progression, and for MR activation.
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Heart failure remains the leading cause of death and

disability, and economic burden worldwide, affecting

an estimated 6.2 million adults in the United States

[1]. Heart failure is characterised as an insufficient cardiac

force generation and/or insufficient filling of the heart due

to increased myocardial stiffness resulting in compro-

mised cardiac output [2]. The prevalence of heart failure

is increasing globally due to a rise in the incidence of

cardiovascular disease and associated risk factors includ-

ing hypertension, obesity and metabolic syndrome [3].
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Many tissue specific mechanisms underlining the patho-

genesis of cardiovascular disease have been identified in

recent years [2]. Some examples include an imbalance in

tissue redox state due to injury or stress, production of

reactive oxygen species, inflammation and immune

cell activation, cardiac hypertrophy and alterations in

cardiometabolic pathways. Dysregulation of one or more

cellular mechanisms can promote cardiac and vascular

functional abnormalities that may result in acute cardiac

events, that is, myocardial infarct following acute, pro-

longed ischemia or progressive cardiac remodelling. New

strategies combating such disordered signaling systems of

pro-inflammatory, cardiac remodelling and dysregulated

metabolic pathways may offer new cardioprotective

therapeutic options with fewer side effects for heart

failure patients. Two targets that have been linked to

these pathogenic mechanisms are inappropriate mineral-

ocorticoid receptor (MR) activation and addressing circa-

dian patterns of cardiovascular parameters [4–6].

Disruptions of tissue-specific-MR and circadian clock sig-

naling mechanisms have been independently linked to

cardiovascular pathophysiology [7,8]. This supports an

important interaction between these two systems in the

dysfunctional, and perhaps normal, heart. Time of day-

dependent secretion of corticosteroid hormones, especially

glucocorticoids, and their temporal activation of the gluco-

corticoid receptor (GR) are established entrainment cues

for the molecular clock in peripheral tissues [9,10]. Emerg-

ing evidence now suggests that corticosteroid control of

time-keeping mechanisms may also occur via the cardiac

MR [11��,12��]. Our laboratory and others have demon-

strated corticosteroid-mediated MR and circadian clock

signaling to interact in the heart in both the physiological

and pathophysiological setting [11��,12��,13,14,15�]. In this

review, we outline mineralocorticoid-driven and glucocor-

ticoid-driven inappropriate activation of the MR and its

impact on regulation of the circadian clock in the heart.

The cardiac and central cardiac circadian
clocks
Almost all physiological cardiovascular parameters exhibit

a circadian pattern [16]. The mammalian machinery that

governs rhythmicity of all physiological functions is called

the ‘circadian clock’ [9]. The circadian clock within the

suprachiasmatic nucleus (SCN) houses the central regu-

latory mechanisms of biological and behavioural circadian

rhythms and aligns rhythmic biological activity across

multiple tissues to ambient photic cues over 24 hours.

The cell autonomous circadian clock in peripheral (or
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‘non-SCN’) tissues is synchronised by way of neurohor-

monal signals that are controlled by the SCN. These

timekeeping signals serve to ‘prime’ cell functions at a

molecular level to environmental cues. In this way, the

autonomous transcriptional-translational network known

as the peripheral ‘molecular’ clock enables cell function

to anticipate reoccurring environmental cues. The core

transcriptional regulators, circadian locomotor output

cycles kaput (CLOCK) and brain and muscle ARNT-

like protein 1 (BMAL1), heterodimerise to upregulate

expression of period genes (Per1, Per2 and Per3) and

cryptochrome genes (Cry1 and Cry2), via enhancer box

(E-box) elements in the promoters of target genes. In

turn, cytosolic PER-CRY levels increase and translocate

into the nucleus where the heterodimer inhibits CLOCK-

BMAL1-mediated transcriptional activity, thus closing

the negative feedback loop [17]. The oscillation in rhyth-

mic expression of each core protein, amongst other pro-

tein subtypes that reinforce the timing of rhythmic

expression, is pivotal to time keeping of ‘molecular clock

time’ across all tissues. One non-photic variable or

‘zeitgeber’ capable of synchronising the circadian clock

is hormonal stimulation, primarily glucocorticoids [9].

While the SCN does not express the corticosteroid receptors,

MR and GR, peripheral cells express variable levels of both

the MR and the GR, and thus, the peripheral molecular clock

is vulnerable to numerous neurohormonal cues that impact

time keeping of the cell-autonomous circadian clock [9,18].

Within non-SCN tissues, glucocorticoid activation of the GR

is an established endocrine-based regulator of the peripheral

molecular clock in response to stress and metabolic homeo-

stasis. One stress-driven neuroendocrine unit that releases

corticosteroids to re-instate synchronisation of the peripheral

molecular clock is the hypothalamus-pituitary-adrenal (HPA)

axis (described in Figure 1) [9]. The HPA regulates the

secretionofMRligands,glucocorticoidsandtoalesserdegree,

mineralocorticoids, to influence rhythms of sympathetic ner-

vous activity, metabolism and immunity in the heart amongst

other organs (reviewed in Son et al. [10]). A study by Morbiato

et al. confirmed the role of GR in timed feeding, a strong

synchronizer of circadian rhythms of hepatic metabolism in

GR mutant zebrafish [19]. Furthermore, Wu et al. demon-

strated how long-term glucocorticoid administration can

deregulate lipid-metabolism related gene expression in fat

and liver isolated from rats, along with disruptions in rhythmic

profile expression of circadian clock genes including Per1 and

Cry1 [20]. Misalignment of physiologically timed early morn-

ing rise in glucocorticoid and mineralocorticoid secretion may

influence the circadian bias of cardiovascular parameters and

thus, lead to impaired function.

Ligand-dependent and tissue-dependent
mineralocorticoid receptor actions in biology
and disease
The MR is a ligand-activated transcription factor belong-

ing to a class of steroid hormone receptors, within the
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nuclear receptor superfamily [21]. The major physiologi-

cal role of the MR in epithelial tissues, such as the distal

nephron and distal colon, is to maintain electrolyte and

fluid homeostasis in response to aldosterone. The aldo-

sterone-induced MR regulates the transcription of genes

associated with sodium reabsorption and potassium

excretion and is in turn regulated by the renin-angioten-

sin-aldosterone system (RAAS) to form a physiological

negative feedback loop; aldosterone falls when perfusion

pressure is restored. The two principal regulators of

aldosterone production are circulating angiotensin II

and potassium levels. These stimulants act to increase

the transcription of the enzyme, aldosterone synthase

(CYP11b2), to induce steroidogenesis in the zona glomer-

ulosa of the adrenal cortex. Basal aldosterone secretion is

also regulated, to a lesser degree, by adrenocorticotropic

hormone (ACTH), a secondary regulator that dictates the

rhythmic secretion of corticosteroids [22]. A recent study

by Crislip et al. highlighted the importance of circadian

regulation of sodium and potassium homeostasis for blood

pressure control [23�]. This is consistent with other

studies showing that several aspects of blood pressure

regulation, including the expression of RAAS compo-

nents, exhibit a circadian rhythm [24–26]. Thus, circadian

regulation of transcriptional networks for sodium and

potassium may be an integral facet of daily blood volume

homeostasis regulation in the kidney. However,

interactions between the molecular circadian clock and

MR-dependent pathways have also been independently

demonstrated in the heart.

In the physiological setting, however, there are clear

effects of aldosterone-mediated MR activation in the

heart and vasculature including transcriptional regulation

and phosphorylation of sodium and calcium handling

proteins essential for driving cardiac action potential,

force generation and regulation of cardiac hypertrophy

pathways [18]. Acute actions of aldosterone are thus

adopted to increase cardiac output following a fall in

perfusion pressure to vital organs as may occur the setting

of dehydration or loss of blood volume [27]. When

sustained, elevated aldosterone levels also regulate

transcriptional pathways for cardiac extracellular matrix

and cell injury responses [18].

The MR is quite unique in its ability to bind both

mineralocorticoids and glucocorticoids with differential

transcriptional and functional outcomes in cardiac myo-

cytes [28]. In renal epithelial cells, aldosterone primarily

occupies the MR due to co-expression of MR with 11b-
hydroxysteroid dehydrogenase type 2 (11b-HSD2), an

enzyme that converts cortisol into its inactive metabolite,

cortisone, to prevent inappropriate glucocorticoid-

induced MR activation [21]. In contrast, 11b-HSD2

expression is absent in non-epithelial cell types, that is,

cardiomyocytes, macrophages and so on, or very low, that

is, vessel wall. The lack of pre-receptor metabolism
www.sciencedirect.com
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Figure 1
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Schematic of the endocrine entrainment of peripheral organs from the mammalian central circadian clock via the stress-sensitive hypothalamic-

pituitary-adrenal (HPA) axis and activation of the autonomic nervous system (ANS).

The central ‘master’ circadian clock, residing within the suprachiasmatic nucleus (SCN), is synchronised to the photic stimuli via optic signals,

which are transmitted from the retina to the retinorecipient neurons. The molecular clocks in different tissues are synchronised to internal timing

cues as an output from the SCN, such as endocrine signaling via the HPA axis, amongst other timing cues such as food intake, body

temperature, arousal stimuli and stress. The SCN relays important light:dark information to neurons in the paraventricular nucleus also within the

hypothalamus. Corticotropin releasing hormone (CRH) is produced from PVN upon activation of these neurons, which then act on the anterior

pituitary gland to stimulate the release of adrenocorticotropic hormone (ACTH). ACTH then acts on the adrenal cortex to stimulate the secretion of

primarily glucocorticoids. Glucocorticoids negatively feedback on the HPA axis at the level of the hypothalamus and anterior pituitary gland by

suppressing CRH and ACTH production, respectively. The heterogenous collection of neurons that make up the SCN do not express the

glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), indicating that levels of adrenocortical steroid hormones do not feedback at the

level of the SCN. External to the HPA axis, the PVN also serves to convey important light:dark information to the pineal gland via neural pathways

to dictate cyclic melatonin production. Mineralocorticoids and glucocorticoids (predominantly aldosterone and cortisol, in humans, respectively)

secreted from the adrenal cortex can act on several MR-responsive cardiovascular tissues. Pre-receptor metabolism by 11b-hydroxysteroid

dehydrogenase type 2 (11b-HSD2) converts cortisol to an inactive form protects the renal-MR from cortisol binding. In contrast, 11b-HSD2 is not

co-expressed with the MR in cardiomyocytes and is very low in vasculature, leaving these non-epithelial tissues vulnerable to inappropriate

glucocorticoid-induced MR activation.
results in MR in non-epithelial tissues being predomi-

nantly occupied by cortisol given that cortisol (corticoste-

rone in rodents) circulates at levels 100-fold greater than

aldosterone [28].

Although the actions of glucocorticoid binding to the MR

are largely regarded as antagonistic of aldosterone effects,

they can also be agonistic depending on cell context and

drive MR-directed pathology [29]. The MR in non-

epithelial cell types is thus a second receptor for gluco-

corticoids and in combination with its counterpart, the

low-affinity GR activation, and hence it serves to
www.sciencedirect.com 
substantially extend the effective range of cortisol signal-

ing (low nM to low mM). It has been suggested that

aldosterone is 10-fold more potent than cortisol at non-

epithelial MR; however, in the presence of oxidative

stress this is not always the case [30,31]. Both aldosterone

and corticosterone can modulate chronotropy and ino-

tropy of primary ventricular cardiomyocytes [32]. These

effects are in part due to actions on the expression and

activation calcium channels and other ion handling pro-

teins. Moreover, glucocorticoid-induced cell contractions

are further elevated by oxidant co-treatment, suggesting

that cell stress can heighten glucocorticoid-MR driven
Current Opinion in Pharmacology 2021, 57:21–27
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cell contraction and thereby increase their susceptibility

to cardiac arrhythmias [32]. Mihailidou et al. further

demonstrated that while aldosterone can rapidly regulate

the Na-K-2Cl cotransporter in rabbit cardiomyocytes,

cortisol induction of pump current is also regulated via

the MR but only in the presence of an oxidant [33�]. In

the setting of an unbalanced redox state, the circadian

control of MR signaling by corticosteroids may be further

interrupted, contributing to cardiovascular injury

responses. These data are consistent with cardioprotec-

tive effects observed in experimental models using cell-

selective MR null mouse models and in patients with

heart failure who respond to MRA treatment despite

normal plasma aldosterone levels [4,14,34–36].

Inappropriate MR activation in the heart and
vasculature
MR-mediated cardiac inflammation and fibrosis in the

clinical setting is recapitulated in experimental models of

cardiac remodelling and heart failure in both males and

female subjects [4,36,37]. Administration of aldosterone,

or its precursor the potent mineralocorticoid deoxycorti-

costerone (DOC), in rodents together with a high salt

intake is a strong driver of cardiovascular pathology

[14,28,38]. These studies are consistent with the elevated

cardiovascular risk observed in patients with primary

aldosteronism, a condition characterised by excessive

autonomous aldosterone production paired with charac-

teristic low renin levels [39]. Mineralocorticoid excess

drives cardiomyocyte enlargement, cardiac hypertrophy,

production of oxygen species, fibrosis and immune cell

infiltration and stiffening of the myocardium [4,40].

These studies have collectively helped to map a pro-

fibrotic and pro-inflammatory gene profile involving upre-

gulation of pro-inflammatory cytokines and enhanced

expression of oxidative stress genes including, but not

restricted to, connective tissue growth factor (Ctgf),
plasminogen activator inhibitor type-1 (PAI-1), NADPH

oxidase 2 (NOX2) and transforming growth factor b1
(TGF-b1) [14,38,41–43].

The importance of circadian clock function in the gating

of the inflammatory response and metabolism has also

been previously characterised [44]. Cunningham et al.
recently revealed that reverse erythroblastosis virus a
(REVERBa), an accessory circadian protein and nuclear

receptor, repressing BMAL1 transcriptional activity, may

play a crucial role in suppressing the development of

pulmonary fibrosis [45]. The phosphoinositide 3-kinase/

v-akt murine thymoma viral oncogene homolog 1/glyco-

gen synthase kinase/ribosomal protein S6 kinase b1
(PI3K/AKT/GSK3/p70S6K) and downstream activation

of mammalian target of rapamycin (mTOR) pathway

may be one circadian clock-regulated signal transduction

pathway involved in cardiac hypertrophy, which have

been shown to be dysregulated in cardiomyocyte-clock

mutant (CCM) mice. Furthermore, Li et al. have shown
Current Opinion in Pharmacology 2021, 57:21–27 
that antagonising the MR is beneficial in promoting

autophagy by downregulating phosphorylated PI3K,

AKT and mTOR protein levels in human podocytes

following pathophysiological mechanical stress [46].

MR-dependent pathophysiology also extends to the

induction of inappropriate cellular metabolism, a funda-

mental aspect of physiology that is strongly regulated by

the circadian clock [47,48�]. One study has shown the

attenuation of fibrotic programs by MRA administration

in female spontaneously hypertensive rats, as well as

reversal of impaired cardiac glucose uptake in the heart

[48�]. This was evident in the enhancement of expression

of glucose transporters and related genes, and genes

associated with cardiac hypertrophic remodelling were

downregulated relative to untreated rats following MRA

treatment. Moreover, another study reported that MRA-

treated male mice on a high-fat diet showed improved

plasma fasting glucose, plasma aldosterone levels and pro-

inflammatory cytokine profile, compared to untreated

mice on a high-fat diet [49]. While our recent work

suggests that MR actions in the heart are at least in part

dependent upon the circadian clock and dysregulation

of common downstream targets, how these MR and

circadian dependent mechanisms interact is not yet

known [12��,13,14].

Mineralocorticoid receptor actions in the
heart impact tissue functions with a circadian
rhythm
Physiological actions of the MR have been linked to

several cardiac parameters with a defined circadian profile

[50]. Heart rate variability (HRV), for example, is a

measure of the variation in the time between each heart-

beat, has a strong circadian rhythm and is an important

indicator of abnormalities in the autonomic nervous sys-

tem in patients with hypertension [51,52]. Disruptions in

phase alternations in intracellular calcium uptake and

action potential duration are associated with low varia-

tions in HRV and represent a significant risk factor for

life-threatening cardiac arrhythmias [53]. MR activation

may play a role in promoting or propagating dysfunctional

HRV; spironolactone treatment, an MRA, can recover

HRV in patients with congestive heart failure and is, of

note, more effective in the early morning hours [50]. As

noted earlier, corticosteroid-induced MR activation is

involved in stimulating calcium handling modulators,

particularly L-type and T-type calcium channels and

selected transient receptor potential channels in the heart

and vasculature [54]. Our group further demonstrated a

central role for cardiomyocyte-MR signaling in regulating

calcium and sodium handling proteins following a

hypoxic stress response; dysregulation of ion transport

following ischemic insult leads to vulnerability of the

myocardium to arrhythmia that can be modified by

the MR [4]. Pathways controlling cardiac rhythm are
www.sciencedirect.com
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one example whereby the MR and circadian signaling

may interact to determine cardiac functional outcomes.

As noted, MR signaling in a range of tissue types deter-

mines bloodpressure in response tosalt andfluid intakeand

across the day. The nocturnal dipping pattern of blood

pressure is a classic circadian feature of both systolic and

diastolic blood pressure; loss of this feature of diurnal blood

pressure regulation is a risk factor for cardiovascular disease

[55]. In these patients, the MR is predominantly and

continuously activated by aldosterone in those tissues

not only in the kidney, but in those tissues where cortisol

is the primary ligand [28]. One study showed Per1-knock-

out male mice on a high DOC/salt diet experienced a

greater incidence of non-dipping compared to wildtype

mice [56]. Similarly, Douma et al. reported that the

incidence of non-dipping hypertension amongst male mice

with the same genetic mutation within the circadian clock

machinery increased following DOC/salt treatment,

whereas female mice with the same mutation were pro-

tected [15�]. These studies suggest that excess corticoster-

oid levels are not solely driving inappropriate MR signaling

but may be linked to other systems that influence cardio-

vascular parameters such as circadian biology.

Understanding the role of the circadian clock
in MR-mediated cardiac pathology
Although it is a relatively understudied aspect of cardiovas-

cular endocrinology, few studies have investigated the

importance of the cardiac circadian clock in corticosteroid-

MR related disease [11��,12��,13]. One study from our group

suggests that MR-mediated pathology may require an intact

peripheral molecular clock [13]. In the absence of functional

circadian signaling, select markers of cardiac fibrosis and

inflammation were blunted in response to chronic DOC/salt

treatment. More recently, Tanaka et al. demonstrated a

phase advance in expression of several genes of the adrenal

molecular clock and serum corticosterone and aldosterone

levels in spontaneously hypertensive rats compared to the

control group over 24 hours [11��]. Inappropriate misalign-

ment of corticosteroid-MR signaling may have profound

cooperative consequences on cardiovascular function.

For example, Lui et al. recently identified a role for aldoste-

rone-MR activation in cardiac metabolism and structural

remodelling, that is linked to silent mating type

information regulation 2 homolog-1 (Sirt1) and adenosine

monophosphate–activated protein kinase (AMPK), two

genes involved in regulating the circadian clock [57]. There

may also be an overlap in activity between the corticosteroid-

MR signaling system and those that regulate biological

processes in the cardiovascular system.

Understanding direct crosstalk between the MR and

circadian signaling mediators in physiology or pathophys-

iology may identify a new biology for MR-dependent

circadian clock biology. The MR and GR share binding to

common glucocorticoid response elements (GRE) in the
www.sciencedirect.com 
promoter regions of target genes, which are present in

close proximity to E-box elements within the promoter

regions of GR and MR target genes and of circadian clock

genes [58–60]. There is stronger evidence of direct inter-

actions of select circadian clock proteins, such as CRY2

and REVERBa, with GR compared to coupling to MR

[59,61�]. For example, Caratti et al. proposed that a

physical interaction between GR and REVERBa med-

iates a GR-dependent role in hepatic energy metabolism

[61�]. Fewer studies have hinted at the potential role for

aldosterone/cortisol-mediated MR regulation of the car-

diac circadian clock [12��,62]. Fletcher et al. revealed a

time-of-day-dependent regulation of Per1, Per2 and

ReverbA gene expression in mouse hearts following aldo-

sterone administration at 8AM versus 8PM [12��]. Using a

rat cardiomyoblast cell line, this study also showed that

glucocorticoid and mineralocorticoid treatment signifi-

cantly elevated Cry1 and Per1 expression, six hours fol-

lowing treatment. Similarly, Tanaka et al. demonstrated

that aldosterone regulates Bmal1, Per1 and Per2 expres-

sion, as well as PAI-1, a promoter of fibrosis in cardio-

myocytes [62]. Crosstalk between circadian clock proteins

and corticosteroid bound MR potentially may play a role

in cardiovascular pathogenesis but has not been fully

elucidated. A further understanding of potential crosstalk

between these two systems could provide a unique basis

to improve treatment with current MRAs or the develop-

ment of prospective cardioprotective MR modulators.

The MR has emerged as a critical player in the develop-

ment of many aspects of cardiac disease, and in particular

has been linked to several cardiac parameters that possess

clear circadian profiles. Virtually all functions of the heart

follow a circadian pattern and entrainment of the molec-

ular clock in peripheral cells is critical to align organ and

cellular function with the external environment. It is

perhaps not unexpected that the MR, like the GR, can

regulate aspects of cardiac function that follow a circadian

pattern. Our studies and those from other groups illustrate

how the molecular clock can be readily disrupted by MR-

mediated transcriptional control in cardiomyocytes and

thus disrupt a fundamental cellular control mechanism.

Understanding the mechanisms underlying the reciprocal

crosstalk identified between the molecular clock and the

MR in cardiac and other cell types represents a new

biology for MR in the heart, and potentially also for

cortisol acting via the MR.
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