

Advances in Pediatric Therapeutic Drug Monitoring

Sarah A. Coggins, MD, MSCE, FAAP^{1,2} Kelly C. Wade, MD, PhD, MSCE, FAAP^{1,2} Kevin J. Downes, MD, FAAP^{2,3}

Therapeutic drug monitoring (TDM) is indicated for drugs with narrow therapeutic indices, whereby clinicians can adjust drug dosing to promote efficacy while limiting toxicity risk. Such monitoring is particularly important in managing infectious diseases, as both patient- and organism-specific factors must be considered to achieve optimal clinical responses. Innovation in pediatric TDM lags behind adults, largely due to a paucity of data and feasibility issues with lab draws and pharmacy resources. Emerging techniques in pharmacokinetic (PK) modeling, PK study design, flexible sampling strategies, and reduced sample volume requirements are particularly promising for TDM advancement in neonates and children. In this article, we discuss recent advancements in vancomycin TDM as a model case. Vancomycin is commonly used to treat serious gram-positive infections in children, and monitoring was historically performed using trough concentration-based guidance. Emerging data suggest that vancomycin troughs are not reliable surrogates for efficacy or toxicity and that trough-based monitoring is associated with increased risk of nephrotoxicity without clinical benefits. The area under the concentration-time curve (AUC) is the optimal pharmacokinetic-pharmacodynamic metric to measure overall vancomycin exposures, and consensus infectious diseases and pharmacist society guidance has formally recommended a shift toward AUC-based monitoring and away from trough-based monitoring in all age groups—including in neonates and children. We compare approaches to TDM in infectious diseases and summarize the body of literature describing application of vancomycin AUC-guided monitoring in children and neonates. Finally, we highlight opportunities and potential barriers to implementation of AUC-guided TDM in pediatric populations.

abstract

¹Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; ²Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and ³Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania

Address correspondence to: Sarah Coggins, CHOP Newborn Care at Pennsylvania Hospital, 800 Spruce St, Philadelphia, PA 19107. coggins@chop.edu

Dr Coggins conceptualized and designed the study, performed the literature review, drafted the initial manuscript, and critically reviewed and revised the manuscript. Drs Wade and Downes conceptualized and designed the study and critically reviewed and revised the manuscript for important intellectual content. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

CONFLICT OF INTEREST DISCLOSURES: Dr Coggins reports receiving research funding from the NIH (K23HD119271-01). Dr Downes reports receiving research funding from the NIH, Veloxis Pharmaceuticals, Inc., Merck, Inc., and Paratek, Inc. The other authors have no conflicts of interest to disclose.

FUNDING: No funding was secured for this study.

Accepted for Publication Date: October 14, 2025

<https://doi.org/10.1542/peds.2025-073013>

Copyright © 2026 by the American Academy of Pediatrics

To cite: Coggins SA, Wade KC, and Downes KJ. Advances in Pediatric Therapeutic Drug Monitoring. *Pediatrics*. 2026;157(1):e2025073013

GOALS OF THERAPEUTIC DRUG MONITORING

Therapeutic drug monitoring (TDM) is used to individualize drug dosing to achieve therapeutic effect and to reduce the risk of drug-associated toxicities. Since the 1960s, TDM (informed by pharmacokinetic [PK] and pharmacodynamic [PD] principles) has been used to optimize exposures to drugs with narrow therapeutic indices and to assess adherence to prescribed drug regimens. The ability to perform TDM is thus predicated on the ability to measure drug concentrations and to define drug concentration ranges that promote optimal clinical outcomes and limit risks of adverse drug effects.¹ Drugs commonly requiring TDM encompass multiple classes and indications (Table 1). Despite TDM's clear utility in supporting safe and efficacious drug administration, its development and adaptation in children and neonates has lagged. Contributing factors include PK variability in the setting of developmental maturation, absence of robust PK models and TDM efficacy targets validated in children, and limited blood sampling volumes.²

TABLE 1. Pharmaceutical Classes Commonly Using Therapeutic Drug Monitoring

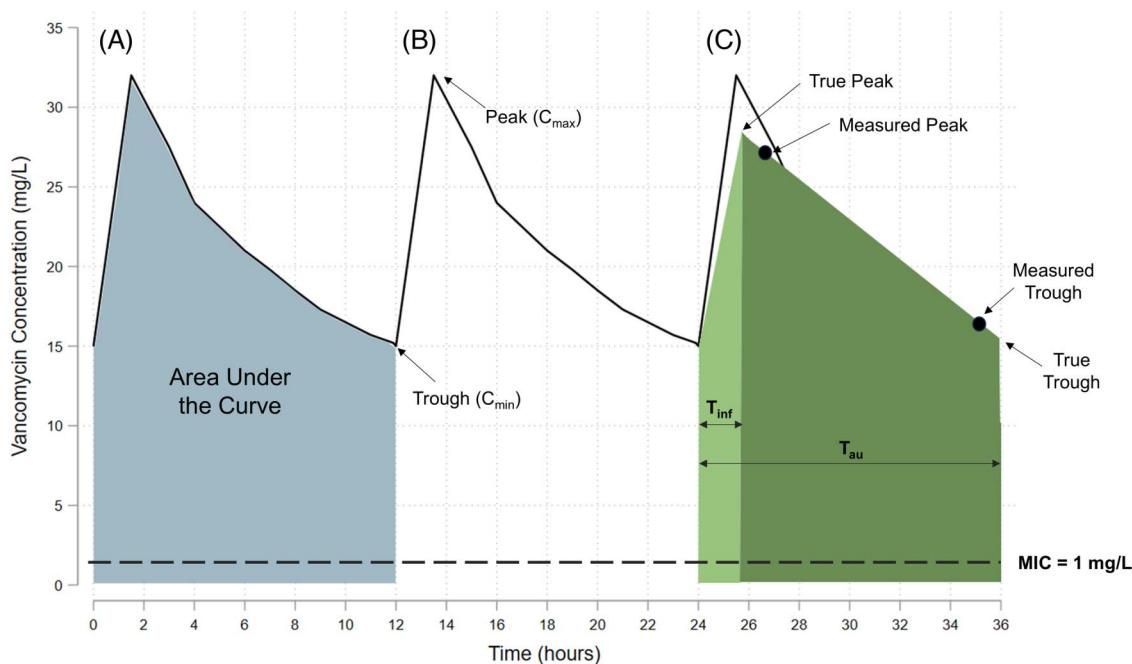
Class	Examples of Drugs Benefiting From TDM
Antiarrhythmics	Digoxin
	Lidocaine
	Quinididine
	Procainamide
Anticoagulants	Heparin
	Warfarin
Antiepileptics	Carbamazepine
	Phenobarbital
	Phenytoin
	Valproic acid
Anti-infectives	Vancomycin
	Gentamicin
	Isoniazid
	Voriconazole
Antineoplastics	Carboplatin
	5-fluorouracil
	Methotrexate
Immunosuppressants	Cyclosporine
	Mycophenolic acid
	Sirolimus
	Tacrolimus
Methylxanthines	Caffeine
	Theophylline
Psychoactives	Clozapine
	Haloperidol
	Lithium
	Tricyclic antidepressants

Abbreviation: TDM, therapeutic drug monitoring.

In this article, we review current TDM practices in pediatric care, including advantages and disadvantages of trough-based sampling for TDM. Next, we describe the TDM concept based on the area under the concentration-time curve (AUC), which is a more pharmacologically relevant parameter for many drugs. We use vancomycin TDM as an illustrative example, given that vancomycin is one of the most commonly prescribed antibiotics in hospitalized children³ and neonates^{4,5} and often undergoes TDM to guide treatment and limit potential toxicity. We compare the rationales, approaches, and clinical implications of trough- and AUC-guided TDM in hospitalized children. We end with an overview of emerging innovations in TDM, which hold promise to improve medication dosing, efficacy, and safety in pediatric care.

RATIONALE FOR VANCOMYCIN TDM

Vancomycin is a glycopeptide antibiotic with bactericidal activity solely against gram-positive pathogens, such as


staphylococci, enterococci, and streptococcal species. The drug is minimally metabolized; within 24 hours of administration, up to 80% to 90% of a single dose may be recovered unchanged in urine.⁶ Vancomycin is primarily renally eliminated. Young children (aged <2 years) and neonates have slower vancomycin clearance due to factors influencing renal maturation and function.⁷⁻¹¹ Additionally, critical illness may further alter vancomycin PK due to increases in volume of distribution (eg, increased third spacing, capillary leak, extracorporeal supports) or reduced clearance in the setting of kidney disease.¹² Nephrogenesis is not complete until at least 36 weeks' gestation,¹³ and renal maturation further develops over the first several years of age,¹⁴ contributing to increasing drug clearance per body weight over early childhood.

The primary drivers for vancomycin TDM are (1) achievement of drug exposures that facilitate bacterial killing and (2) avoidance of toxicity. In particular, nephrotoxicity results from concentrated drug in the proximal tubule causing oxidative stress and acute tubular necrosis.¹⁵ The prevalence of vancomycin-associated nephrotoxicity in children is estimated as 12%.¹⁶ Neonates and young children (with higher unbound drug fractions, slower clearance, and ongoing maturational renal changes) may be at particular risk for vancomycin-associated nephrotoxicity, but TDM guidelines historically focused solely on adults. Trough-based approaches were the mainstay of vancomycin TDM for decades, until mounting evidence demonstrated that trough monitoring did not effectively optimize vancomycin exposures for treatment benefit or safety.¹⁷ The newest guidelines specifically include pediatric recommendations and promote TDM using a more pharmacologically relevant vancomycin PD parameter: the 24-hour area under the concentration-time curve (AUC₂₄).¹⁸

In vitro, animal, and human studies demonstrate that the AUC to minimum inhibitory concentration ratio (MIC; AUC/MIC) best correlates with vancomycin efficacy (goal range 400–600), while AUC₂₄ greater than 600 best predicts nephrotoxicity regardless of MIC. Studies of AUC-guided vancomycin TDM demonstrate that attainment of target vancomycin AUC exposures correlates poorly with troughs¹⁹⁻²¹ and that AUC monitoring is superior to trough monitoring in mitigating nephrotoxicity.^{22,23} Taking this into account, 2020 consensus guidelines by major US adult and pediatric infectious diseases and pharmacist societies formally recommended AUC-based TDM in all age groups.^{24,25} Adoption of this guidance in pediatric care can be limited by lacking awareness, implementation challenges, and need for clinician and pharmacy expertise to support AUC monitoring.

TOUGH-BASED TDM

Trough-based TDM relies on measuring drug concentrations at the end of a dosing interval, obtained within

FIGURE 1.

A hypothetical concentration-time curve reflecting vancomycin concentrations in an every-12-hour dosing schedule. (A) The shaded area reflects the area under the concentration-time curve (AUC). The dotted horizontal line represents MIC for *Staphylococcus aureus* (1 mg/L). (B) Arrows demonstrate where trough and peak concentrations occur on the concentration-time curve surrounding a vancomycin dose. (C) A visual representation of how trapezoidal methods (2-point kinetics) are used to calculate AUC. Additional specifics available in Table 2.

Abbreviations: MIC, minimum inhibitory concentration; T_{au}, duration of the dosing interval; T_{inf}, infusion time.

30 minutes prior to administration of the next scheduled dose (Figure 1). Trough concentrations are less affected by variations in drug distribution than earlier time points in the dosing interval. The biggest advantage of trough-based TDM is its simplicity: only 1 serum drug measurement is needed, sample timing is easily understood, and interpretation is straightforward based on the relationship of the trough concentration to an established therapeutic window. For some drugs, like gentamicin, trough-based TDM is defined largely by safety thresholds: ideal trough concentrations are less than 2 mg/L, reflecting adequate drug elimination prior to a subsequent dose.^{26,27} In this setting, troughs are used to ensure drug elimination and reduce toxicity risk rather than to guide efficacy. In contrast, vancomycin trough targets were proposed to guide both efficacy and toxicity bounds as a range (eg, 10–15 mg/L) and dose adjustments are made based on whether concentrations fall above or below this window.

There are several disadvantages of trough-based TDM, particularly for medications whose total drug exposure is related to efficacy and toxicity (Table 2). First, troughs must be collected at steady state (typically, after 5 half-lives or ~3–4 doses). Trough assessment thus may not be possible for days, and clinicians miss earlier opportunities to optimize drug dosing to achieve a clinical response. A substantial proportion (40%) of trough samples are mistimed, most

often too early prior to the true trough interval or prior to achievement of steady state.^{28–30} Early trough assessment prior to the true trough interval risks overestimation of the true trough level, whereas measurement prior to achieving steady state risks underestimation of the true trough value. Both scenarios can subsequently impede appropriate dose adjustment. Most importantly, for drugs like vancomycin where trough target ranges encompass both efficacy and toxicity bounds, troughs are surrogates for overall drug exposure (ie, AUC). Mounting data demonstrate trough concentrations often correlate poorly with AUC in children, raising concerns that troughs cannot adequately guide medication dosing when AUC is the target.

Past 2009 and 2011 Infectious Disease Society of America guidelines for adult and pediatric patients recommended goal vancomycin trough concentrations of 10 to 15 mg/L, with higher trough goals of 15 to 20 mg/L for management of serious methicillin-resistant *Staphylococcus aureus* (MRSA) infections (eg, bacteremia, meningitis).^{24,25} Adult data suggested that most patients had AUC₂₄ of greater than or equal to 400 mg * h/L when these trough concentrations were achieved, based on a low level of evidence.^{24,25} However, trough concentrations poorly and inconsistently predict AUC₂₄,²¹ as explained by large variations in PK across pediatric age groups. In a small cohort of children administered vancomycin at 15 mg/kg

TABLE 2. Comparison of Vancomycin TDM Approaches

	Trough	2-Point AUC Calculation	Bayesian Modeling
Method	Measure serum vancomycin concentration before the next dose is due and interpret in relation to goal range.	Measure 2 serum vancomycin concentrations to calculate AUC_{24} using first-order PK equations.	Combine population PK models, patient-specific data, and serum vancomycin levels to estimate patient-specific PK.
Sampling and timing	Requires 1 vancomycin level obtained immediately (<30 min) prior to a dose. Must reach steady state; otherwise, value will be underestimated and not interpretable.	Requires 2 levels: vancomycin trough and peak concentrations surrounding a steady-state dose, or following a dose during the same dosing interval. Steady state must be achieved; if obtained too early, "peak" and "trough" values will underestimate the AUC.	Can be measured at any time, although number of samples and sample timing can influence accuracy of estimations, depending on the PK model used as the Bayesian prior. Steady state not required; harnesses mathematical modeling to predict concentration-time curves based on drug levels obtained before steady state.
Therapeutic target	10–20 mg/L (with 15–20 mg/L goal recommended for "serious infections")	AUC_{24} of 400–600 mg \cdot h/L	AUC_{24} of 400–600 mg \cdot h/L
Advantages	Single sample. Results easily interpretable.	Can be performed manually or with calculators. Minimal expertise needed to perform AUC estimation/calculations.	Most accurate approach for AUC estimation. Flexible sample timing; can use a single sample. Incorporates patient-specific information (eg, weight, renal function). Can optimize dosing early in course, before steady state is achieved. In specific populations, can predict starting doses.
Disadvantages	Poorly reflects overall drug exposure (ie, correlates poorly with AUC targets). Window for sample collection is small and samples are often not informative. Results are not easily translated into targeted dose adjustments. Associated with higher nephrotoxicity risk, compared with AUC-based monitoring.	Oversimplifies true vancomycin distribution (ie, assumes 1-compartment disposition). Must be performed at steady state. Requires 2 precisely timed samples.	Computationally complex. Requires specialized software and training. Most useful when the PK model population is similar to the individual patient of interest.

Abbreviations: AUC, area under the concentration-time curve; AUC_{24} , 24-hour area under the concentration-time curve; PK, pharmacokinetic; TDM, therapeutic drug monitoring.

every 6 hours, the probability of attaining AUC/MIC greater than 400 ranged from 16% to 90% when the median trough was 11.4 mg/L.³¹ Among 40 children with *S aureus* infections, mean trough concentrations were 11 mg/L and mean AUC/MIC was 534, but troughs and AUCs were very poorly correlated ($r^2 = 0.082$).³² Other pediatric studies report variable but much higher correlations between trough and AUC ($r^2 = 0.68$ and $r^2 = 0.80$).^{33,34} Meanwhile, among 249 neonates treated with vancomycin, 89% had an AUC_{24} greater than 400 mg \cdot h/L when the trough value was 10 mg/L.¹¹ These data suggested that lower troughs (10–15 mg/L, rather than 15–20 mg/L) should be used for children with serious invasive infections, and most centers adopted this practice. Further, higher troughs reflect higher concentrations achieved across the dosing interval that may result in excessive exposure (as reflected in the AUC) and toxicity risk.

For at least 2 decades, the AUC/MIC ratio has been recognized as the optimal PK/PD parameter describing vancomycin efficacy. Difficulty in AUC computation hindered

adoption of this preferred metric. We now know that vancomycin troughs are unreliable proxies for AUC targets,^{35–38} and trough-based TDM produced vancomycin exposures exceeding requirements for clinical or microbiologic response.^{19,37,39–41} Furthermore, trough-based dosing is associated with high nephrotoxicity rates^{42–44}; a large meta-analysis identified that trough values greater than or equal to 15 mg/L were associated with 2.7-fold higher odds of nephrotoxicity compared with troughs less than 15 mg/L.⁴³ With growing availability of AUC calculation tools, major US infectious diseases and pharmacist societies published consensus guidance in 2020 that shifted to formally endorse AUC-guided vancomycin TDM for treatment of MRSA^{18,45} (Table 3). In this guidance, the goal AUC/MIC ratio is 400 to 600 (assuming that MIC equals 1 mg/L). Trough-only monitoring is no longer advised, including in pediatric populations. Because obese individuals have a larger volume of distribution, a loading dose of 20 mg/kg is recommended for children with obesity who are younger than 12 years. Notably, these recommendations

TABLE 3. Comparison of 2011 and 2020 Vancomycin TDM Guidance for Children With Suspected MRSA Infections		
Category	2011 Recommendation	2020 Recommendation
Optimal monitoring parameter	Trough concentration	AUC/MIC via Bayesian approach
Optimal TDM parameter range for serious infections ^a	15–20 mg/L ^b	400–600 mg*h/L
Optimal TDM parameter range to avoid nephrotoxicity	No recommendation	AUC < 600 mg*h/L
Timing of monitoring	Obtain trough at steady state, prior to the fourth or fifth dose	Initiate monitoring within the first 24–48 h of treatment; can start prior to achievement of steady state
Recommended empiric dosing for serious infections		
Children	60 mg/kg/day divided every 6 h intravenously	60–80 mg/kg/day divided every 6–8 h intravenously
Neonates	No recommendation	10–20 mg/kg/dose every 8–48 h intravenously
Loading dosing	No recommendation	Loading dose of 20 mg/kg recommended in the setting of obesity
Continuous vs intermittent dosing	No recommendation ^c	Continuous infusion may be considered if AUC is not attainable with intermittent dosing

Abbreviations: AUC, area under the concentration-time curve; MIC, minimum inhibitory concentration; MRSA, methicillin-resistant *Staphylococcus aureus*; TDM, therapeutic drug monitoring.

^a Refers to invasive infections including bacteremia, meningitis, endocarditis, bone and joint infections, etc.

^b Based on limited efficacy and safety data.

^c Continuous infusions were not recommended in adults at this time.

are specific to treatment of MRSA infections and not for other gram-positive organisms that may be treated with vancomycin (eg, coagulase-negative *Staphylococcus* [CoNS], enterococci).


AUC-BASED TDM

As opposed to the snapshot provided by a single trough concentration measurement, the AUC more accurately reflects total drug exposure over a dosing interval. The AUC is essentially an integral that expresses drug concentrations over time (mg * h/L) and is influenced by drug dosage, distribution, and clearance (Figure 1). Whereas troughs offer limited information about an individual's overall drug profile, an AUC gives a more complete picture of drug exposure to inform dose adjustments. AUC is typically a more reliable predictor of drug efficacy and toxicity risk for many medications. Understandably, AUC determination is more difficult and may require more than 1 blood sample.

There are multiple approaches to estimating AUC, each with advantages, disadvantages, and assumptions (Table 2; Figure 2). The 2-point kinetics approach uses linear (first order) PK equations to estimate AUC based on 2 drug concentrations—a peak obtained 1 to 2 hours after infusion (after the distribution phase) and a trough (Table 4). These levels are ideally collected during the same dosing interval but can be obtained as a trough prior to and peak following a single dose. Online AUC calculators based on 2-point kinetics are available, although some centers use local spreadsheet-based calculators.⁴⁶ However, the equation-based approach has limitations. It is agnostic to age and the child's clinical condition. In the case of vancomycin, this

approach oversimplifies its true disposition by ignoring the alpha distribution phase and assuming vancomycin behaves as a 1-compartment drug. As with troughs, patients must be at steady state when samples are collected to avoid underestimation of AUC. Steady state typically occurs beyond the first 24 hours of therapy and can be difficult to gauge in critically ill patients or in others whose physiology (ie, PK) may be changing. If a child's drug clearance is delayed due to clinical illness, then steady state may occur later than expected.

A second approach uses Bayesian AUC estimation methods. This approach combines existing population PK models (Bayesian prior), patient-specific covariate data (eg, renal function estimates), and measured drug levels to generate individual PK estimates that most likely describe a patient's concentration-time curve (Figure 2).⁴⁷ Required patient-specific information depends on the model used but may include age, weight, serum creatinine, and concurrent medication exposures.^{39,48,49} Bayesian modeling can reliably estimate AUC using as few as 1 sample (depending on the robustness of the base population PK model). This remains true among complex, critically ill neonates or children, as long as the base PK model is informed by similar patients.^{36,48} Importantly, this approach does not require steady state attainment; by harnessing the mathematical concept of superposition, the concentration-time curve calculated after the first dose can predict future aggregate concentration-time curves.^{50,51} When based on robust models, Bayesian estimation often provides accurate AUC estimation regardless of sample timing.⁴⁸ Bayesian approaches constitute an important tool in emerging model-informed

FIGURE 2.

Graphical representation of approaches to vancomycin TDM. Traditional trough-based TDM involves collection of a vancomycin trough at steady state and interpretation of the result based on a goal range (ie, 10–15 mg/L). If the trough is out of range, doses are typically adjusted by a percentage of the daily dose (ie, 10%, 20%) or the interval is changed, depending on how far out of range the level is. The 2-point kinetics approach uses 2 concentrations collected at steady state to calculate key PK parameters—elimination rate constant and volume of distribution—using log-linear regression equations. From these, an AUC can be calculated and doses adjusted in a commensurate manner targeting an AUC of 400 to 600 mg * h/L. The Bayesian approaches use a software program to estimate individual-level PK and AUC. A robust population PK model informed by similar patients serves as prior information (Bayesian prior; describing how the drug behaves in a population) and is combined with patient-specific information (eg, renal function, weight, genotype) to generate individual PK parameter estimates (Bayesian posterior). Estimation can be done before administration of the drug to derive a reasonable starting dose or can incorporate measured drug concentrations to more precisely generate patient-specific PK and AUC estimates and inform targeted dosing.

Abbreviations: AUC, area under the concentration-time curve; MIC, minimum inhibitory concentration; PK, pharmacokinetic; TDM, therapeutic drug monitoring.

precision dosing efforts, in which software programs use individual PK estimates to develop personalized dosing recommendations that optimize AUC target attainment. When integrated into the electronic health record, patient-specific information can automatically be incorporated into the modeling to minimize clinician burden and potential data entry errors.

Bayesian approaches are complex and have only recently been incorporated into clinical care. They require specialized software and rely on richly sampled population PK models, which may not be available for all pediatric subpopulations. Bayesian estimation most accurately estimates PK (and AUC) when the individual patient is similar to the

population informing the derivation PK model. For example, a population PK model derived in a general pediatric population may not accurately describe the PK of a critically ill child on renal replacement therapy. Clinicians need to be attuned to the model being used to inform AUC estimations.

AUC-GUIDED VANCOMYCIN TDM IN CLINICAL CARE

Much research has focused on improving outcomes and limiting toxicity with AUC-guided vancomycin TDM. In a meta-analysis among hospitalized adults with *S aureus* infections, achieving vancomycin AUC/MIC above study-specific targets (ranging 211–451) was associated with significant reductions in all-cause mortality and treatment failure,

TABLE 4. Calculation of the AUC₂₄ Using 2-Concentration (Trapezoidal) Approach

Step	Equation	Worked Example ^a
1. Calculate the elimination rate constant (ke)	$ke = \frac{\ln(\frac{Measured\ Peak}{Measured\ Trough})}{T_2 - T_1}$	$ke = \frac{\ln(\frac{30.0\ mg/L}{12.7\ mg/L})}{11.35\ h - 2.8\ h}$ $ke = 0.10$
2. Calculate true peak	$True\ Peak = \frac{Measured\ Peak}{e^{(-ke)(T_1 - T_{inf})}}$	$True\ Peak = \frac{30.0\ mg/L}{e^{(-0.10)(2.8 - 1.0)}}$ $True\ Peak = 29.5\ mg/L$
3. Calculate true trough	$True\ Trough = (Measured\ Trough)(e^{(-ke)(\tauau - T_2)})$	$True\ Trough = (12.7\ mg/L)(e^{(-0.10)(12 - 11.33)})$ $True\ Trough = 11.9\ mg/L$
4. Calculate AUC under the infusion curve (AUC _{inf})	$AUC_{inf} = \frac{(True\ Trough + True\ Peak)}{2} (T_{inf})$	$AUC_{inf} = \frac{(29.5\ mg/L + 11.9\ mg/L)}{2} (1)$ $AUC_{inf} = 20.7\ mg \cdot h/L$
5. Calculate AUC under the elimination curve (AUC _{elim})	$AUC_{elim} = \frac{True\ Peak - True\ Trough}{ke}$	$AUC_{elim} = \frac{29.5\ mg/L - 11.9\ mg/L}{0.10}$ $AUC_{elim} = 176\ mg \cdot h/L$
6. Calculate AUC ₂₄	$AUC_{24} = [(AUC_{inf}) + (AUC_{elim})] * \frac{24}{\tauau}$	$AUC_{24} = [(20.7) + (176)] * \frac{24}{12}$ $AUC_{24} = 383.4\ mg \cdot h/L$

Abbreviations: AUC, area under the concentration-time curve; AUC₂₄, 24-hour area under the concentration-time curve.

^a The worked example utilizes a hypothetical preterm infant being treated for methicillin-resistant *Staphylococcus aureus* bacteremia with vancomycin at 15 mg/kg every 12 hours. Calculations performed using the following parameters: measured peak = 30 mg/L, measured trough = 12.7 mg/L, T₁ = 2 hours, 48 minutes, T₂ = 11 hours, 20 minutes, T_{inf} = 1 hour, tau = 12 hours. T₁: Time (in hours) from start of vancomycin infusion to measurement of peak concentration; T₂: Time (in hours) from start of vancomycin infusion to measurement of trough concentration; T_{inf}: Duration (in hours) of vancomycin infusion; tau (τ): Dosing interval (in hours).

compared with patients with low AUC/MIC.⁵² Another systematic review and meta-analysis demonstrated that AUC-guided TDM was associated with significantly lower nephrotoxicity risk compared with trough-guided TDM (odds ratio [OR] 0.53, 95% CI 0.32–0.89).²² Single-sample Bayesian AUC estimation was similarly associated with reduced nephrotoxicity compared with trough-based dosing (2.8% vs 17.4%, respectively) without additional required sampling.²³

Children

Multiple studies report that labeled 40 mg/kg/d pediatric vancomycin dosing is insufficient to achieve target AUC/MIC greater than 400 for treatment of MRSA⁵³ and that higher total daily dosing is needed for children with normal renal function.^{39,54} More recent studies endorse dosing of at least 60 mg/kg/d to achieve goal AUC/MIC,^{34,55–57} with daily dosing requirements appearing to decrease as age increases among older infants and children.^{56,57} Personalized vancomycin dose adjustment using AUC-guided TDM is feasible in children. Among patients with cystic fibrosis, AUC-guided compared with trough-guided TDM promoted significantly higher achievement of goal AUC 400 to 600 (71% vs 39%, respectively)⁵⁸ and reductions in severe acute kidney injury (AKI).⁵⁹ Additional reports have identified the feasibility of AUC monitoring following pediatric liver transplantation^{60,61} and bone marrow transplantation.⁶²

There are limited data to validate vancomycin TDM target attainment with favorable clinical or microbiologic outcomes in pediatric MRSA infections, regardless of the strategy. Among 67 MRSA bacteremia episodes in children treated with vancomycin, 9 (13%) had treatment failure (persistent bacteremia, or recurrent bacteremia or mortality

within 30 days),⁶³ which was not associated with the trough nor was AUC/MIC achieved. Another analysis among 110 critically ill children identified no association of trough or AUC/MIC with author-defined clinical efficacy.⁶⁴ In a third study of 73 children with MRSA bacteremia (median vancomycin dose 40 mg/kg/d),⁶⁵ initial AUC/MIC less than 300 was associated with persistent bacteremia at 48 to 72 hours of therapy, but not with 30-day mortality. The multifactorial nature of clinical illness and treatment response makes it challenging to establish just one therapeutic target for vancomycin efficacy among all children.

Stronger retrospective data support the association of vancomycin AUC and nephrotoxicity in children. Among 112 children receiving AUC-guided vancomycin TDM, the AUC threshold for AKI development was greater than 583 mg * h/L, and rising AUC was associated with increasing risk.⁶⁶ The study in 110 critically ill children mentioned above identified a similar AUC threshold predictive of nephrotoxicity (>537 mg * h/L).⁶⁴ Few prospective studies have evaluated AKI among children with AUC-guided TDM.

Neonates

Empirical vancomycin administration is common among preterm and critically ill neonates.⁵ This is particularly true when late-onset infection is suspected beyond 3 days of age, as approximately 30% of cases are due to CoNS, another 23% to *S aureus*, and 5% to *Enterococcus*.⁶⁷ Trough-guided vancomycin TDM remains commonplace, though with limited data to inform efficacy or safety in neonates. Simulations across a wide gestational age range show that common vancomycin dosing regimens do not reliably achieve trough concentrations greater than or equal to 10 mg/L.¹¹ Neonatal studies report variable correlations

between vancomycin trough concentrations and AUC,^{41,68} often with lower troughs required to attain target AUC/MIC compared with adults. In multiple studies of preterm and term neonates, troughs of 7 to 11 mg/L achieve AUC greater than 400 mg * h/L.^{11,41,69}

Emerging research describes neonatal outcomes after AUC-guided TDM. Among 30 infants with bacteremia (28 CoNS, 2 MRSA), AUC attainment greater than 300 mg*h/L was associated with a 7.8-fold increase in the likelihood of bacteriologic cure.⁷⁰ Another study of 40 infants with gram-positive bacteremia (predominantly CoNS, and the rest MRSA or *Enterococcus*) suggested an AUC/MIC target greater than 425 to predict clinical efficacy in gram-positive bacteremia (although predictive ability weakened substantially when MIC was >2 mg/L).⁷¹ A third study among 153 neonates with CoNS bacteremia identified an optimal AUC/MIC target greater than 281 for clinical efficacy, while AUC greater than 602 mg*h/L increased nephrotoxicity risk.⁷² Finally, among 123 infants with gram-positive bacteremia, attainment of AUC/MIC 420 to 650 was associated with significantly lower odds of persistent infection or 30-day mortality (OR 0.29, 95% CI 0.08–0.86).⁷³ Multiple population PK models are available to describe vancomycin disposition in term and preterm neonates. Importantly, AUC-guided monitoring has been successfully implemented in the neonatal intensive care unit setting, indicating feasibility even among the most complex neonates.⁷⁴

ADDITIONAL CONSIDERATIONS FOR TDM IN INFECTIOUS DISEASES

Antimicrobial TDM requires special consideration of other aspects of drug monitoring that impact antimicrobial effect and clinical response. First, most clinical assays measure total drug concentrations, but drug protein binding (typically to albumin) can have substantial impacts on drug activity. Highly protein-bound drugs have a low concentration of free, unbound drug available to exert antimicrobial effects. Although not typically done for vancomycin, clinicians will often adjust total concentrations based on typical protein binding to calculate the free fraction of drug (eg, for β -lactam agents). Protein binding is an important concept in neonatal care, as these patients' low protein stores translate into higher free drug concentrations.

Second, the site of infection and antimicrobial tissue penetration can also impact the efficacy relationship with TDM based on serum drug concentrations, particularly when treating infections in compartments not available for TDM (eg, bone, brain, or lungs).^{75,76} The blood-brain barrier has varied permeability to specific antimicrobial agents based on molecular and protein-binding properties; however, central nervous system penetration increases in the setting of meningeal inflammation by up to 3-fold.⁶ Given this variability, clinicians cannot easily estimate how much drug gets to extravascular sites of infection.

The MIC, which reflects the concentration needed to inhibit bacterial growth, is a key component of any antibiotic efficacy target. However, the reported MIC for a given bacterial isolate can differ based on the method used (eg, broth microdilution, Etest, automated systems) and inherent test variability. According to the Clinical Laboratory Standard Institute, acceptable variability is within $+/-1$ log₂ dilution (ie, doubling), meaning that an MIC reported as 1 mg/L could be 0.5 or 2 mg/L if testing was performed using another method or if the same test method was repeated. Thus, clinicians should recognize that even the MIC is not an absolute therapeutic target. Furthermore, the AUC/MIC goal of 400 to 600 assumes an MIC of less than or equal to 1 mg/L as defined by the broth microdilution technique¹⁸; for isolates with MIC greater than or equal to 2, alternative antimicrobial agents may be required if clinical response is insufficient based on AUC calculations that assume MIC = 1.

All of these issues are relevant to vancomycin TDM. Intravenous vancomycin widely distributes into various tissues, although penetration into lung and the central nervous system varies.⁶ Among children, volume of distribution (Vd) varies substantially because total body water content (as a fraction of body weight) decreases with age.¹² Vancomycin Vd (per kilogram body weight) is higher among infants compared with older children, producing lower peak concentrations for the same weight-based dose.^{12,77} Children administered vancomycin also have a significantly higher unbound/free active drug fraction (~90% in neonates, 80% in older children)^{78,79} compared with adults (50% unbound),⁶ which has implications for varying "free, unbound" drug activity at equivalent administered doses across the pediatric age spectrum. Finally, when treating MRSA, adjusting vancomycin TDM based on the actual MIC reported is not recommended.¹⁸ Instead, MIC of 1 mg/L is assumed (as the most common MIC from national surveillance data) and the AUC is targeted directly. Because toxicity is MIC-independent, targeting a vancomycin AUC/MIC of 400 to 600 when the MIC is greater than or equal to 2 mg/L carries an untoward nephrotoxicity risk. CoNS is the most common organism causing late-onset neonatal infections,⁶⁷ yet limited data are available to derive an ideal AUC/MIC efficacy target for this and other non-MRSA organisms (eg, enterococci).

AUC-GUIDED TDM IMPLEMENTATION

Transitioning from trough- to AUC-guided TDM is a significant practice change, and multiple barriers have slowed its adoption in pediatric and neonatal care. Literature describing AUC monitoring in pediatrics is still emerging, and data-driven guidance for optimal AUC target selection remains to be confirmed. As mentioned previously, AUC/MIC targets may vary by organism, and measurement is expected to require different PK models in different age groups.

Finally, many hospitals do not have access to Bayesian software capable of AUC calculation in children and neonates, nor are staff trained in their use. Models may also be limited in their application to unique physiology in critically ill children that affects drug PK (eg, extracorporeal membrane oxygenation, dialysis).⁸⁰

Implementation concerns are commonly cited barriers to use of pediatric clinical AUC monitoring.^{46,81} Vancomycin AUC enactment timelines are reported to require 7 to 14 months.^{74,82} Implementation requires a literature review to choose a specific PK model reflecting the target population, dissemination to key stakeholders (pharmacists, infectious diseases physicians, antimicrobial stewardship teams), and establishing the AUC determination approach (ie, 2-point kinetics, Bayesian estimation). Selection of commercially available Bayesian dosing software includes consideration of cost, functionality, analytic support, electronic health record integration, and availability of modules tailored to pediatric and neonatal populations.⁷⁴ Finally, workflows must be developed, including assignment of AUC monitoring responsibilities (eg, ordering, interpretation, timing of blood draws), documentation processes, and nursing and pharmacy guidance.^{74,83,84} Staff education is necessary to implement and sustain AUC monitoring processes. Pharmacy, physician, and nursing leadership must support workflow changes affected by AUC implementation. Ongoing audits can track adherence to AUC monitoring protocols and clinical outcomes of interest (eg, vancomycin-associated nephrotoxicity, total vancomycin exposures), as feasible. It is also important to continuously evaluate updated software modeling capabilities and the availability of new modules (ie, population PK models to inform Bayesian AUC estimation).^{74,82} Resource toolkits are available to support centers implementing vancomycin AUC monitoring (<https://sidp.org/Vancomycin-AUC-Implementation-Toolkit-Guide>).

Multiple studies cite benefits of implementing vancomycin AUC monitoring. One study in adults found that AUC monitoring was associated with a 13% reduction in total daily vancomycin doses and longer dosing intervals (compared with trough monitoring).⁸⁵ Two single-center studies showed that the frequency of dose adjustment did not differ between trough- and Bayesian AUC-guided TDM approaches^{86,87}; however, when dosing adjustments were needed, the AUC-based approach was associated with reduced likelihood of dose increases.⁸⁶ Cost-effectiveness of AUC- compared with trough-based monitoring is specifically cited due to reductions in AKI.^{88,89} Fewer vancomycin serum measurements and smaller vancomycin doses may net additional savings.^{83,90} In an interrupted time-series analysis, pediatric AUC-guided monitoring was associated with a 57% reduction in the number of TDM samples obtained, significantly fewer dosage adjustments, and no

increase in AKI, compared with a preceding trough monitoring epoch.⁹¹

INNOVATIONS IN TDM

Computational advances in model-informed precision dosing hold promise to further optimize TDM by incorporating sources of variability specific to children and neonates. One approach, model-informed precision dosing (MIPD), incorporates population-level data and individual characteristics (eg, renal function) to better “personalize” dosing based on individual pediatric patient characteristics.⁹² MIPD is increasingly feasible, given improved availability of commercial software that can be integrated into the electronic health record.^{58,74} Incorporation of pharmacogenetic testing into MIPD efforts may provide valuable adjuncts to TDM. For example, identification of gene variants associated with reduced activity of proteins involved in drug transport and metabolism can inform empirical dosing decisions, prior to the performance of TDM.

Emerging microsampling technologies are particularly relevant to TDM in pediatric care. Microsampling uses blood sample volumes less than 50 µL, which can be measured via small volume assays and specialized analytic methods (eg, high-performance liquid chromatography, tandem mass spectrometry).⁹³ For comparison, conventional vancomycin or gentamicin trough TDM using clinical laboratory immunoassays requires at least 10 times that blood volume (~0.5 mL). Chromatographic methods require dedicated instrumentation and expertise and are more expensive than immunoassay methods. However, high-volume clinical laboratories may recoup this return on investment. Microsampling is possible via dried blood spots obtained from fingerpricks⁹⁴ or with volumetric absorptive microsampling devices via capillary action.⁹⁵ Alternative specimen sources for TDM (eg, saliva, urine) is an emerging area of research.⁹⁶

CONCLUSIONS

Evolving TDM capabilities offer opportunities to individualize pediatric drug dosing to maximize efficacy while limiting toxicity risk. Vancomycin trough monitoring, although no longer recommended, may still be in use in hospitals that have not yet implemented AUC monitoring. For treatment of MRSA infections, AUC is superior to trough monitoring with respect to safety, and AUC monitoring is both feasible and beneficial in pediatric populations. Furthermore, AUC-based TDM supports the goals of precision dosing, particularly among pediatric populations at highest risk of adverse drug events and high variability in PK (eg, critically ill or immunocompromised populations, neonates). Ongoing research is required to fill knowledge gaps regarding the impact of AUC-guided monitoring on clinical outcomes in

children and neonates and optimal approaches to implementing AUC-guided TDM into clinical care.

ABBREVIATIONS

- AKI: acute kidney injury
- AUC: area under the concentration-time curve
- CoNS: coagulase-negative *Staphylococcus*
- MIC: minimum inhibitory concentration
- MIPD: model-informed precision dosing
- MRSA: methicillin-resistant *Staphylococcus aureus*
- OR: odds ratio
- PD: pharmacodynamic
- PK: pharmacokinetic
- TDM: therapeutic drug monitoring
- Vd: volume of distribution

REFERENCES

1. Dasgupta A, Krasowski MD. Pharmacokinetics and therapeutic drug monitoring. In: *Therapeutic Drug Monitoring Data*. 4th ed. Elsevier; 2020:1–17. doi: 10.1016/b978-0-12-815849-4.00001-3
2. Macleod S. Therapeutic drug monitoring in pediatrics: how do children differ? *Ther Drug Monit*. 2010;32(3):253–256. PubMed doi: 10.1097/FTD.0b013e3181dd51ef
3. Williams MC, Obermeier H, Hurst AL, et al. Hospital-wide description of clinical indications for pediatric anti-infective use. *Clin Ther*. 2019;41(8):1605–1611.e0. PubMed doi: 10.1016/j.clinthera.2019.05.008
4. Hsieh EM, Hornik CP, Clark RH, Laughon MM, Benjamin DK Jr, Smith PB; Best Pharmaceuticals for Children Act—Pediatric Trials Network. Medication use in the neonatal intensive care unit. *Am J Perinatol*. 2014;31(9):811–821. PubMed doi: 10.1055/s-0033-1361933
5. Stark A, Smith PB, Hornik CP, et al. Medication use in the neonatal intensive care unit and changes from 2010 to 2018. *J Pediatr*. 2022; 240:66–71.e4. PubMed doi: 10.1016/j.jpeds.2021.08.075
6. Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. *Clin Infect Dis*. 2006;42(suppl 1):S35–S39. PubMed doi: 10.1086/491712
7. James A, Koren G, Milliken J, Soldin S, Prober C. Vancomycin pharmacokinetics and dose recommendations for preterm infants. *Antimicrob Agents Chemother*. 1987;31(1):52–54. PubMed doi: 10.1128/AAC.31.1.52
8. Kim J, Walker SAN, Iaboni DC, et al. Determination of vancomycin pharmacokinetics in neonates to develop practical initial dosing recommendations. *Antimicrob Agents Chemother*. 2014;58(5): 2830–2840. PubMed doi: 10.1128/AAC.01718-13
9. Anderson BJ, Allegaert K, Van den Anker JN, Cossey V, Holford NHG. Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. *Br J Clin Pharmacol*. 2007;63(1):75–84. PubMed doi: 10.1111/j.1365-2125.2006.02725.x
10. Jarugula P, Akcan-Arikan A, Munoz-Rivas F, Moffett BS, Ivaturi V, Rios D. Optimizing vancomycin dosing and monitoring in neonates and infants using population pharmacokinetic modeling. *Antimicrob Agents Chemother*. 2022;66(4):e0189921. PubMed doi: 10.1128/aac.01899-21
11. Frymoyer A, Hersh AL, El-Komy MH, et al. Association between vancomycin trough concentration and area under the concentration-time curve in neonates. *Antimicrob Agents Chemother*. 2014; 58(11):6454–6461. PubMed doi: 10.1128/AAC.03620-14
12. Akunne OO, Mugabo P, Argent AC. Pharmacokinetics of vancomycin in critically ill children: a systematic review. *Eur J Drug Metab Pharmacokinet*. 2022;47(1):31–48. PubMed doi: 10.1007/s13318-021-00730-z
13. Selewski DT, Charlton JR, Jetton JG, et al. Neonatal acute kidney injury. *Pediatrics*. 2015;136(2):e463–e473. PubMed doi: 10.1542/peds.2014-3819
14. Boer DP, de Rijke YB, Hop WC, Cransberg K, Dorresteijn EM. Reference values for serum creatinine in children younger than 1 year of age. *Pediatr Nephrol*. 2010;25(10):2107–2113. PubMed doi: 10.1007/s00467-010-1533-y
15. Downes KJ, Hayes M, Fitzgerald JC, et al. Mechanisms of antimicrobial-induced nephrotoxicity in children. *J Antimicrob Chemother*. 2020;75(1):1–13. PubMed doi: 10.1093/jac/dkz325
16. Williams C, Hankinson C, McWilliam SJ, Oni L. Vancomycin-associated acute kidney injury epidemiology in children: a systematic review. *Arch Dis Child*. 2022;107(10):947–954. PubMed doi: 10.1136/archdischild-2021-323429
17. Aljefri DM, Avedissian SN, Rhodes NJ, Postelnick MJ, Nguyen K, Scheetz MH. Vancomycin area under the curve and acute kidney injury: a meta-analysis. *Clin Infect Dis*. 2019;69(11):1881–1887. PubMed doi: 10.1093/cid/ciz051
18. Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant *Staphylococcus aureus* infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. *Am J Health Syst Pharm*. 2020;77(11):835–864. PubMed doi: 10.1093/ajhp/zxa036
19. Neely MN, Youn G, Jones B, et al. Are vancomycin trough concentrations adequate for optimal dosing? *Antimicrob Agents Chemother*. 2014;58(1):309–316. PubMed doi: 10.1128/AAC.01653-13
20. Haag H, Lau A. Correlation of calculated vancomycin trough concentrations and exposure: a Monte Carlo simulation. *Ann Pharmacother*. 2023;57(12):1410–1414. PubMed doi: 10.1177/10600280231160571
21. Tkachuk S, Collins K, Ensom MHH. The relationship between vancomycin trough concentrations and AUC/MIC ratios in pediatric patients: a qualitative systematic review. *Paediatr Drugs*. 2018; 20(2):153–164. PubMed doi: 10.1007/s40272-018-0282-4
22. Lim AS, Foo SHW, Benjamin Seng JJ, Magdelaine Ng TT, Chng HT, Han Z. Area-under-curve-guided versus trough-guided monitoring of vancomycin and its impact on nephrotoxicity: a systematic review and meta-analysis. *Ther Drug Monit*. 2023;45(4):519–532. PubMed doi: 10.1097/FTD.0000000000001075

23. Yamada Y, Niwa T, Ono Y, et al. Comparison of the incidence of vancomycin-associated nephrotoxicity following the change from trough-guided dosing to AUC-guided dosing using trough-only data. *J Antimicrob Chemother*. 2023;78(12):2933–2937. PubMed doi: 10.1093/jac/dkad333

24. Rybak M, Lomaestro B, Rotschafer JC, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. *Am J Health Syst Pharm*. 2009;66(1):82–98. PubMed doi: 10.2146/ajhp080434

25. Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant *Staphylococcus aureus* infections in adults and children: executive summary. *Clin Infect Dis*. 2011;52(3):285–292. PubMed doi: 10.1093/cid/cir034

26. Touw DJ, Westerman EM, Sprij AJ. Therapeutic drug monitoring of aminoglycosides in neonates. *Clin Pharmacokinet*. 2009;48(2):71–88. PubMed doi: 10.2165/00003088-200948020-00001

27. AAP Committee on Infectious Diseases. Tables of Antibacterial Drug Dosages. In: *Red Book: 2021–2024 Report of the Committee on Infectious Diseases*. 32nd ed. AAP; 2021:914–932. doi: 10.1542/9781610021470-part04-tables_of_antibacterial

28. Morrison AP, Melanson SEF, Carty MG, Bates DW, Szumita PM, Tanasijevic MJ. What proportion of vancomycin trough levels are drawn too early? frequency and impact on clinical actions. *Am J Clin Pathol*. 2012;137(3):472–478. PubMed doi: 10.1309/AJCPDSYSODVLKFOH

29. Sklansky A, Stoecklein S. Implications of vancomycin troughs drawn earlier than current guidelines. *Fed Pract*. 2015;32(12):30–33. PubMed

30. Melanson SEF, Mijailovic AS, Wright APM, Szumita PM, Bates DW, Tanasijevic MJ. An intervention to improve the timing of vancomycin levels. *Am J Clin Pathol*. 2013;140(6):801–806. PubMed doi: 10.1309/AJCPKQ6EAH70YQLB

31. Kishk OA, Lardieri AB, Heil EL, Morgan JA. Vancomycin AUC/MIC and corresponding troughs in a pediatric population. *J Pediatr Pharmacol Ther*. 2017;22(1):41–47. PubMed doi: 10.5863/1551-6776-22.1.41

32. Ploessl C, White C, Manasco K. Correlation of a vancomycin pharmacokinetic model and trough serum concentrations in pediatric patients. *Pediatr Infect Dis J*. 2015;34(10):e244–e247. PubMed doi: 10.1097/INF.0000000000000817

33. Zhang T, Cheng H, Pan Z, et al. Desired vancomycin trough concentration to achieve an $AUC_{0-24}/MIC \geq 400$ in Chinese children with complicated infectious diseases. *Basic Clin Pharmacol Toxicol*. 2020;126(1):75–85. PubMed doi: 10.1111/bcpt.13303

34. Chen J, Huang X, Bu S, et al. The relationship between vancomycin AUC/MIC and trough concentration, age, dose, renal function in Chinese critically ill pediatric patients. *Pharmacol Res Perspect*. 2021;9(6):e00885. PubMed doi: 10.1002/prp2.885

35. Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can't get there from here. *Clin Infect Dis*. 2011;52(8):969–974. PubMed doi: 10.1093/cid/cir078

36. Pai MP, Neely M, Rodvold KA, Lodise TP. Innovative approaches to optimizing the delivery of vancomycin in individual patients. *Adv Drug Deliv Rev*. 2014;77:50–57. PubMed doi: 10.1016/j.addr.2014.05.016

37. Hale CM, Seabury RW, Steele JM, Darko W, Miller CD. Are vancomycin trough concentrations of 15 to 20 mg/L associated with increased attainment of an $AUC/MIC \geq 400$ in patients with presumed MRSA infection? *J Pharm Pract*. 2017;30(3):329–335. PubMed doi: 10.1177/0897190016642692

38. Lodise TP, Drusano GL, Zasowski E, et al. Vancomycin exposure in patients with methicillin-resistant *Staphylococcus aureus* bloodstream infections: how much is enough? *Clin Infect Dis*. 2014;59(5):666–675. PubMed doi: 10.1093/cid/ciu398

39. Le J, Bradley JS, Murray W, et al. Improved vancomycin dosing in children using area under the curve exposure. *Pediatr Infect Dis J*. 2013;32(4):e155–e163. PubMed doi: 10.1097/INF.0b013e318286378e

40. Alsultan A, Abouelkheir M, Alqahtani S, et al. Optimizing vancomycin monitoring in pediatric patients. *Pediatr Infect Dis J*. 2018;37(9):880–885. PubMed doi: 10.1097/INF.0000000000001943

41. Tseng SH, Lim CP, Chen Q, Tang CC, Kong ST, Ho PCL. Evaluating the relationship between vancomycin trough concentration and 24-hour area under the concentration-time curve in neonates. *Antimicrob Agents Chemother*. 2018;62(4):1–11. PubMed doi: 10.1128/AAC.01647-17

42. Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. *Clin Infect Dis*. 2009;49(4):507–514. PubMed doi: 10.1086/600884

43. van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. *Antimicrob Agents Chemother*. 2013;57(2):734–744. PubMed doi: 10.1128/AAC.01568-12

44. Sinha Ray A, Haikal A, Hammoud KA, Yu ASL. Vancomycin and the risk of AKI: A systematic review and meta-analysis. *Clin J Am Soc Nephrol*. 2016;11(12):2132–2140. PubMed doi: 10.2215/CJN.05920616

45. Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant *Staphylococcus aureus* infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. *Clin Infect Dis*. 2020;71(6):1361–1364. PubMed doi: 10.1093/cid/ciaa303

46. Bradley N, Lee Y, Sadeia M. Assessment of the implementation of AUC dosing and monitoring practices with vancomycin at hospitals across the United States. *J Pharm Pract*. 2022;35(6):864–869. PubMed doi: 10.1177/08971900211012395

47. Álvarez R, López Cortés LE, Molina J, Cisneros JM, Pachón J. Optimizing the clinical use of vancomycin. *Antimicrob Agents Chemother*. 2016;60(5):2601–2609. PubMed doi: 10.1128/AAC.03147-14

48. Downes KJ, Sharova A, Malone J, Odom John AR, Zuppa AF, Neely MN. Multiple model optimal sampling promotes accurate vancomycin area-under-the-curve estimation using a single sample in critically ill children. *Ther Drug Monit.* 2025;47(4):512–519. PubMed doi: 10.1097/FTD.0000000000001293

49. Frymoyer A, Stockmann C, Hersh AL, Goswami S, Keizer RJ. Individualized empiric vancomycin dosing in neonates using a model-based approach. *J Pediatric Infect Dis Soc.* 2019;8(2):97–104. PubMed doi: 10.1093/jpids/pix109

50. Yousef M, Yáñez JA, Löbenberg R, Davies NM. Upholding or breaking the law of superposition in pharmacokinetics. *Biomedicines.* 2024;12(8):1843. PubMed doi: 10.3390/biomedicines12081843

51. Wang W, Ouyang SP. The formulation of the principle of superposition in the presence of non-compliance and its applications in multiple dose pharmacokinetics. *J Pharmacokinet Biopharm.* 1998;26(4):457–469. PubMed doi: 10.1023/A:1021016218536

52. Men P, Li HB, Zhai SD, Zhao RS. Association between the AUC0-24/MIC ratio of vancomycin and its clinical effectiveness: a systematic review and meta-analysis. *PLoS One.* 2016;11(1):e0146224. PubMed doi: 10.1371/journal.pone.0146224

53. da Silva Alves GC, da Silva SD, Fraude VP, et al. Determining the optimal vancomycin daily dose for pediatrics: a meta-analysis. *Eur J Clin Pharmacol.* 2017;73(11):1341–1353. PubMed doi: 10.1007/s00228-017-2306-3

54. Frymoyer A, Hersh AL, Coralic Z, Benet LZ, Joseph Guglielmo B. Prediction of vancomycin pharmacodynamics in children with invasive methicillin-resistant *Staphylococcus aureus* infections: a Monte Carlo simulation. *Clin Ther.* 2010;32(3):534–542. PubMed doi: 10.1016/j.clinthera.2010.03.005

55. Al-Mazraawy BO, Girotto JE. Comparing vancomycin area under the curve with a pharmacist protocol that incorporates trough and maximum doses at a children's hospital. *J Pediatr Pharmacol Ther.* 2021;26(7):740–745. PubMed doi: 10.5863/1551-6776-26.7.740

56. Bosley TE, Kuhn RJ, Gardner B, Autry EB, Fuller M, Overley CL. Optimization of vancomycin dosing to achieve target area under the curve in pediatrics. *J Pediatr Pharmacol Ther.* 2021;26(7):746–752. PubMed doi: 10.5863/1551-6776-26.7.746

57. He C-Y, Ye P-P, Liu B, Song L, van den Anker J, Zhao W. Population pharmacokinetics and dosing optimization of vancomycin in infants, children, and adolescents with augmented renal clearance. *Antimicrob Agents Chemother.* 2021;65(10):e0089721. PubMed doi: 10.1128/AAC.00897-21

58. Frymoyer A, Schwenk HT, Brockmeyer JM, Bio L. Impact of model-informed precision dosing on achievement of vancomycin exposure targets in pediatric patients with cystic fibrosis. *Pharmacotherapy.* 2023;43(10):1007–1014. PubMed doi: 10.1002/phar.2845

59. Mitchell B, Kormelink L, Kuhn R, Schadler A, Autry E. Retrospective review of vancomycin monitoring via trough only versus two-point estimated area under the curve in pediatric and adult patients with cystic fibrosis. *Pediatr Pulmonol.* 2023;58(1):239–245. PubMed doi: 10.1002/ppul.26190

60. Shoji K, Saito J, Nakagawa H, et al. Population pharmacokinetics and dosing optimization of vancomycin in pediatric liver transplant recipients. *Microbiol Spectr.* 2021;9(2):e0046021. PubMed doi: 10.1128/Spectrum.00460-21

61. Morales Junior R, Juodinis VDA, de Souza DC, Santos SRCJ. Pharmacokinetics and therapeutic target attainment of vancomycin in pediatric post-liver transplant patients. *Braz J Infect Dis.* 2023;27(6):103688. PubMed doi: 10.1016/j.bjid.2023.103688

62. Shimamoto Y, Verstegen RHJ, Mizuno T, Schechter T, Allen U, Ito S. Population pharmacokinetics of vancomycin in paediatric patients with febrile neutropenia and augmented renal clearance: development of new dosing recommendations. *J Antimicrob Chemother.* 2021;76(11):2932–2940. PubMed doi: 10.1093/jac/dkab302

63. Regen RB, Schuman SS, Chhim RF, Arnold SR, Lee KR. Vancomycin treatment failure in children with methicillin-resistant *Staphylococcus aureus* bacteremia. *J Pediatr Pharmacol Ther.* 2019;24(4):312–319. PubMed doi: 10.5863/1551-6776-24.4.312

64. Zhou B, Xiong W, Bai K, et al. Clinical application value of pharmacokinetic parameters of vancomycin in children treated in the pediatric intensive care unit. *Front Pediatr.* 2022;10(June):867712. PubMed doi: 10.3389/fped.2022.867712

65. Yoo R, So H, Seo E, Kim M, Lee J. Impact of initial vancomycin pharmacokinetic/ pharmacodynamic parameters on the clinical and microbiological outcomes of methicillin-resistant *Staphylococcus aureus* bacteremia in children. *PLoS One.* 2021;16(4):e0247714. doi: 10.1371/journal.pone.0247714

66. Kanazawa N, Shigemi A, Amadatsu N, et al. A cohort study of the risk factors and the target AUC to avoid vancomycin-associated acute kidney injury in pediatric patients. *J Infect Chemother.* 2024;30(4):323–328. PubMed doi: 10.1016/j.jiac.2023.10.025

67. Flannery DD, Edwards EM, Coggins SA, Horbar JD, Puopolo KM. Late-onset sepsis among very preterm infants. *Pediatrics.* 2022;150(6):2022058813. PubMed doi: 10.1542/peds.2022-058813

68. Chen Y, Wu D, Dong M, et al. Population pharmacokinetics of vancomycin and AUC-guided dosing in Chinese neonates and young infants. *Eur J Clin Pharmacol.* 2018;74(7):921–930. PubMed doi: 10.1007/s00228-018-2454-0

69. Kato H, Hagihara M, Nishiyama N, et al. Assessment of optimal initial dosing regimen with vancomycin pharmacokinetics model in very low birth weight neonates. *J Infect Chemother.* 2017;23(3):154–160. PubMed doi: 10.1016/j.jiac.2016.11.009

70. Gwee A, Duffull SB, Daley AJ, et al. Identifying a therapeutic target for vancomycin against staphylococci in young infants. *J Antimicrob Chemother.* 2022;77(3):704–710. PubMed doi: 10.1093/jac/dkab469

71. Weng XH, Zhu CQ, Duan LF, et al. Vancomycin in neonatal sepsis: predictive performance of a Chinese neonatal population pharmacokinetic model and clinical efficacy evaluation. *Eur J Hosp Pharm.* 2022;29(2):101–108. PubMed doi: 10.1136/ejhp.2020-002479

72. Chen Q, Wan J, Shen W, et al. Optimal exposure targets for vancomycin in the treatment of neonatal coagulase-negative *Staphylococcus* infection: A retrospective study based on

electronic medical records. *Pediatr Neonatol*. 2022;63(3):247–254. PubMed doi: 10.1016/j.pedneo.2021.11.010

73. Chung E, Seto W. Association between vancomycin therapeutic drug monitoring and clinical outcomes in treating neonatal sepsis. *Int J Antimicrob Agents*. 2023;62(4):106958. PubMed doi: 10.1016/j.ijantimicag.2023.106958

74. Oliver MB, Boeser KD, Carlson MK, Hansen LA. Considerations for implementation of vancomycin Bayesian software monitoring in a level IV NICU population within a multisite health system. *Am J Health Syst Pharm*. 2023;80(11):670–677. PubMed doi: 10.1093/ajhp/zxad048

75. Finazzi S, Luci G, Olivieri C, et al. Tissue penetration of antimicrobials in intensive care unit patients: a systematic review-part I. *Antibiotics (Basel)*. 2022;11(9):1164. PubMed doi: 10.3390/antibiotics11091164

76. Viaggi B, Cangialosi A, Langer M, et al. Tissue penetration of antimicrobials in intensive care unit patients: a systematic review-part II. *Antibiotics (Basel)*. 2022;11(9):1–21. PubMed doi: 10.3390/antibiotics11091193

77. Allegaert K, Mian P, van den Anker JN. Developmental pharmacokinetics in neonates: maturational changes and beyond. *Curr Pharm Des*. 2017;23(38):5769–5778. PubMed doi: 10.2174/138161283666170926121124

78. Smits A, Pauwels S, Oyaert M, et al. Factors impacting unbound vancomycin concentrations in neonates and young infants. *Eur J Clin Microbiol Infect Dis*. 2018;37(8):1503–1510. PubMed doi: 10.1007/s10096-018-3277-8

79. Oyaert M, Spriet I, Allegaert K, et al. Factors impacting unbound vancomycin concentrations in different patient populations. *Antimicrob Agents Chemother*. 2015;59(11):7073–7079. PubMed doi: 10.1128/AAC.01185-15

80. Allegaert K, Flint R, Smits A. Pharmacokinetic modelling and Bayesian estimation-assisted decision tools to optimize vancomycin dosage in neonates: only one piece of the puzzle. *Expert Opin Drug Metab Toxicol*. 2019;15(9):735–749. PubMed doi: 10.1080/17425255.2019.1655540

81. Kufel WD, Seabury RW, Mogle BT, Beccari MV, Probst LA, Steele JM. Readiness to implement vancomycin monitoring based on area under the concentration-time curve: A cross-sectional survey of a national health consortium. *Am J Health Syst Pharm*. 2019;76(12):889–894. PubMed doi: 10.1093/ajhp/zxz070

82. Gregory ER, Burgess DR, Cotner SE, et al. Vancomycin area under the curve dosing and monitoring at an academic medical center: transition strategies and lessons learned. *J Pharm Pract*. 2020;33(6):774–778. PubMed doi: 10.1177/0897190019834369

83. Meng L, Wong T, Huang S, et al. Conversion from vancomycin trough concentration-guided dosing to area under the curve-guided dosing using two sample measurements in adults: implementation at an academic medical center. *Pharmacotherapy*. 2019;39(4):433–442. PubMed doi: 10.1002/phar.2234

84. Huang J, Chan JD, Nguyen T, Jain R, Escobar ZK. Doing more with less: pragmatic implementation of vancomycin area-under-the-curve (AUC) monitoring. *J Pharm Pract*. 2023;36(1):10–14. PubMed doi: 10.1177/08971900211027271

85. Sault AD, Parent M, Simard C. Methods of therapeutic drug monitoring to guide vancomycin dosing regimens: trough concentration versus ratio of area under the curve to minimum inhibitory concentration. *Can J Hosp Pharm*. 2022;75(2):89–96. PubMed doi: 10.4212/cjhp.v75i2.3114

86. Cerenzio J, Truong J. Efficacy and safety of vancomycin Bayesian-estimated area under the curve versus trough-based dosing. *Ann Pharmacother*. 2023;57(8):931–939. PubMed doi: 10.1177/10600280221141402

87. Gillett E, Aleissa MM, Pearson JC, et al. Implementation of a pharmacist-driven vancomycin area under the concentration-time curve monitoring program using Bayesian modeling in outpatient parenteral antimicrobial therapy. *Open Forum Infect Dis*. 2024;11(11):ofae600. PubMed doi: 10.1093/ofid/ofae600

88. Lee BV, Fong G, Bolaris M, et al. Cost-benefit analysis comparing trough, two-level AUC and Bayesian AUC dosing for vancomycin. *Clin Microbiol Infect*. 2021;27(9):1346.e1–1346.e7. PubMed doi: 10.1016/j.cmi.2020.11.008

89. Claus BOM, De Smedt D, De Cock PA. Therapeutic drug monitoring versus Bayesian AUC-based dosing for vancomycin in routine practice: a cost-benefit analysis. *J Antimicrob Chemother*. 2025;80(3):857–867. PubMed doi: 10.1093/jac/dkaf011

90. Beccari MV, Seabury RW, Mogle BT, Kufel WD, Miller CD, Steele JM. Cost comparison of AUC:MIC- versus trough-based vancomycin monitoring for MRSA bacteremia. *J Am Pharm Assoc (Wash DC)*. 2020;60(5):729–733. PubMed doi: 10.1016/j.japh.2020.02.025

91. Olson J, Hersh AL, Sorensen J, Zobell J, Anderson C, Thorell EA. Intravenous vancomycin therapeutic drug monitoring in children: Evaluation of a pharmacy-driven protocol and collaborative practice agreement. *J Pediatric Infect Dis Soc*. 2020;9(3):334–341. PubMed doi: 10.1093/jpids/piz036

92. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. *CPT Pharmacometrics Syst Pharmacol*. 2013;2(4):e38. PubMed doi: 10.1038/psp.2013.14

93. Dasgupta A, Krasowski MD. Application of chromatographic techniques for therapeutic drug monitoring. In: *Therapeutic Drug Monitoring Data*. 4th ed. Elsevier; 2020:53–63. doi: 10.1016/b978-0-12-815849-4.00005-0

94. Müller IR, Linden G, Charão MF, Antunes MV, Linden R. Dried blood spot sampling for therapeutic drug monitoring: challenges and opportunities. *Expert Rev Clin Pharmacol*. 2023;16(8):691–701. PubMed doi: 10.1080/17512433.2023.2224562

95. Simeoli R, Cairoli S, Decembrino N, et al. Use of antibiotics in preterm newborns. *Antibiotics (Basel)*. 2022;11(9):1142. PubMed doi: 10.3390/antibiotics11091142

96. Dasgupta A, Krasowski MD. Therapeutic drug monitoring using alternative specimens. In: *Therapeutic Drug Monitoring Data*. 4th ed. Elsevier; 2020:91–98. doi: 10.1016/b978-0-12-815849-4.00008-6