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Advances in Pediatric Therapeutic

Drug Monitoring

Sarah A. Coggins, MD, MSCE, FAAP'2 Kelly C. Wade, MD, PhD, MSCE, FAAP,"? Kevin J. Downes, MD, FAAP?®

Therapeutic drug monitoring (TDM) is indicated for drugs with narrow thera-
peutic indices, whereby clinicians can adjust drug dosing to promote efficacy
while limiting toxicity risk. Such monitoring is particularly important in man-
aging infectious diseases, as both patient- and organism-specific factors must
be considered to achieve optimal clinical responses. Innovation in pediatric
TDM lags behind adults, largely due to a paucity of data and feasibility issues
with lab draws and pharmacy resources. Emerging techniques in pharmacoki-
netic (PK) modeling, PK study design, flexible sampling strategies, and reduced
sample volume requirements are particularly promising for TDM advance-
ment in neonates and children. In this article, we discuss recent advancements
in vancomycin TDM as a model case. Vancomycin is commonly used to treat
serious gram-positive infections in children, and monitoring was historically
performed using trough concentration-based guidance. Emerging data sug-
gest that vancomycin troughs are not reliable surrogates for efficacy or toxicity
and that trough-based monitoring is associated with increased risk of nephro-
toxicity without clinical benefits. The area under the concentration-time curve
(AUC) is the optimal pharmacokinetic-pharmacodynamic metric to measure
overall vancomycin exposures, and consensus infectious diseases and pharma-
cist society guidance has formally recommended a shift toward AUC-based
monitoring and away from trough-based monitoring in all age groups—includ-
ing in neonates and children. We compare approaches to TDM in infectious
diseases and summarize the body of literature describing application of van-
comycin AUC-guided monitoring in children and neonates. Finally, we high-
light opportunities and potential barriers to implementation of AUC-guided
TDM in pediatric populations.

GOALS OF THERAPEUTIC DRUG MONITORING

Therapeutic drug monitoring (TDM) is used to individualize drug dosing to achieve
therapeutic effect and to reduce the risk of drug-associated toxicities. Since the
1960s, TDM (informed by pharmacokinetic [PK] and pharmacodynamic [PD] prin-
ciples) has been used to optimize exposures to drugs with narrow therapeutic indi-
ces and to assess adherence to prescribed drug regimens. The ability to perform
TDM is thus predicated on the ability to measure drug concentrations and to define
drug concentration ranges that promote optimal clinical outcomes and limit risks
of adverse drug effects." Drugs commonly requiring TDM encompass multiple
classes and indications (Table 1). Despite TDM’s clear utility in supporting safe
and efficacious drug administration, its development and adaptation in children
and neonates has lagged. Contributing factors include PK variability in the setting
of developmental maturation, absence of robust PK models and TDM efficacy tar-
gets validated in children, and limited blood sampling volumes.?
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TABLE 1. Pharmaceutical Classes Commonly Using Therapeutic
Drug Monitoring

Class Examples of Drugs Benefiting From TDM
Antiarrhythmics

Digoxin

Lidocaine

Quinidine

Procainamide

Anticoagulants Heparin

Warfarin

Antiepileptics Carbamazepine
Phenobarbital

Phenytoin

Valproic acid

Anti-infectives Vancomycin

Gentamicin

Isoniazid

Voriconazole

Antineoplastics Carboplatin

S-fluorouracil

Methotrexate

Immunosuppressants Cyclosporine

Mycophenolic acid

Sirolimus

Tacrolimus

Methylxanthines Caffeine

Theophylline

Psychoactives Clozapine

Haloperidol
Lithium

Tricyclic antidepressants

Abbreviation: TDM, therapeutic drug monitoring.

In this article, we review current TDM practices in pedi-
atric care, including advantages and disadvantages of
trough-based sampling for TDM. Next, we describe the TDM
concept based on the area under the concentration-time
curve (AUC), which is a more pharmacologically relevant
parameter for many drugs. We use vancomycin TDM as
an illustrative example, given that vancomycin is one of
the most commonly prescribed antibiotics in hospitalized
children® and neonates*® and often undergoes TDM to guide
treatment and limit potential toxicity. We compare the
rationales, approaches, and clinical implications of trough-
and AUC-guided TDM in hospitalized children. We end with
an overview of emerging innovations in TDM, which hold
promise to improve medication dosing, efficacy, and safety
in pediatric care.

RATIONALE FOR VANCOMYCIN TDM

Vancomycin is a glycopeptide antibiotic with bactericidal
activity solely against gram-positive pathogens, such as
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staphylococci, enterococci, and streptococcal species. The
drug is minimally metabolized; within 24 hours of admin-
istration, up to 80% to 90% of a single dose may be recov-
ered unchanged in urine.® Vancomycin is primarily renally
eliminated. Young children (aged <2 years) and neonates
have slower vancomycin clearance due to factors influenc-
ing renal maturation and function.””*! Additionally, critical
illness may further alter vancomycin PK due to increases in
volume of distribution (eg, increased third spacing, capil-
lary leak, extracorporeal supports) or reduced clearance
in the setting of kidney disease.'? Nephrogenesis is not com-
plete until at least 36 weeks’ gestation,'® and renal matura-
tion further develops over the first several years of age,**
contributing to increasing drug clearance per body weight
over early childhood.

The primary drivers for vancomycin TDM are (1)
achievement of drug exposures that facilitate bacterial kill-
ing and (2) avoidance of toxicity. In particular, nephrotox-
icity results from concentrated drug in the proximal tubule
causing oxidative stress and acute tubular necrosis.'®> The
prevalence of vancomycin-associated nephrotoxicity in
children is estimated as 12%."® Neonates and young chil-
dren (with higher unbound drug fractions, slower clear-
ance, and ongoing maturational renal changes) may be at
particular risk for vancomycin-associated nephrotoxicity,
but TDM guidelines historically focused solely on adults.
Trough-based approaches were the mainstay of vancomy-
cin TDM for decades, until mounting evidence demon-
strated that trough monitoring did not effectively
optimize vancomycin exposures for treatment benefit or
safety.!” The newest guidelines specifically include pediat-
ric recommendations and promote TDM using a more phar-
macologically relevant vancomycin PD parameter: the 24-
hour area under the concentration-time curve (AUC,4).'®

In vitro, animal, and human studies demonstrate that the
AUC to minimum inhibitory concentration ratio (MIC; AUC/
MIC) best correlates with vancomycin efficacy (goal range
400-600), while AUC,, greater than 600 best predicts
nephrotoxicity regardless of MIC. Studies of AUC-guided
vancomycin TDM demonstrate that attainment of target
vancomycin AUC exposures correlates poorly with
troughs'® ! and that AUC monitoring is superior to trough
monitoring in mitigating nephrotoxicity.?*?® Taking this
into account, 2020 consensus guidelines by major US adult
and pediatric infectious diseases and pharmacist societies
formally recommended AUC-based TDM in all age
groups.?*?®> Adoption of this guidance in pediatric care
can be limited by lacking awareness, implementation chal-
lenges, and need for clinician and pharmacy expertise to
support AUC monitoring.

TROUGH-BASED TDM

Trough-based TDM relies on measuring drug concentra-
tions at the end of a dosing interval, obtained within
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FIGURE 1.

A hypothetical concentration-time curve reflecting vancomycin concentrations in an every-12-hour dosing schedule. (A) The shaded area reflects the
area under the concentration-time curve (AUC). The dotted horizontal line represents MIC for Staphylococcus aureus (1 mg/L). (B) Arrows
demonstrate where trough and peak concentrations occur on the concentration-time curve surrounding a vancomycin dose. (G) A visual
representation of how trapezoidal methods (2-point kinetics) are used to calculate AUC. Additional specifics available in Table 2.

Abbreviations: MIG, minimum inhibitory concentration; T,,, duration of the dosing interval; T, infusion time.

30 minutes prior to administration of the next scheduled
dose (Figure 1). Trough concentrations are less affected
by variations in drug distribution than earlier time points
in the dosing interval. The biggest advantage of trough-
based TDM is its simplicity: only 1 serum drug measure-
ment is needed, sample timing is easily understood, and
interpretation is straightforward based on the relationship
of the trough concentration to an established therapeutic
window. For some drugs, like gentamicin, trough-based
TDM is defined largely by safety thresholds: ideal trough
concentrations are less than 2 mg/L, reflecting adequate
drug elimination prior to a subsequent dose.?®%” In this set-
ting, troughs are used to ensure drug elimination and
reduce toxicity risk rather than to guide efficacy. In contrast,
vancomycin trough targets were proposed to guide both
efficacy and toxicity bounds as a range (eg, 10-15 mg/L)
and dose adjustments are made based on whether concen-
trations fall above or below this window.

There are several disadvantages of trough-based TDM,
particularly for medications whose total drug exposure is
related to efficacy and toxicity (Table 2). First, troughs must
be collected at steady state (typically, after 5 half-lives or
~3-4 doses). Trough assessment thus may not be possible
for days, and clinicians miss earlier opportunities to opti-
mize drug dosing to achieve a clinical response. A substan-
tial proportion (40%) of trough samples are mistimed, most
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often too early prior to the true trough interval or prior to
achievement of steady state.”*~3° Early trough assessment
prior to the true trough interval risks overestimation of the
true trough level, whereas measurement prior to achieving
steady state risks underestimation of the true trough value.
Both scenarios can subsequently impede appropriate dose
adjustment. Most importantly, for drugs like vancomycin
where trough target ranges encompass both efficacy and
toxicity bounds, troughs are surrogates for overall drug
exposure (ie, AUC). Mounting data demonstrate trough con-
centrations often correlate poorly with AUC in children,
raising concerns that troughs cannot adequately guide
medication dosing when AUC is the target.

Past 2009 and 2011 Infectious Disease Society of
America guidelines for adult and pediatric patients
recommended goal vancomycin trough concentrations
of 10 to 15 mg/L, with higher trough goals of 15 to
20 mg/L for management of serious methicillin-resistant
Staphylococcus aureus (MRSA) infections (eg, bacteremia,
meningitis).?*?> Adult data suggested that most patients
had AUC,, of greater than or equal to 400 mg * h/L when
these trough concentrations were achieved, based on a
low level of evidence.?*?> However, trough concentrations
poorly and inconsistently predict AUC,4,%" as explained by
large variations in PK across pediatric age groups. In a small
cohort of children administered vancomycin at 15 mg/kg
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TABLE 2. Comparison of Vancomycin TDM Approaches

prior to a dose.

Must reach steady state; otherwise,
value will be underestimated and
not interpretable.

or following a dose during the same dosing
interval.

Steady state must be achieved; if obtained too
early, “peak” and “trough” values will
underestimate the AUC.

Trough 2-Point AUC Calculation Bayesian Modeling
Method Measure serum vancomycin Measure 2 serum vancomycin concentrations to | Combine population PK models, patient-specific
concentration before the next dose | calculate AUC,4 using first-order PK equations. data, and serum vancomycin levels to estimate
is due and interpret in relation to patient-specific PK.
goal range.
Sampling and | Requires 1 vancomycin level Requires 2 levels: vancomycin trough and peak | Can be measured at any time, although number of
timing obtained immediately (<30 min) concentrations surrounding a steady-state dose, | samples and sample timing can influence accuracy

of estimations, depending on the PK model used as
the Bayesian prior.

Steady state not required; harnesses mathematical
modeling to predict concentration-time curves
based on drug levels obtained before steady state.

Therapeutic

10-20 mg/L (with 15-20 mg/L goal

AUC,4 of 400-600 mg*h/L

AUCy4 of 400-600 mg*h/L

Results easily interpretable.

Minimal expertise needed to perform AUC
estimation/calculations.

target recommended for “serious
infections”)
Advantages Single sample. Can be performed manually or with calculators. | Most accurate approach for AUC estimation.

Flexible sample timing; can use a single sample.
Incorporates patient-specific information

(eg, weight, renal function).

Can optimize dosing early in course, before steady
state is achieved. In specific populations, can
predict starting doses.

Disadvantages

Poorly reflects overall drug
exposure (ie, correlates poorly with
AUC targets).

Window for sample collection is

Oversimplifies true vancomycin distribution
(ie, assumes 1-compartment disposition).
Must be performed at steady state.
Requires 2 precisely timed samples.

Computationally complex.

Requires specialized software and training.
Most useful when the PK model population is
similar to the individual patient of interest.

small and samples are often not
informative.

Results are not easily translated
into targeted dose adjustments.
Associated with higher
nephrotoxicity risk, compared with
AUC-based monitoring.

Abbreviations: AUG, area under the concentration-time curve; AUCy4, 24-hour area under the concentration-time curve; PK, pharmacokinetic; TDM, therapeutic drug monitoring.

every 6 hours, the probability of attaining AUC/MIC greater
than 400 ranged from 16% to 90% when the median trough
was 11.4 mg/L.3' Among 40 children with S aureus infec-
tions, mean trough concentrations were 11 mg/L and mean
AUC/MIC was 534, but troughs and AUCs were very poorly
correlated (r*=0.082).3? Other pediatric studies report
variable but much higher correlations between trough
and AUC (r* = 0.68 and r* = 0.80).>*3* Meanwhile, among
249 neonates treated with vancomycin, 89% had an
AUC,, greater than 400 mg = h/L when the trough value
was 10 mg/L."* These data suggested that lower troughs
(10-15 mg/L, rather than 15-20 mg/L) should be used
for children with serious invasive infections, and most cen-
ters adopted this practice. Further, higher troughs reflect
higher concentrations achieved across the dosing interval
that may result in excessive exposure (as reflected in the
AUC) and toxicity risk.

For at least 2 decades, the AUC/MIC ratio has been rec-
ognized as the optimal PK/PD parameter describing vanco-
mycin efficacy. Difficulty in AUC computation hindered

4

adoption of this preferred metric. We now know that
vancomycin troughs are unreliable proxies for AUC tar-
gets,®*3% and trough-based TDM produced vancomycin
exposures exceeding requirements for clinical or microbio-
logic response.**3739~*! Furthermore, trough-based dosing
is associated with high nephrotoxicity rates**™**; a large
meta-analysis identified that trough values greater than
or equal to 15 mg/L were associated with 2.7-fold higher
odds of nephrotoxicity compared with troughs less than
15 mg/L.** With growing availability of AUC calculation
tools, major US infectious diseases and pharmacist societies
published consensus guidance in 2020 that shifted to for-
mally endorse AUC-guided vancomycin TDM for treatment
of MRSA'®*> (Table 3). In this guidance, the goal AUC/MIC
ratio is 400 to 600 (assuming that MIC equals 1 mg/L).
Trough-only monitoring is no longer advised, including in
pediatric populations. Because obese individuals have a
larger volume of distribution, a loading dose of 20 mg/kg
is recommended for children with obesity who are
younger than 12 years. Notably, these recommendations
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TABLE 3. Comparison of 2011 and 2020 Vancomycin TDM Guidance for Children With Suspected MRSA Infections

Category 2011 Recommendation

2020 Recommendation

Optimal monitoring parameter Trough concentration

AUC/MIC via Bayesian approach

Optimal TDM parameter range for 15-20 mg/L°

serious infections®

400-600 mg*h/L

Optimal TDM parameter range to No recommendation

avoid nephrotoxicity

AUC < 600 mg*h/L

Timing of monitoring
fourth or fifth dose

Obtain trough at steady state, prior to the

Initiate monitoring within the first 24-48 h of treatment; can start prior
to achievement of steady state

Recommended empiric dosing for
serious infections

Children 60 mg/kg/day divided every 6 h 60—80 mg/kg/day divided every 6-8 h intravenously
intravenously
Neonates No recommendation 10-20 mg/kg/dose every 8—48 h intravenously

Loading dosing No recommendation

Loading dose of 20 mg/kg recommended in the setting of obesity

Continuous vs intermittent dosing No recommendation®

Continuous infusion may be considered if AUC is not attainable with
intermittent dosing

monitoring.

® Based on limited efficacy and safety data.
¢ Continuous infusions were not recommended in adults at this time.

Abbreviations: AUG, area under the concentration-time curve; MIC, minimum inhibitory concentration; MRSA, methicillin-resistant Staphylococcus aureus; TDM, therapeutic drug

@ Refers to invasive infections including bacteremia, meningitis, endocarditis, bone and joint infections, etc.

are specific to treatment of MRSA infections and not
for other gram-positive organisms that may be treated
with vancomycin (eg, coagulase-negative Staphylococcus
[CoNS], enterococci).

AUC-BASED TDM

As opposed to the snapshot provided by a single trough con-
centration measurement, the AUC more accurately reflects
total drug exposure over a dosing interval. The AUC is
essentially an integral that expresses drug concentrations
over time (mg * h/L) and is influenced by drug dosage, dis-
tribution, and clearance (Figure 1). Whereas troughs offer
limited information about an individual’s overall drug pro-
file, an AUC gives a more complete picture of drug exposure
to inform dose adjustments. AUC is typically a more reliable
predictor of drug efficacy and toxicity risk for many medi-
cations. Understandably, AUC determination is more diffi-
cult and may require more than 1 blood sample.

There are multiple approaches to estimating AUC, each
with advantages, disadvantages, and assumptions (Table 2;
Figure 2). The 2-point kinetics approach uses linear (first
order) PK equations to estimate AUC based on 2 drug con-
centrations—a peak obtained 1 to 2 hours after infusion
(after the distribution phase) and a trough (Table 4).
These levels are ideally collected during the same dosing
interval but can be obtained as a trough prior to and peak
following a single dose. Online AUC calculators based on 2-
point kinetics are available, although some centers use local
spreadsheet-based calculators.*® However, the equation-
based approach has limitations. It is agnostic to age and
the child’s clinical condition. In the case of vancomycin, this

PEDIATRICS Volume 157, Issue 1, January 2026

approach oversimplifies its true disposition by ignoring the
alpha distribution phase and assuming vancomycin
behaves as a 1-compartment drug. As with troughs, patients
must be at steady state when samples are collected to avoid
underestimation of AUC. Steady state typically occurs
beyond the first 24 hours of therapy and can be difficult
to gauge in critically ill patients or in others whose physiol-
ogy (ie, PK) may be changing. If a child’s drug clearance is
delayed due to clinical illness, then steady state may occur
later than expected.

A second approach uses Bayesian AUC estimation meth-
ods. This approach combines existing population PK models
(Bayesian prior), patient-specific covariate data (eg, renal
function estimates), and measured drug levels to generate
individual PK estimates that most likely describe a patient’s
concentration-time curve (Figure 2).*” Required patient-
specific information depends on the model used but may
include age, weight, serum creatinine, and concurrent medi-
cation exposures.>>*®*° Bayesian modeling can reliably
estimate AUC using as few as 1 sample (depending on
the robustness of the base population PK model). This
remains true among complex, critically ill neonates or chil-
dren, as long as the base PK model is informed by similar
patients.*®*® Importantly, this approach does not require
steady state attainment; by harnessing the mathematical
concept of superposition, the concentration-time curve cal-
culated after the first dose can predict future aggregate con-
centration-time curves.’>> When based on robust models,
Bayesian estimation often provides accurate AUC estima-
tion regardless of sample timing.*® Bayesian approaches
constitute an important tool in emerging model-informed
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FIGURE 2.

Graphical representation of approaches to vancomycin TDM. Traditional trough-based TDM involves collection of a vancomycin trough at steady state
and interpretation of the result based on a goal range (ie, 10—15 mg/L). If the trough is out of range, doses are typically adjusted by a percentage of
the daily dose (ie, 10%, 20%) or the interval is changed, depending on how far out of range the level is. The 2-point kinetics approach uses 2
concentrations collected at steady state to calculate key PK parameters—elimination rate constant and volume of distribution—using log-linear
regression equations. From these, an AUC can be calculated and doses adjusted in a commensurate manner targeting an AUC of 400 to 600 mg = h/L.
The Bayesian approaches use a software program to estimate individual-level PK and AUC. A robust population PK model informed by similar patients
serves as prior information (Bayesian prior; describing how the drug behaves in a population) and is combined with patient-specific information

(eg, renal function, weight, genotype) to generate individual PK parameter estimates (Bayesian posterior). Estimation can be done before
administration of the drug to derive a reasonable starting dose or can incorporate measured drug concentrations to more precisely generate

patient-specific PK and AUC estimates and inform targeted dosing.

Abbreviations: AUG, area under the concentration-time curve; MIC, minimum inhibitory concentration; PK, pharmacokinetic; TDM, therapeutic drug

monitoring.

precision dosing efforts, in which software programs use
individual PK estimates to develop personalized dosing rec-
ommendations that optimize AUC target attainment. When
integrated into the electronic health record, patient-specific
information can automatically be incorporated into the
modeling to minimize clinician burden and potential data
entry errors.

Bayesian approaches are complex and have only recently
been incorporated into clinical care. They require special-
ized software and rely on richly sampled population PK
models, which may not be available for all pediatric subpo-
pulations. Bayesian estimation most accurately estimates PK
(and AUC) when the individual patient is similar to the

6

population informing the derivation PK model. For example,
a population PK model derived in a general pediatric popu-
lation may not accurately describe the PK of a critically ill
child on renal replacement therapy. Clinicians need to be
attuned to the model being used to inform AUC estimations.

AUC-GUIDED VANGOMYCIN TDM IN CLINICAL CARE

Much research has focused on improving outcomes and lim-
iting toxicity with AUC-guided vancomycin TDM. In a meta-
analysis among hospitalized adults with S aureus infections,
achieving vancomycin AUC/MIC above study-specific tar-
gets (ranging 211-451) was associated with significant
reductions in all-cause mortality and treatment failure,
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TABLE 4. Calculation of the AUC,4 Using 2-Concentration (Trapezoidal) Approach

Step Equation Worked Example®

1. Calculate the elimination rate constant (ke)

ke

In( Measured _Peak ) 300 mg/L
— Measured_Trough In 727 me/t

- T ke = Fmh2s%
ke =0.10

2. Calculate true peak

True Peak = Measured Peak

_ 300 mg/L
True Peak = -5 —o

True Peak = 29.5 mg/L

ek (71— Tint)

3. Calculate true trough

True Trough = (Measured Trough) (e(-*)(au = 72)) | True Trough = (12.7 mg/L) (010012 - 11:5%))

True Trough =11.9 mg/L

4. Calculate AUC under the infusion curve (AUGins) AUC,y =

True Trough + True Peak
% (Tlnf) AUCmf

_ (285 mg/L ; 119 mg/L) 1)

AUC;,; = 20.7 mg=h/L

5. Calculate AUG under the elimination curve (AUGg)im)

True Peak — True Trough

AUCeim =

ke AUCeim =
AUCgjiry, = 176 mgxh/L

295 mg/L — 119 mg/L
0.10

6. Calculate AUG,,

AUCy = [(AUCiy) + (AUCqm)] * 2

AUCy, = [(20.7) + (178)] %2
AUC,, = 393.4 mgxh/L

u

Abbreviations: AUC, area under the concentration-time curve; AUC,,4, 24-hour area under the concentration-time curve.

@ The worked example utilizes a hypothetical preterm infant being treated for methicillin-resistant Staphylococcus aureus bacteremia with vancomycin at 15 mg/kg every 12 hours.
Calculations performed using the following parameters: measured peak = 30 mg/L, measured trough = 12.7 mg/L, T; =2 hours, 48 minutes, T, =11 hours, 20 minutes, Ti;s=1 hour,
tau =12 hours. T;: Time (in hours) from start of vancomycin infusion to measurement of peak concentration; To: Time (in hours) from start of vancomycin infusion to measurement of
trough concentration; T;n¢: Duration (in hours) of vancomycin infusion; tau (t): Dosing interval (in hours).

compared with patients with low AUC/MIC.>? Another sys-
tematic review and meta-analysis demonstrated that AUC-
guided TDM was associated with significantly lower nephro-
toxicity risk compared with trough-guided TDM (odds ratio
[OR] 0.53,95% CI 0.32-0.89).2% Single-sample Bayesian AUC
estimation was similarly associated with reduced nephrotox-
icity compared with trough-based dosing (2.8% vs 17.4%,
respectively) without additional required sampling.*®

Children

Multiple studies report that labeled 40 mg/kg/d pediatric
vancomycin dosing is insufficient to achieve target AUC/
MIC greater than 400 for treatment of MRSA®® and that
higher total daily dosing is needed for children with normal
renal function.3*>* More recent studies endorse dosing of at
least 60 mg/kg/d to achieve goal AUC/MIC,3**°7>7 with
daily dosing requirements appearing to decrease as age
increases among older infants and children.>®>’
Personalized vancomycin dose adjustment using AUC-
guided TDM is feasible in children. Among patients with
cystic fibrosis, AUC-guided compared with trough-guided
TDM promoted significantly higher achievement of goal
AUC 400 to 600 (71% vs 39%, respectively)® and reduc-
tions in severe acute kidney injury (AKI).>° Additional
reports have identified the feasibility of AUC monitoring fol-
lowing pediatric liver transplantation®®®' and bone mar-
row transplantation.®?

There are limited data to validate vancomycin TDM target
attainment with favorable clinical or microbiologic out-
comes in pediatric MRSA infections, regardless of the strat-
egy. Among 67 MRSA bacteremia episodes in children
treated with vancomycin, 9 (13%) had treatment failure
(persistent bacteremia, or recurrent bacteremia or mortality

PEDIATRICS Volume 157, Issue 1, January 2026

within 30 days),®® which was not associated with the trough
nor was AUC/MIC achieved. Another analysis among 110
critically ill children identified no association of trough or
AUC/MIC with author-defined clinical efficacy.°* In a third
study of 73 children with MRSA bacteremia (median vanco-
mycin dose 40 mg/kg/d),®® initial AUC/MIC less than 300
was associated with persistent bacteremia at 48 to 72 hours
of therapy, but not with 30-day mortality. The multifactorial
nature of clinical illness and treatment response makes it
challenging to establish just one therapeutic target for
vancomycin efficacy among all children.

Stronger retrospective data support the association of
vancomycin AUC and nephrotoxicity in children. Among
112 children receiving AUC-guided vancomycin TDM, the
AUC threshold for AKI development was greater than
583 mg * h/L, and rising AUC was associated with increas-
ing risk.® The study in 110 critically ill children mentioned
above identified a similar AUC threshold predictive of neph-
rotoxicity (>537 mg % h/L).®* Few prospective studies have
evaluated AKI among children with AUC-guided TDM.

Neonates

Empirical vancomycin administration is common among
preterm and critically ill neonates.® This is particularly true
when late-onset infection is suspected beyond 3 days of age,
as approximately 30% of cases are due to CoNS, another
23% to S aureus, and 5% to Enterococcus.®” Trough-guided
vancomycin TDM remains commonplace, though with lim-
ited data to inform efficacy or safety in neonates.
Simulations across a wide gestational age range show that
common vancomycin dosing regimens do not reliably
achieve trough concentrations greater than or equal to
10 mg/L.** Neonatal studies report variable correlations
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between vancomycin trough concentrations and AUC,**®®

often with lower troughs required to attain target AUC/
MIC compared with adults. In multiple studies of preterm
and term neonates, troughs of 7 to 11 mg/L achieve AUC
greater than 400 mg * h/L.'"4169

Emerging research describes neonatal outcomes after
AUC-guided TDM. Among 30 infants with bacteremia (28
CoNS, 2 MRSA), AUC attainment greater than 300 mg*h/L
was associated with a 7.8-fold increase in the likelihood
of bacteriologic cure.”’ Another study of 40 infants with
gram-positive bacteremia (predominantly CoNS, and the
rest MRSA or Enterococcus) suggested an AUC/MIC target
greater than 425 to predict clinical efficacy in gram-positive
bacteremia (although predictive ability weakened substan-
tially when MIC was >2 mg/L).”" A third study among 153
neonates with CoNS bacteremia identified an optimal AUC/
MIC target greater than 281 for clinical efficacy, while AUC
greater than 602 mg*h/L increased nephrotoxicity risk.”?
Finally, among 123 infants with gram-positive bacteremia,
attainment of AUC/MIC 420 to 650 was associated with sig-
nificantly lower odds of persistent infection or 30-day mor-
tality (OR 0.29, 95% CI 0.08-0.86).” Multiple population
PK models are available to describe vancomycin disposition
in term and preterm neonates. Importantly, AUC-guided
monitoring has been successfully implemented in the neo-
natal intensive care unit setting, indicating feasibility even
among the most complex neonates.”*

ADDITIONAL CONSIDERATIONS FOR TDM IN INFECTIOUS
DISEASES

Antimicrobial TDM requires special consideration of other
aspects of drug monitoring that impact antimicrobial effect
and clinical response. First, most clinical assays measure
total drug concentrations, but drug protein binding (typi-
cally to albumin) can have substantial impacts on drug
activity. Highly protein-bound drugs have a low concentra-
tion of free, unbound drug available to exert antimicrobial
effects. Although not typically done for vancomycin, clini-
cians will often adjust total concentrations based on typical
protein binding to calculate the free fraction of drug (eg, for
B-lactam agents). Protein binding is an important concept in
neonatal care, as these patients’ low protein stores translate
into higher free drug concentrations.

Second, the site of infection and antimicrobial tissue pen-
etration can also impact the efficacy relationship with TDM
based on serum drug concentrations, particularly when
treating infections in compartments not available for
TDM (eg, bone, brain, or lungs).”>”® The blood-brain barrier
has varied permeability to specific antimicrobial agents
based on molecular and protein-binding properties; how-
ever, central nervous system penetration increases in the
setting of meningeal inflammation by up to 3-fold.® Given
this variability, clinicians cannot easily estimate how much
drug gets to extravascular sites of infection.

8

The MIC, which reflects the concentration needed to
inhibit bacterial growth, is a key component of any antibi-
otic efficacy target. However, the reported MIC for a given
bacterial isolate can differ based on the method used
(eg, broth microdilution, Etest, automated systems) and
inherent test variability. According to the Clinical
Laboratory Standard Institute, acceptable variability is
within +/—-1 log, dilution (ie, doubling), meaning that an
MIC reported as 1 mg/L could be 0.5 or 2 mg/L if testing
was performed using another method or if the same test
method was repeated. Thus, clinicians should recognize
that even the MIC is not an absolute therapeutic target.
Furthermore, the AUC/MIC goal of 400 to 600 assumes
an MIC of less than or equal to 1 mg/L as defined by the
broth microdilution techniquels; for isolates with MIC
greater than or equal to 2, alternative antimicrobial agents
may be required if clinical response is insufficient based on
AUC calculations that assume MIC =1.

All of these issues are relevant to vancomycin TDM.
Intravenous vancomycin widely distributes into various tis-
sues, although penetration into lung and the central nerv-
ous system varies.® Among children, volume of
distribution (Vd) varies substantially because total body
water content (as a fraction of body weight) decreases with
age.'® Vancomycin Vd (per kilogram body weight) is higher
among infants compared with older children, producing
lower peak concentrations for the same weight-based
dose.'®’” Children administered vancomycin also have a
significantly higher unbound/free active drug fraction
(~90% in neonates, 80% in older children)’®”° compared
with adults (50% unbound),® which has implications for
varying “free, unbound” drug activity at equivalent admin-
istered doses across the pediatric age spectrum. Finally,
when treating MRSA, adjusting vancomycin TDM based
on the actual MIC reported is not recommended.'®
Instead, MIC of 1 mg/L is assumed (as the most common
MIC from national surveillance data) and the AUC is tar-
geted directly. Because toxicity is MIC-independent, target-
ing a vancomycin AUC/MIC of 400 to 600 when the MIC is
greater than or equal to 2 mg/L carries an untoward neph-
rotoxicity risk. CoNS is the most common organism causing
late-onset neonatal infections,®’ yet limited data are avail-
able to derive an ideal AUC/MIC efficacy target for this and
other non-MRSA organisms (eg, enterococci).

AUC-GUIDED TDM IMPLEMENTATION

Transitioning from trough- to AUC-guided TDM is a signifi-
cant practice change, and multiple barriers have slowed its
adoption in pediatric and neonatal care. Literature describ-
ing AUC monitoring in pediatrics is still emerging, and data-
driven guidance for optimal AUC target selection remains to
be confirmed. As mentioned previously, AUC/MIC targets
may vary by organism, and measurement is expected to
require different PK models in different age groups.
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Finally, many hospitals do not have access to Bayesian soft-
ware capable of AUC calculation in children and neonates,
nor are staff trained in their use. Models may also be limited
in their application to unique physiology in critically ill chil-
dren that affects drug PK (eg, extracorporeal membrane
oxygenation, dialysis).%°

Implementation concerns are commonly cited barriers to
use of pediatric clinical AUC monitoring.**®! Vancomycin
AUC enactment timelines are reported to require 7 to
14 months.”*®? Implementation requires a literature
review to choose a specific PK model reflecting the target
population, dissemination to key stakeholders (pharma-
cists, infectious diseases physicians, antimicrobial steward-
ship teams), and establishing the AUC determination
approach (ie, 2-point Kkinetics, Bayesian estimation).
Selection of commercially available Bayesian dosing soft-
ware includes consideration of cost, functionality, analytic
support, electronic health record integration, and availabil-
ity of modules tailored to pediatric and neonatal popula-
tions.”* Finally, workflows must be developed, including
assignment of AUC monitoring responsibilities (eg, order-
ing, interpretation, timing of blood draws), documentation
processes, and nursing and pharmacy guidance.”*#3#* Staff
education is necessary to implement and sustain AUC mon-
itoring processes. Pharmacy, physician, and nursing leader-
ship must support workflow changes affected by AUC
implementation. Ongoing audits can track adherence to
AUC monitoring protocols and clinical outcomes of interest
(eg, vancomycin-associated nephrotoxicity, total vancomy-
cin exposures), as feasible. It is also important to continu-
ously evaluate updated software modeling capabilities
and the availability of new modules (ie, population PK
models to inform Bayesian AUC estimation).”*®?
Resource toolkits are available to support centers imple-
menting vancomycin AUC monitoring (https://sidp.org/
Vancomycin-AUC-Implementation-Toolkit-Guide).

Multiple studies cite benefits of implementing vancomy-
cin AUC monitoring. One study in adults found that AUC
monitoring was associated with a 13% reduction in total
daily vancomycin doses and longer dosing intervals (com-
pared with trough monitoring).®®> Two single-center studies
showed that the frequency of dose adjustment did not differ
between trough- and Bayesian AUC-guided TDM
approaches®®®”; however, when dosing adjustments were
needed, the AUC-based approach was associated with
reduced likelihood of dose increases.?® Cost-effectiveness
of AUC- compared with trough-based monitoring is specifi-
cally cited due to reductions in AKIL.®%®#° Fewer vancomycin
serum measurements and smaller vancomycin doses may
net additional savings.?*°° In an interrupted time-series
analysis, pediatric AUC-guided monitoring was associated
with a 57% reduction in the number of TDM samples
obtained, significantly fewer dosage adjustments, and no
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increase in AKI, compared with a preceding trough monitor-
ing epoch.”?

INNOVATIONS IN TDM

Computational advances in model-informed precision dos-
ing hold promise to further optimize TDM by incorporating
sources of variability specific to children and neonates. One
approach, model-informed precision dosing (MIPD), incor-
porates population-level data and individual characteristics
(eg, renal function) to better “personalize” dosing based on
individual pediatric patient characteristics.”> MIPD is
increasingly feasible, given improved availability of com-
mercial software that can be integrated into the electronic
health record.”®’* Incorporation of pharmacogenetic test-
ing into MIPD efforts may provide valuable adjuncts to
TDM. For example, identification of gene variants associated
with reduced activity of proteins involved in drug transport
and metabolism can inform empirical dosing decisions,
prior to the performance of TDM.

Emerging microsampling technologies are particularly
relevant to TDM in pediatric care. Microsampling uses
blood sample volumes less than 50 pL, which can be mea-
sured via small volume assays and specialized analytic
methods (eg, high-performance liquid chromatography,
tandem mass spectrometry).”® For comparison, conven-
tional vancomycin or gentamicin trough TDM using clinical
laboratory immunoassays requires at least 10 times that
blood volume (~0.5 mL). Chromatographic methods
require dedicated instrumentation and expertise and are
more expensive than immunoassay methods. However,
high-volume clinical laboratories may recoup this return
on investment. Microsampling is possible via dried blood
spots obtained from fingerpricks®* or with volumetric
absorptive microsampling devices via capillary action.”®
Alternative specimen sources for TDM (eg, saliva, urine)
is an emerging area of research.”®

CONCLUSIONS

Evolving TDM capabilities offer opportunities to individual-
ize pediatric drug dosing to maximize efficacy while limiting
toxicity risk. Vancomycin trough monitoring, although no
longer recommended, may still be in use in hospitals that
have not yet implemented AUC monitoring. For treatment
of MRSA infections, AUC is superior to trough monitoring
with respect to safety, and AUC monitoring is both feasible
and beneficial in pediatric populations. Furthermore, AUC-
based TDM supports the goals of precision dosing, particu-
larly among pediatric populations at highest risk of adverse
drug events and high variability in PK (eg, critically ill or
immunocompromised populations, neonates). Ongoing
research is required to fill knowledge gaps regarding the
impact of AUC-guided monitoring on clinical outcomes in
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children and neonates and optimal approaches to imple-
menting AUC-guided TDM into clinical care.

ABBREVIATIONS

AKI: acute kidney injury

AUC: area under the concentration-time curve
CoNS: coagulase-negative Staphylococcus

MIC: minimum inhibitory concentration
MIPD: model-informed precision dosing
MRSA: methicillin-resistant Staphylococcus aureus
OR: odds ratio

PD: pharmacodynamic

PK: pharmacokinetic

TDM: therapeutic drug monitoring

Vd: volume of distribution
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