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Microvascular anastomosis is an exacting and 
specialized neurosurgical technique requiring 
highly refined movements that predominant-

ly engage the intrinsic muscles of the hands.1 Given the 
technical difficulty of microvascular anastomosis, train-
ees must practice and develop their anastomosis skills in 

simulation laboratories before performing the procedure 
in a clinical setting.2

Standardized and nonstandardized assessment methods 
have been developed for microsurgical simulation train-
ing. However, these methods rely on skilled mentors to as-
sess technical performance based on specific parameters, 
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OBJECTIVE  Assessing the consistency and precision of microanastomosis performance is crucial in neurosurgical 
training. Traditional methods rely on expert observation, which can be subjective and time-consuming. The aim of this 
study was to develop and validate a deep learning model using long short-term memory (LSTM) architecture for objec-
tive evaluation of microanastomosis performance by predicting and comparing suturing executions.
METHODS  An LSTM-based neural network was developed to model and predict hand movements during microvascular 
anastomosis simulation. Video data were collected from 2 expert neurosurgeons performing microanastomosis twice, 1 
year apart (sessions 1 and 2). Surgeon 1 performed interrupted suturing, and surgeon 2 performed continuous suturing. 
Additionally, a trainee with minimal microsurgical experience performed the interrupted suturing procedure once. Model 
performance was quantitatively assessed by comparing predicted and actual suturing executions using Kullback-Leibler 
(KL) divergence. Economy and flow of motion were also analyzed.
RESULTS  The LSTM-based model accurately predicted suturing movements. Surgeon 1 demonstrated KL divergence 
values of 0.00063 (session 1) and 0.00061 (session 2), and surgeon 2 had values of 0.00082 (session 1) and 0.00016 
(session 2). The trainee exhibited higher KL divergence (0.00196), reflecting less consistent performance. The economy 
of motion was assessed, showing mean Euclidean distances of 7.41 mm (session 1) and 5.85 mm (session 2) for sur-
geon 1, 10.53 mm (session 1) and 14.46 mm (session 2) for surgeon 2, and 10.50 mm for the trainee. The flow of motion 
analysis indicated median time intervals between sutures of 31.96 seconds (session 1) and 29.57 seconds (session 
2) for surgeon 1, 21.53 seconds (session 1) and 21.50 seconds (session 2) for surgeon 2, and 101.23 seconds for the 
trainee.
CONCLUSIONS  The LSTM-based model objectively assessed microanastomosis performance, capturing consistency 
and efficiency. Economy and flow of motion metrics were further validated. Future studies will extend the model’s ap-
plication to more surgeons and refine interpretation of the performance metrics.
https://thejns.org/doi/abs/10.3171/2025.6.JNS25128
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which is inconvenient and impractical in real-life scenar-
ios.3 To address these limitations, automated assessment 
tools have been developed using electromagnetic track-
ers on the dorsum of microsurgeons’ hands coupled with 
software to capture hand motions and calculate movement 
distances.4 Despite validation,5–8 the limitations of physi-
cal sensors include reduced accuracy due to sensor shift, 
restricted flexibility, unnatural movements from bands 
and wires, and high expense.

Recent advancements in artificial intelligence (AI) 
have led to the development of the MediaPipe Hand Land-
marker (Google AI), a pretrained convolutional neural 
network (CNN) that can detect the movements of 21 hand 
landmarks without needing physical sensors on the hand.9 
Adaptation of this model has enabled assessment of train-
ees during microsurgical simulations by analyzing param-
eters, such as the economy, amplitude, and flow of mo-
tion, based on hand landmark data.10–12 However, there are 
still no well-defined metrics for determining consistency 
across suturing executions or for predicting the appear-
ance and characteristics of the next sutures.

Therefore, we aimed to develop an AI-driven model us-
ing deep learning (DL) techniques to assess the consisten-
cy of hand motion during microvascular anastomosis, and 
to validate the accuracy and reliability of the individual-
ized models in predicting and quantifying surgical motion 
with expert surgeons while providing preliminary com-
parisons with trainee performance. Our approach uses 
surgeon-specific neural network models based on surgi-
cal movements captured from 2 expert cerebrovascular-
specialized neurosurgeons (M.T.L. and R.T.), as well as a 
trainee with minimal microsurgical experience, perform-
ing microanastomosis simulations.

Methods
Experimental Design

During 2 separate cerebrovascular surgery courses 
held 1 year apart, 2 expert cerebrovascular-specialized 
neurosurgeons performed microanastomosis simulations. 
Surgeon 1 executed end-to-side anastomosis using an in-
terrupted technique with a fish-mouth linear arteriotomy, 
with the recipient vessel oriented vertically and stabilized. 
Surgeon 2 executed the same procedure using a continu-
ous technique. Each surgeon performed their respective 
procedures once at each course, resulting in 2 separate 
recordings per surgeon. Additionally, to provide a com-
parative reference to the preliminary expert results, we 
separately recorded a trainee with minimal microsurgical 
experience performing the same simulation under identi-
cal experimental conditions using an interrupted suturing 
technique.

We recorded videos of the surgeons performing the 
simulation using the same experimental design as in our 
previous work (Fig. 1).10,11 Anastomosis procedures were 
performed on 2-mm diameter polyvinyl alcohol vessels 
(Micro Vascular Model, EXSURG) using appropriate mi-
crosurgical instruments, an adjustable surgical table, and a 
chair with armrests and foot pedals.

Videos of the anastomosis simulation were recorded 
using an action camera (GoPro), positioned 450 mm from 

the table edge. Videos were then processed with the pre-
trained MediaPipe Hand Landmarker task, a CNN-based 
application that estimates the 2D coordinates of 21 hand 
landmarks in each frame. We used a Nvidia GeForce RTX 
3060 laptop GPU and an Intel Core i7-11800h laptop CPU 
for all our experiments. The output from the MediaPipe 
hand-tracking algorithm is a large numerical matrix con-
taining the spatial coordinates (x, y) of each landmark, 
indexed by joint position and hand (left or right) for each 
recorded frame. This numerical matrix served as input 
data for subsequent algorithmic analyses and DL-based 
performance metrics. Additionally, MediaPipe outputs an 
annotated video visually displaying the labeled joints as a 
representation of this numerical matrix (Video 1).

VIDEO 1. Video showing real-time AI tracking of hand movements 
during end-to-side microanastomosis performed using a continuous 
suturing technique. The MediaPipe Hand Landmarker labels 21 blue 
landmarks on each hand corresponding to finger joints and wrist, 
annotating hand motions of the surgeon throughout the procedure. 
Used with permission from Barrow Neurological Institute, Phoenix, 
Arizona. Click here to view.

Algorithmic Analysis of Hand Movement Metrics
Economy of Motion

Economy of motion was defined as precise and pur-
poseful instrument handling with minimal extraneous 
movements.11 To quantify this metric, we measured the 
average movement (in pixels) of the surgeon’s dominant-
hand second-digit tip relative to a baseline position, de-

FIG. 1. Illustration showing the experimental setup of the DL track-
ing system for microanastomosis simulation. The operator performs 
anastomosis simulation under the operative microscope while an action 
camera records the simulation. The video feed is processed in real time 
through the hand detection model, which provides annotation of hand 
movements as displayed on the computer screen. Used with permission 
from Barrow Neurological Institute, Phoenix, Arizona. Figure is available 
in color online only. 
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fined as the median coordinate location during suturing. 
This method is logical because smaller deviations from 
this central reference point reflect more controlled and de-
liberate movements. To isolate movements directly related 
to the suturing technique, we applied an outlier detection 
algorithm that assigned an anomaly score to each data 
point. An anomaly score quantifies how much a data point 
deviates from the central tendency of the dataset. Scores 
greater than 3.5, representing significant movements un-
related to suturing (e.g., suture cutting or instrument ex-
changes), were excluded. Subsequently, horizontal (x-axis) 
and vertical (y-axis) tracking data were converted into Eu-
clidean distances relative to the median baseline position. 
Distances were calculated using the calibration of 1 pixel 
corresponding to 2.51 mm at the depth of the surgeon’s 
hand. The mean Euclidean distance and standard error of 
the mean (SEM) were calculated to generate economy of 
motion scores.

Flow of Motion
Flow of motion was defined as the speed and temporal 

efficiency of suturing movements.11 Using a peak detec-
tion algorithm from SciPy (version 1.15.1),13 we identified 
significant peaks in vertical movements of the dominant 
hand’s index finger. Each detected peak corresponded to 
an individual suture pass, with notably large amplitude 
peaks indicating instrument exchanges and suture cut-
ting during interrupted suturing, or suture pulls during 
continuous suturing. The intervals between these large-
amplitude peaks were measured and used to calculate the 
median time per suture, representing the speed of each 
surgeon’s suturing performance. The time intervals for 
each suture were calculated, and the median and median 
absolute deviation (MAD) were reported for each session.

Deep Neural Network Model for Training and Predicting
We used a deep neural network, specifically a long 

short-term memory (LSTM) network,14 to objectively 
evaluate individual surgeon microanastomosis perfor-
mance. A common machine learning approach involves 
dividing data into training and testing segments, where 
a model learns patterns from one portion (training data) 
and then predicts unseen movements in another segment 
(testing data). Accordingly, for each surgeon, we trained a 
separate LSTM neural network using approximately the 
last 75% of their recorded suturing movements (training 
data). After this training phase, the model received the 
initial 25% of that surgeon’s recorded movements (testing 
data) and predicted subsequent suturing patterns.

The logic behind this approach is that if a surgeon 
demonstrates consistent and skilled technique during the 
majority (75%) of their performance, these characteristic 
patterns should be reliably reflected in the initial portion 
(25%) of the same procedure. Thus, a skilled and consistent 
surgeon’s actual suturing movements should closely match 
the model’s predictions. We quantitatively assessed the 
match between predicted and actual suturing movements 
using Kullback-Leibler (KL) divergence, a statistical met-
ric measuring similarity. Lower KL divergence values in-
dicated higher similarity between the predicted and actual 
suturing patterns, reflecting greater skill and consistency.

To generate the training data, we randomly selected 
400 short clips (each comprising 5% of the total video 
length) from the final 75% of each surgeon’s video using 
the numerical matrix from MediaPipe Hand Landmarker 
that provided spatial coordinates (x, y) of 21 distinct hand 
landmarks per frame. The subsequent 5% of frames fol-
lowing each selected clip served as corresponding train-
ing labels, guiding the model to learn sequential patterns 
in hand movements. This randomized selection was re-
peated at each training epoch to enhance the model’s gen-
eralization.

Our neural network architecture consisted of an input 
fully connected layer (256 hidden units), 2 consecutive 
LSTM layers (each with 512 hidden units), and an output 
fully connected layer (256 hidden units). The network was 
trained to optimize prediction accuracy by minimizing 
the mean squared error between predicted movements and 
actual recorded movements.

Results
Each expert surgeon performed the simulation twice 

in separate sessions that were 1 year apart (session 1 and 
session 2). In session 1, surgeon 1 had 525,714 landmark 
detections with a tracking loss of 7.32%, and surgeon 2 
had 717,066 landmark detections with a tracking loss 
of 0.21%. In session 2, surgeon 1 had 855,120 landmark 
detections with a tracking loss of 0.14%, and surgeon 2 
had 734,580 landmark detections with a tracking loss of 
7.30%. The trainee performed the simulation once, re-
cording 2,524,872 landmark detections with a tracking 
loss of approximately 0.28%. The AI motion detection 
model identified x and y coordinate positions for each 
landmark detection, which were used to construct motion 
graphs illustrating movements across horizontal and verti-
cal planes.

Video Annotation and Correlation With Tracking
In microanastomosis, the second digit of the dominant 

hand commonly manipulates the instrument, whereas the 
fifth digit provides stability and support. Our analysis fo-
cused on these 2 digits because they can be generalized to 
represent the hand’s surgical movements. The microscope 
video feed and hand motion data were captured simul-
taneously for each simulation. Amplitude changes in the 
motion graphs correlated with the corresponding surgical 
actions observed in the video recordings.

For surgeon 1 (Fig. 2), who performed the anastomosis 
simulation using an interrupted suturing technique, small 
amplitude changes in the horizontal motion graph corre-
lated with suture pulls. Larger double-peaks in the same 
graph correlated with instrument changes; specifically, 
transitions from microforceps to microscissors for suture 
cutting and then switching back to microforceps for the 
next stitch. Similarly, the vertical motion graph displayed 
peaks at corresponding time points reflecting these gross 
movements. The tracking data remained consistent when 
comparing results from sessions 1 and 2. The trainee, who 
also performed interrupted suturing, exhibited a motion 
graph shape generally similar to that of surgeon 1, charac-
terized by repetitive larger amplitude movements associ-
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FIG. 2. Motion graphs showing tracking data for surgeon 1 in session 1 (A) and session 2 (B). The tips of the second (teal) and fifth (red) digits were 
analyzed while the surgeon performed end-to-side anastomosis using an interrupted suturing technique with a fish-mouth linear arteriotomy and vertical 
orientation of the recipient vessel. Notable amplitude changes are visible, which correlate with specific surgical actions during the procedure. Figure is 
available in color online only. 
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ated with frequent instrument exchanges during the inter-
rupted suturing technique.

For surgeon 2 (Fig. 3), who performed the anastomosis 
simulation using the continuous suturing technique, fewer 
large movements were observed due to the lack of instru-
ment changes. Low amplitude movement was evident in 
the tracking data from sessions 1 and 2, which demon-
strated a consistent narrower interval rhythm that corre-
lated with suture pulls. Surgeon 2 also exhibited a distinct 
dip at the peak of the tracking data, which indicated a con-
sistent mid-suture pull adjustment to reposition the suture 
loop with the nondominant hand. However, this pattern 
was more pronounced in the vertical tracking data.

Economy and Flow of Motion
Economy of motion was evaluated by analyzing the 

mean and SEM micromovement of each surgeon’s domi-
nant hand relative to their baseline position during sutur-
ing. Lower values indicate a reduced amplitude of move-
ment, which reflects less excess motion. For surgeon 1, 
the mean Euclidean distance was 7.41 (SEM 0.039) mm 
in session 1 and 5.85 (SEM 0.031) mm in session 2. For 
surgeon 2, the mean Euclidean distance was 10.53 (SEM 
0.074) mm in session 1 and 14.46 (SEM 0.214) mm in ses-
sion 2. For the trainee, the mean Euclidean distance was 
10.50 (SEM 14.96) mm.

Flow of motion was assessed using a peak detection 
algorithm, which identified significant amplitude changes 
in the dominant hand’s index finger during suturing. The 
median time interval between sutures for surgeon 1 was 
31.96 (MAD 10.98) seconds in session 1 and 29.57 (MAD 
14.60) seconds in session 2. Surgeon 2 had median inter-
vals of 21.53 (MAD 0.74) seconds in session 1 and 21.50 
(MAD 1.42) seconds in session 2. For the trainee, the me-
dian interval was 101.23 (MAD 11.36) seconds.

Prediction of Suturing Model Performance
Horizontal and vertical motion graphs visualize the DL 

model’s ability to predict and track suturing movements. 
The model accurately captured the movement patterns, in-
cluding large amplitude changes, for both surgeons. For 
surgeon 1, the KL divergence was 0.00063 in session 1 
and 0.00061 in session 2 (Fig. 4). Surgeon 2 had a KL 
divergence of 0.00082 in session 1 and 0.00016 in session 
2 (Fig. 5). The trainee had a KL divergence of 0.00196 
(Fig. 6).

Discussion
In microanastomosis, both interrupted and continuous 

suturing follow the same initial steps. The “bite” involves 
the needle penetrating the arterial wall perpendicularly, 
followed by the “suture pull,” in which the microforceps 
grasp the needle to pull the suture through. In interrupted 
suturing, a knot is tied after each suture to secure the ves-
sels, with frequent instrument changes between the needle 
driver and scissors. In contrast, continuous suturing in-
volves a single uninterrupted suture line with a final knot 
at the end, thereby reducing the number of instrument 
changes.

Manual annotation and comparison of tracking data in 

surgical simulations are feasible but are often time-con-
suming and subject to human error. In contrast, algorith-
mic or AI analysis of objective tracking data provides a 
more efficient and objective method for evaluating chang-
es in performance. Taking advantage of the repetitive ac-
tions used during microanastomosis, we first tested our 
previously described methods11 to evaluate the economy 
and flow of motion. Subsequently, we used an AI judge to 
predict the expected microanastomosis execution, which 
was trained on the actual performance of the trainee in 
the microanastomosis simulation as the skill representa-
tion. We determined the consistency of motion for an ex-
pert neurosurgeon or trainee by computing the difference 
(KL divergence) between the expected execution and the 
ground truth execution.

Our results showed a high degree of similarity in per-
formance from year to year for each expert neurosurgeon, 
as reflected in the closely matched economy of motion, 
flow of motion, and KL divergence values across simula-
tions. The economy of motion analysis demonstrated min-
imal hand movement during the anastomosis procedure, 
which is expected when suturing small vessels. Notably, 
the flow of motion analysis showed almost identical re-
sults for each surgeon across years, although not between 
surgeons. The continuous suturing technique took less 
time between bites compared with the interrupted tech-
nique. The AI model’s low KL divergence values for both 
surgeons indicated strong consistency within each simula-
tion, with minimal variation in technique throughout the 
procedure.

Compared with the surgeons, the trainee demonstrated 
less consistent performance overall, which was indicated 
by a higher KL divergence value, longer intervals between 
sutures (flow of motion), and a mean amplitude of hand 
movement (economy of motion) similar to that of surgeon 
1 but with substantially greater variability. These findings 
suggest that trainees can achieve similar magnitudes of 
movement primarily because microsurgical procedures 
performed under a microscope inherently constrain move-
ment to a small, focused target area. However, trainees 
typically lack the precision, efficiency, and rhythmic pac-
ing that are characteristic of expert surgeons due to their 
developing motor skills and limited procedural experi-
ence.

Our algorithmic and DL-based assessment method 
could be practically integrated into microanastomosis 
training courses by recording trainees as they perform 
microanastomosis tasks during simulations. Although a 
GoPro camera was used in this study, relatively simple re-
cording equipment, such as a smartphone camera, would 
suffice. Participants’ motions could be tracked multiple 
times during a course. These recordings could then be ef-
ficiently analyzed through an automated computational 
pipeline developed in Python, which processes hand land-
mark data to calculate essential performance metrics, such 
as the economy of motion, flow of motion, and KL diver-
gence. This streamlined approach allows performance 
analyses for multiple trainees to be completed within a 
single day, although the actual processing time might vary 
depending on workstation specifications, including GPU 
capabilities, CPU speed, and available RAM.

Brought to you by CCSS/BINASSS - DEPARTMENTO ADQ | Unauthenticated | Downloaded 01/19/26 03:26 PM UTC



Chen et al.

J Neurosurg  Volume 144 • January 20266

FIG. 3. Motion graphs showing tracking data for surgeon 2 in session 1 (A) and session 2 (B). The tips of the second (teal) and fifth (red) digits were 
analyzed while the surgeon performed end-to-side anastomosis using a continuous suturing technique with a fish-mouth excision arteriotomy and an 
oblique orientation of the recipient vessel. Notable amplitude changes are visible, which correlate with specific surgical actions during the procedure. 
Figure is available in color online only. 
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In practical training scenarios, trainees can perform 
microanastomosis simulations over several days and ob-
jectively track their skill progression by monitoring the KL 
divergence. Improved performance in microanastomosis 
is reflected by decreasing KL divergence values over time. 
Additionally, differences in KL divergence values between 
trainees offer a quantifiable comparison of their respec-
tive skill levels. A study is currently underway to evaluate 
the applicability and effectiveness of this system for objec-
tively monitoring neurosurgery trainees’ skill progression.

Rationale for DL Architecture
We deployed a deep neural network architecture to 

model the temporal transitions of hand landmark detec-

tions and serve as our AI judge for assessment of micro-
anastomosis performance. Recent studies have shown that 
CNN-based architectures, particularly those with stacks 
of inception modules, can model complex temporal transi-
tions in video data.15,16 However, CNNs are primarily de-
signed to capture spatial patterns within images, making 
them less optimal for tasks focused on temporal dynam-
ics.17 Transformers,18 known for their superior temporal 
modeling compared with recurrent neural network–based 
architectures, have become popular and have proved suc-
cessful in various tasks. Nonetheless, a transformer’s per-
formance can diminish when required to handle extremely 
long sequences, such as those exceeding 20 minutes in mi-
croanastomosis simulation videos. This limitation can be 
addressed by reorganizing frame-by-frame action labels  

FIG. 4. Motion graphs showing the LSTM network’s predicted execution for surgeon 1 compared with the ground truth (GT) for horizontal (A) and verti-
cal (B) coordinates in session 1 and horizontal (C) and vertical (D) coordinates in session 2. Figure is available in color online only. 

FIG. 5. Motion graphs showing the LSTM network’s predicted execution for surgeon 2 compared with the GT for horizontal (A) and vertical (B) coordi-
nates in session 1 and horizontal (C) and vertical (D) coordinates in session 2. Figure is available in color online only. 
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into action segments with multiple frames and their dura-
tions.19–22 However, because we cannot access fine-grained 
microanastomosis action annotations, implementing this 
approach was not feasible in our work.

Therefore, for this study, we chose the LSTM archi-
tecture, a specialized type of recurrent neural network.14 
LSTM networks are specifically engineered to overcome 
the limitations of traditional recurrent neural networks, 
such as the vanishing gradient problem, by introducing 
memory cells that can maintain and regulate information 
flow over long periods. The LSTM network’s autoregres-
sive prediction scheme also provides flexibility in design-
ing the training protocol.

DL Skill Assessment
If a trainee were to perform microanastomosis perfect-

ly, all the suturing actions completed within a simulation 
would be the same. Consequently, the AI judge will be 
trained on samples containing identical patterns of hand 
landmark detections. If we pass a skill testing clip excerpt-
ed from any suturing sequence to the model, the AI judge 
should predict an expected skill representation that is iden-
tical to the actual execution, resulting in a KL divergence 
of 0. Therefore, a trained AI judge is well suited to predict 
a trainee’s performance.

This design requires only 1 annotation per video to 
excerpt a complete suturing clip, thereby minimizing the 
need for manual annotation. Because the predicted expec-
tation will always be the same length as the ground truth 

execution, there is no need to tailor clips to be the same 
length for comparison. Additionally, replacing in-person 
supervision and assessment by microsurgery experts with 
an AI judge trained on the trainee’s real performance miti-
gates potential bias in skill assessment.

By inputting a complete suturing sequence (i.e., a skill 
testing sample) into a trained deep neural network, the 
network predicted the expected execution. This expected 
execution was a sequence of 2D hand landmark trajecto-
ries representing what the AI judge anticipated a trainee to 
perform in the next several minutes after the input sutur-
ing sequence. This approach allowed objective measure-
ment of the consistency of the trainee’s suturing motions.

Limitations
This study primarily focused on analyzing the sutur-

ing predictions of 2 expert cerebrovascular-specialized 
neurosurgeons. These experts were chosen to develop and 
test the model because their suturing patterns are more 
predictable and provide a reliable foundation for model 
training and validation. Each surgeon performed the con-
tinuous or interrupted suturing technique, respectively, 
allowing for a comprehensive analysis of both methods. 
However, to enhance the generalizability of our findings, 
the model would need to be tested on individuals whose 
movements are less predictable.

Quantification of KL divergence in the context of su-
turing patterns has not yet been firmly established and, as 
such, determining what constitutes a “good” or “bad” KL 

FIG. 6. Motion graphs showing the LSTM network’s predicted execution for the trainee compared with the GT for horizontal (A) 
and vertical (B) coordinates. Figure is available in color online only. 
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divergence value will require analysis on a much larger 
dataset. Once we develop a metric system for evaluating 
KL divergence values, this metric can be used to assess 
changes in skill for individual surgeons over time and to 
compare skill levels between surgeons. Establishing such 
a standard will be crucial for objectively evaluating and 
comparing the microanastomosis proficiency of surgeons.

Hand motion is not the only factor in the successful 
performance of microanastomosis. Although precise and 
consistent hand movements are important, they do not ful-
ly capture the overall quality of the procedure. Assessment 
of the vessel and its patency is also necessary because a 
surgeon could perform with excellent hand movement but 
still experience poor outcomes as a result of improper su-
turing or vessel damage.

Only end-to-side anastomosis was performed in this 
study; therefore, other types of anastomoses need to be 
studied using this model to ensure broader applicability. 
Although measuring consistency in hand motion is valu-
able, it represents just one aspect of performance. Other 
AI models should be developed to examine additional as-
pects, such as the amplitude of movement and economy 
of motion, for a more comprehensive analysis of surgical 
technique.

Finally, the findings presented herein are strictly lim-
ited to a controlled simulation environment and might not 
be directly applicable to assess surgical skill during ac-
tual operative procedures. Performance dynamics in the 
operating room are influenced by real-world complexities, 
such as patient-specific anatomy, physiological conditions, 
stress, and intraoperative variability, and thus are beyond 
the scope of this simulation-based assessment.

Conclusions
We developed and applied a DL model using LSTM ar-

chitecture to assess microanastomosis performance based 
on the consistency of hand movements. By calculating 
the KL divergence between predicted and actual sutur-
ing executions, we demonstrated the model’s potential to 
objectively evaluate the consistency of a neurosurgeon’s 
technique. In addition to KL divergence, we further vali-
dated other algorithmic assessment methods, including 
the economy and flow of motion, which provided comple-
mentary insights into suturing precision and efficiency. 
Although the current analysis is limited to 2 experts and 
1 trainee, future studies will expand the model’s applica-
tion to a broader range of surgeons and further refine the 
interpretation of these metrics in the context of suturing 
skill assessment.
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