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Glucocorticoids (GCs) are steroid hormones characterized by

their anti-inflammatory and immunosuppressive nature.

Although GCs are very commonly prescribed, in several

diseases, including sepsis, their clinical treatment is hampered

by side effects and by the occurrence of glucocorticoid

resistance (GCR). Sepsis is defined as a life-threatening organ

dysfunction, initiated by a dysregulated systemic host

response to infections. With at least 19 million cases per year

and a lethality rate of about 25%, sepsis is one of the most

urgent unmet medical needs. The gut is critically affected

during sepsis and is considered as a driving force in this

disease. Despite there is no effective treatment for sepsis, pre-

clinical studies show promising results by preserving or

restoring gut integrity. Since GC treatment reveals therapeutic

effects in Crohn’s disease (CD) and in pre-clinical sepsis

models, we hypothesize that targeting GCs to the gut or

stimulating local GC production in the gut forms an interesting

strategy for sepsis treatment. According to recent findings that

show that dimerization of the glucocorticoid receptor (GR) is

essential in inducing anti-inflammatory effects in pre-clinical

sepsis models, we predict that new generation GCs that

selectively dimerize the GR, can therefore positively affect the

outcome of sepsis treatment.
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Introduction
Glucocorticoids (GCs) are steroid hormones, produced by

the adrenal gland of all vertebrate animals, and widely

used in the treatment of various autoimmune,
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inflammatory and allergic disorders, such as rheumatoid

arthritis (RA), lupus erythematosus, inflammatory bowel

disease (IBD), transplant rejection and asthma [1].

They work via binding to the glucocorticoid receptor

(GR), a member of the nuclear receptor family. Upon

ligand binding, GR dislocates from its chaperone complex

and translocates to the nucleus. In the nucleus, GR

interacts with the genomic DNA or with other proteins

to regulate gene transcription of thousands of genes

(protein coding, micro-RNA and long non-coding genes).

GR can influence gene expression via several ways, but

the best known is the GR dimer mechanism, in which GR

homodimers bind to glucocorticoid-responsive-elements

(GREs) to activate gene transcription. GR can also

transcriptionally repress genes by binding, as a monomer

to other transcription factors (TFs) such as NF-kB and

AP-1, thereby preventing them from activating gene

transcription.

GCs are considered to be the most effective anti-

inflammatory drugs. It is estimated that about 3% of

the Western population are using GCs [2]. However,

the therapeutic use of GCs is hampered by the occurrence

of side effects such as osteoporosis, hyperglycemia,

disturbed fat redisposition, muscle atrophy and hyperten-

sion, especially during chronic usage [3]. Furthermore,

some patients do not respond to the therapy, a phenome-

non called glucocorticoid resistance (GCR). This GCR

occurs in diseases such as severe asthma, chronic obstruc-

tive pulmonary disease (COPD), rheumatoid arthritis,

inflammatory bowel disease (IBD) and sepsis. Sepsis is

a life-threatening organ dysfunction caused by a dysre-

gulated host response to infection [4]. The incidence of

sepsis is still increasing year after year, and hence it

remains one of the leading causes of death globally [5].

Unfortunately, sepsis patients only get supportive care,

consisting of rapid delivery of antibiotics, fluid resuscita-

tion, vasopressor administration, lung ventilation and

nutritional support [6]. Sepsis consists of an early pro-

inflammatory phase, causing early deaths. Thanks to

improved clinical management, many patients survive

this first phase. However, these patients can enter an

immunosuppressive status in which they can die because

of the inability to clear primary infections as well because

of the development of secondary infections [7].

Although sepsis consists of an early pro-inflammatory

phase, the systemic delivery of anti-inflammatory GCs

has not really led to a breakthrough in sepsis [8,9].
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2 Immunomodulation
However, experiments with animal models do show the

importance of GCs and GR signaling during sepsis. Both

injection of GR antagonist RU486 and adrenalectomy

sensitize mice for tumor necrosis factor alpha (TNFa)-
induced systemic inflammatory response syndrome

(SIRS) [10,11]. Furthermore, mice carrying mutant GR

alleles, for example, the GRdim mice which have a point-

mutated GR with reduced transcriptional activity, are

very sensitive in SIRS and sepsis models [12–15]. Also

GR signaling in T-cells, dendritic cells and macrophages

has shown to be important, since mice with conditional

ablation of GR in these immune cells exhibit higher

mortality in different sepsis models [12,16–19]. In

addition, intestinal GR has shown to be important in

the protection against TNFa-induced systemic inflam-

mation [13].

These results show that there still could be a future in the

use of GCs in sepsis, provided that a number of essential

questions about GR in sepsis are addressed. One major

question is if GCs can be made really efficient in sepsis, if

we target them to the right cells. Multiple components of

the host response are involved in the mortality of sepsis,

but the gut is seen as the motor of sepsis and multiple

organ dysfunction [20]. Since GC treatment reveals ther-

apeutic effects in Crohn’s disease (CD) and in pre-clinical

sepsis models, we hypothesize that targeting GCs to the

gut or stimulating local GC production in the gut forms an

interesting strategy for sepsis treatment.

Intestinal damage in sepsis
The gastrointestinal tract is composed of the mouth, the

esophagus, the stomach, the small intestine (subdivided

into duodenum, jejunum and ileum) and the large intes-

tine (subdivided into cecum, colon, rectum and anal

canal). The inner layer of the intestine consists of IECs

and separates the underlying tissue from the external

environment. The IECs absorb nutrients from the food

and interact with the microbiome and yet exclude patho-

gens, toxins and allergens. When this process is impeded,

intestinal homeostasis is disturbed and disease may occur.

The small intestine is organized in villi, interspersed by the

crypts of Lieberkühn. The crypts contain Lgr5+ stem cells

that renew the IECs of the villi and Paneth cells, that

secrete anti-microbial peptides and proteins (AMPs), for

example, lysozyme and a-defensins, and create the ideal

environment for the stem cells [21,22]. The small intestinal

villi contain different IECs such as absorptive enterocytes,

mucus-producing Goblet cells, hormone-producing enter-

oendocrine cells, Tuft cells important in parasitic infections

and M-cells that are important for the uptake of luminal

antigens and presentation to the immune system [23]. Each

of these differentiated IECs has unique specific functions

to protect the host from external insults and to maintain

intestinal homeostasis. The IECs are covered by a mucus

layer, forming the first barrier between the IECs and the
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lumen. Goblet cells secrete mucins and additional proteins

such as trefoil factor peptides to maintain mucosal homeo-

stasis [24]. Adjacent IECs are interconnected by tight

junctions (TJs) that form paracellular seals for preventing

the flux of hydrophilic molecules [25]. TJs are multiprotein

complexes composed of integral membrane proteins (clau-

dins, occludin and junctional adhesion molecules, JAMs)

and peripheral membrane associated proteins (zonula

occludens, ZO) linked to the actine-myosin cytoskeleton.

Cell–cell communication and exchange of substances is

further regulated by adherens junctions and gap junctions.

The IECs also communicate and interact with the under-

lying gut-associated lymph tissue (GALT) for regulating

the immune response.

During sepsis, pathogen-associated molecular pattern

molecules (PAMPs) expressed on invading organisms

are recognized by pattern recognition receptors (PRRs),

such as Toll-like receptors (TLRs) present on different

cells in the body, such as immune cells. PRR activation on

macrophages induces intracellular signaling cascades,

characterized by the release of pro-inflammatory mole-

cules, such as TNFa, interleukin (IL)-1b and IL-1a.
This cytokine storm leads to systemic inflammation.

It is believed that this inflammatory response affects the

gut integrity on different levels. In the epithelium, an

increase in cell death, and a decrease in proliferation and

migration of IECs is observed [26]. Alterations in TJs will

further lead to intestinal permeability [27,28]. These

alterations include redistribution of the TJ proteins occlu-

din and claudins (1, 3, 4, 5 and 8) [28]. Furthermore, there

is an increase in expression of myosin-light chain kinase

(MLCK), which phosphorylates myosin light chain lead-

ing to cytoskeletal contraction and junction disruption

[29]. Also, the mucus layer is damaged, which further

leads to epithelial cell dysfunction. The increased intes-

tinal permeability can lead to bacterial translocation via

the portal circulation [30]. Toxic mediators can also be

transported through the mesenteric lymph nodes (MLN)

to cause distant organ damage [31]. Finally, the micro-

biome is converted into a ‘pathobiome’ characterized by

an increase in pathogenic bacteria and an induction of

virulence factors in commensals [32]. This pathobiome

can manipulate and dysregulate the immune system. The

local gut injury can further lead to distant injury and

multiple organ dysfunction in sepsis.

Glucocorticoids in the treatment of sepsis to
ameliorate gut damage
Currently, no therapy exists that targets the gut epithelium,

hyperpermeability or mucus in sepsis patients. However,

pre-clinical sepsis studies show interesting interventions

aimed at restoring the intestinal barrier. These studies are

associated with improvements in survival in animal models

of critical illness [33,34]. Administration of systemic

epidermal growth factor (EGF) after the onset of the
www.sciencedirect.com
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infection decreased mortality in pneumonia-induced and

polymicrobial-induced sepsis mouse models. Interestingly,

the survival advantage was associated with improved intes-

tinal integrity and decreased apoptosis and increased villus

lengths [34,35].Besides, gut-specific inhibition ofapoptosis

leads to higher survival rates in preclinical sepsis [34]. The

above mentioned studies reveal promising results by tar-

geting the gut in sepsis.

In addition, we believe that GCs can be used to amelio-

rate intestinal damage in sepsis (see Figure 1). It is well

established that GC therapy leads to normalization of

intestinal permeability in Crohn’s disease (CD) patients

[36]. GR inhibits MLCK protein expression by inhibiting

TNFa-induced upregulation of MLCK promoter activity

[35]. TNFa is one of the most powerful and abundant

cytokines in sepsis [37]. Also, knockout of MLCK has
Figure 1
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been shown to improve gut barrier and survival in an

animal model of polymicrobial sepsis, the cecal-ligation

and puncture (CLP) model [38]. GCs have been shown to

protect against TNFa-induced lethal shock and TNFa-
induced intestinal permeability [13,39], and GCs alleviate

TNFa-induced goblet- and Paneth cell dysfunction [39].

Besides the effects of GCs on MLCK, it was recently

shown that GCs control STAT1-regulated interferon

(IFN) signature in the IECs, in a GR dimer-dependent

way [13]: GRdim mice, which express a GR protein with

much weaker dimerization and DNA-binding functions,

were used. GRdim mice show a constitutive, IEC-specific

high expression of hundreds of ‘interferon-stimulated

genes’ (ISG), which make them more vulnerable for

TNFa-induced shock and intestinal permeability. A

synthetic GC, dexamethasone, was unable to protect
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4 Immunomodulation
these mice against TNFa-induced lethality and perme-

ability, showing the importance of GR dimerization.

Tofacitinib, a non-selective oral small molecule JAK

inhibitor, however could protect these mice against a

lethal dose of TNFa [13]. The data reveal that GCs/

GR, via a dimer pathway, constitutively repress ISRE/

IRF pathways in IECs, presumably via STAT-1 repres-

sion, and that a failure to repress this key pathway leads to

sensitivity to TNFa-induced cell death and lethal shock.

Recently, it was shown that IFN-l induces Paneth cell

death via activation of STAT1 and MLKL in mice [40].

Biopsies of CD patients show higher levels of IFN-l,
systemically and in the ileum. This was associated with

cell death in the crypt and a decrease in Paneth cells.

IFN-l levels were also shown to be elevated in clinical

and experimental sepsis [41]. Neutralization of IFN-l
protected mice from CLP-induced sepsis, while IFN-l
administration increased mortality [41]. It is suggested

that IFN-l might impair bacterial clearance by restriction

of neutrophil influx to the site of infection, leading to a

failure in clearing the infection. Besides, IFN-l controls

Paneth cell extrusion and secretion of antimicrobial med-

iators, which may affect the microbiome and the epithe-

lial integrity in the gut [42��]. The effects of IFN-l
neutralization on the intestinal damage seen in sepsis

needs further investigation.

Looking for a ‘next generation’ glucocorticoid
therapy?
Systemic delivery of GCs has not really led to a break-

through in sepsis [43–45]. There may be many reasons

behind this observation. But because of the previous

paragraphs, according to us, it would make sense (1) to

generate GCs that stimulate maximal GR dimerization

and (2) to address these GCs specifically to the IECs. An

old dogma states that the side effects of GC therapy are

due to GR dimer activated genes playing a role in glucose

synthesis and fat metabolism. The anti-inflammatory

effects were believed to be monomer-mediated by

repressing inflammatory TFs such as AP-1 and NF-kB.

This dogma has led to a search for ‘selective GR agonists

and modulators’ (SEGRAMs), yielding only a few mole-

cules in clinical use. However, in some diseases, GR

dimerization has shown to be indispensable for its anti-

inflammatory effects. As mentioned, GRdim mice, have

been shown to be very sensitive for several acute triggers,

for example, TNFa-induced lethality and intestinal dam-

age [13,14]. Furthermore, they display higher suscepti-

bility for other acute inflammation models such as LPS-

induced endotoxemia and the CLP sepsis model [12].

Therefore the SEGRAMs concept needs to be redefined

into selective monomerizing GR agonists and modulators

(SEMOGRAMs) and selective dimerizing GR agonists

and modulators (SEDIGRAMs) for therapeutic applica-

tions in chronic and acute inflammatory disorders respec-

tively [46]. Recently two compounds were identified as
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compounds conferred strong protection in a mouse model

of TNFa-induced lethality [47]. Whether such compo-

nents indeed hold promise in sepsis still needs to be

shown.

The second strategy is to modulate pharmacokinetics and

cell-specific targeting of GCs. For the application in IBD,

so-called ‘second-generation steroids’ were developed, for

example, budesonide and beclomethasone dipropionate

(BDP) [48]. These new formulations of GCs minimize

systemic bioavailability to decrease side effects. Budeso-

nide makes use of an extensive first-pass liver metabolism,

leading to reduced systemic side effects. BDP has high

topical effects and low systemic activity. It is administered

as a prodrug that is activated by hydrolysis upon release.

Enteric-coated oral formulations of budesonide and BDP

make use of a gastro-resistant and pH-dependent coating

around the GCs, to withstand attack by stomach acid and to

ensure release in the small intestine and colon. The many

available conditional GR knockout mice show that GC

modulate distinct cell types in each individual disease [49].

New delivery vehicles have been developed including

PEGylated liposomes, polymeric micelles, polymer-drug

conjugates, inorganic scaffolds, and hybrid nanoparticles

[50,51]. Several studies examined the therapeutic potential

of oral administration of nanoparticles in IBD animal mod-

els [52–56]. Targeting of GCs to the intestine in sepsis

however needs to be investigated.

A third strategic option would be to stimulate GC pro-

duction in the intestine itself. GCs are not only produced

by the adrenals, but also locally by the intestinal epithe-

lium. These local GCs contribute to the immune homeo-

stasis of the intestinal mucosa and defective intestinal

GCs production has been associated with development of

IBD [57]. Liver-Receptor-Homolog-1 (LRH-1) is a

nuclear receptor involved in various biological processes,

like steroidogenesis. A strong correlation was observed

between LRH-1 and steroidogenic enzymes in intestinal

biopsies of pediatric IBD patients [57]. It is believed that

LRH-1 regulates intestinal immunity by stimulating local

GC production. This observation makes LRH-1 an attrac-

tive molecule to target in IBD or other inflammatory

diseases, like sepsis.

Conclusions
Despite increasing knowledge about the molecular mech-

anisms in the pathogenesis of sepsis, current treatments are

mainly limited to antibiotic treatment and support of vital

functions. Even GCs, the most potent anti-inflammatory

drugs, have not led to major therapeutic advances. The gut

has been hypothesized as the ‘motor’ in sepsis, as the gut

integrity and intestinal homeostasis are critically affected in

sepsis and this leads to both local as distant damage,

resulting in multiple organ failure. GCs have been shown

to have ameliorating effects on the intestine, both in IBD
www.sciencedirect.com
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patients, as in sepsis pre-clinical models. Therefore, we

believe we can use GCs for the treatment of sepsis-induced

gut damage, thereby preventing subsequent organ damage

and lethality. For this, some optimization of the current

GCs can improve the therapeutic effects.

First of all, we believe in the use of SEDIGRAMs for

sepsis, as dimerization of GR is clearly important in the

protection in different SIRS/sepsis mouse models and

intestinal damage. Besides controlling ISG in the IECs,

SEDIGRAMs also have the advantage of inducing GR

dimer-dependent anti-inflammatory molecules, like glu-

cocorticoid-induced leucine zipper (GILZ). In sepsis

patients, the expression of the coding gene of GILZ is

hampered in white blood cells and pre-clinical sepsis

studies already proved that overexpression of GILZ could

improve survival rates [58].

Another option is to look downstream. GR dimers are

important in the suppression of ISGs, containing necrop-

tosis related genes. GRdimmice show an increased expres-

sion of ISGs in their intestine, leading to an increased

sensitivity for TNFa-induced lethality and intestinal

damage. The JAK/STAT inhibitor tofacitinib could pro-

tect these mice. Tofacitinib has recently been investi-

gated in CD and UC patients. In CD, tofacitinib showed

an anti-inflammatory effect but failed to demonstrate a

significant response and remission rate [59]. In UC, better

results were obtained in phase III trials and tofacitinib has

recently been authorized for marketing by the FDA and

EMA for UC patients [60,61�]. Inhibiting the JAK/STAT

pathway impairs the immune response against viral and

bacterial infections: for example, IFNAR�/� mice are

supersensitive for viral infection [62]. This challenges the

utility of JAK/STAT inhibition in patients. Indeed, over-

all infections, specifically serious infections, were higher

in treated versus placebo groups [60]. In addition, treated

patients showed more cases of non-melanoma skin

cancers, cardiovascular events and increased serum lipid

levels. Selective JAK1 blockers are now being

investigated.

A final option is to target GCs towards the intestine.

Second-generation corticosteroids are compelling candi-

dates as they reduce side effects, lower systemic toxicity

and have high topical activity at the gut level [63]. Their

general mechanism of action is based on novel drug-

targeting methods that lower systemic bio-availability

of the GCs. Promising results for these drugs are observed

in IBD and research suggests a beneficial role in sepsis

treatment as they can be seen as gut-targeting GC. The

use of drug-loaded nanoparticles further lead to enhanced

therapeutic efficacy compared to conventional IBD drugs

in pre-clinical IBD studies [55]. The ability of oral GC-

loaded nanoparticles to accumulate in inflamed regions of

the gut [64,65], makes nanoparticles an attractive drug

delivery method to further investigate in sepsis patients.
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