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Multidrug-resistant Gram-negative bacterial infections
Nenad Macesic, Anne-Catrin Uhlemann, Anton Y Peleg

Multidrug-resistant Gram-negative bacterial infections cause significant morbidity and mortality globally. These 
pathogens easily acquire antimicrobial resistance (AMR), further highlighting their clinical significance. Third-
generation cephalosporin-resistant and carbapenem-resistant Enterobacterales (eg, Escherichia coli and Klebsiella spp), 
multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii are the most 
problematic and have been identified as priority pathogens. In response, several new diagnostic technologies aimed 
at rapidly detecting AMR have been developed, including biochemical, molecular, genomic, and proteomic techniques. 
The last decade has also seen the licensing of multiple antibiotics that have changed the treatment landscape for these 
challenging infections.

Introduction
Antimicrobial resistance (AMR) is one of the most 
crucial public health challenges of the 21st century. 
In 2021, an estimated 4·71 million deaths were associated 
with bacterial AMR, with low-income and middle-income 
countries disproportionately affected.1,2 Multidrug-
resistant Gram-negative bacteria (MDR-GNB) are 
responsible for much of this threat. In recent decades, 
these pathogens have become a leading cause of both 
community and health-care-associated infections,3 and 
until recently, the pipeline of new therapeutics for 
MDR-GNB was almost non-existent. Multiple factors 
have contributed to the expansion of MDR-GNB 
resistance, including the misuse and overuse of 
antibiotics in both human and animal health, the absence 
of clean water and sanitation, increasing complexity of 
medical care, and inadequate infection prevention and 
control.4,5 On a biological level, these bacteria are 
incredibly adept at spreading AMR by transfer of mobile 
genetic elements such as plasmids, for example.5 
Unfortunately, AMR has continued to worsen, with 
resistance to antibiotics of last resort, such as 
carbapenems, polymyxins, and even novel β-lactam and 
β-lactamase inhibitor combinations now being reported,6–8 
which makes the prospect of pan-drug resistance in 
Gram-negative bacteria increasingly a reality.9

The clinical syndromes caused by MDR-GNB infections 
are the same as those caused by antibiotic-susceptible 
Gram-negative bacteria. These syndromes include 
cystitis, complicated urinary tract infection (UTI; eg, 
pyelonephritis), hospital-acquired or ventilator-associated 
pneumonia, and intra-abdominal and bloodstream 
infections.5,10,11 Risk factors for MDR-GNB infections are 
consistent across different categories of MDR-GNB and 
include the presence of comorbidities, previous antibiotic 
use, previous colonisation with MDR-GNB, previous 
intensive care unit stay, mechanical ventilation, dialysis, 
length of hospital stay, and travelling to regions with a 
high prevalence of MDR-GNB.12–15 Due to a crucial unmet 
need, diagnostics have advanced to include the use of 
multiplex PCR assays, mass spectrometry techniques, 
and bacterial whole genome sequencing. Similarly, new 
therapeutics for MDR-GNB have progressed along the 
development pipeline in the last 5 years and include 

novel β-lactam and β-lactamase inhibitor combinations, 
tetracyclines, aminoglycosides, and novel siderophore-
like cephalosporins (eg, cefiderocol).16 In addition to 
antibiotic agents, there has also been a push for new 
treatment approaches such as phage therapy and anti-
virulence approaches.17,18

Clinically important mechanisms of AMR
Antibiotics have been developed to target multiple sites 
of the bacterial cell to impair bacterial growth or cause 
cell death (figure 1). Gram-negative bacteria are highly 
capable of developing resistance to antibiotics via a range 
of mechanisms, including antibiotic modification or 
degradation (eg, β-lactamase hydrolysis of β-lactam 
antibiotics), decreasing antibiotic entry into the bacterial 
cell (eg, loss of porins), altering the target site of the 
antibiotic (eg, ribosomal alteration), and increasing 
antibiotic efflux from the bacterial cell (eg, with 
overexpression of transmembrane efflux pumps; 
table 1).19,20,29,33 These mechanisms can arise from 
mutations in the bacterial chromosome, or from 
acquisition of new resistance determinants, particularly 
via plasmids. These mobile genetic elements often carry 
genes coding for resistance to multiple antibiotic classes.

Definitions of AMR
With this rich repertoire of mechanisms and modes of 
spread, resistance to multiple classes of antibiotics in 
Gram-negative bacteria has become a prominent public 
health problem. In 2012, a standardised international 
terminology for AMR was developed34 in which multidrug 
resistance (MDR) was defined as acquired non-
susceptibility to at least one agent in three or more 
antibiotic categories, extensive drug resistance was 
defined as non-susceptibility to at least one agent in all but 
one or two antibiotic categories, and pan-drug resistance 
was defined as non-susceptibility to all agents in all 
antibiotic categories. More recently, a clinical definition of 
difficult-to-treat resistance (DTR) for Gram-negative 
bacteria was developed, defined as treatment-limiting 
resistance to all first-line agents; that is, all β-lactams, 
including carbapenems and β-lactamase inhibitor 
combinations (not including novel combinations), and 
fluoroquinolones.35 This definition distinguishes low 
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toxicity first-line agents from agents with higher toxicity 
and less efficacy, such as aminoglycosides, polymyxins 
(nephrotoxicity and poor penetration in abdominal and 
pulmonary sites), and tigecycline (low serum levels and 
poor lung penetration).31,36–38

Clinically relevant multidrug-resistant 
Gram-negative pathogens
Enterobacterales
Enterobacterales include some of the most common 
Gram-negative pathogens. These include Escherichia coli, 
Klebsiella spp, and Proteus spp, which are common 
commensals of the gastrointestinal tract and often cause 
urinary tract, intra-abdominal, and bloodstream 
infections, and Enterobacter spp and Serratia marcescens, 
which are more commonly seen within health-care 
settings. The most clinically relevant resistance me
chanisms of Enterobacterales include extended-spectrum 
β-lactamases (ESBLs) and AmpC β-lactamases, which 
confer resistance to narrow-spectrum penicillins 
(eg, benzylpenicillin and amoxycillin) and third-generation 
cephalosporins (eg, ceftriaxone and ceftazidime), and 
carbapenemases, which confer resistance to carbapenems 
(eg, meropenem, imipenem, and ertapenem).10,11,39 Given 

the importance of these antibiotics for the treatment of 
Enterobacterales infections and increasing reports of 
resistance, WHO has declared third-generation cepha
losporin-resistant and carbapenem-resistant Entero
bacterales (CRE) as critical priority pathogens for novel 
drug development.3

ESBLs are a heterogeneous group of enzymes that 
hydrolyse the β-lactam ring in antibiotics and have a 
serine in the active site.40 ESBLs are often located on 
mobile genetic elements such as plasmids, leading to 
their rapid horizontal transmission between bacterial 
pathogens.19 While conferring resistance to third-
generation cephalosporins, bacteria carrying these 
enzymes remain susceptible to carbapenems. The earliest 
identified ESBLs were TEM and SHV β-lactamases, with 
subsequent extensive spread of the CTX-M family of 
enzymes, particularly plasmid-borne CTX-M-15 
associated with the E coli sequence type 131 clone.19,41 
ESBLs in Enterobacterales have now become endemic 
globally in both hospital and community settings, with 
rates of 5–25% in western Europe, more than 50% in 
southern and eastern Europe, 30% in Latin America, 
11–13% in the USA, 30–80% in Asia (depending on 
country), and 10–15% for Australia and New Zealand.40,42–44

Figure 1: Mechanisms of action of key antibiotics for the treatment of multidrug-resistant Gram-negative bacterial infections
Several classes of antibiotics are available for the treatment of multidrug-resistant Gram-negative bacterial infections. Their mechanisms of action focus on key 
aspects of bacterial cell function, such as inhibiting cell wall synthesis (ie, β-lactams and fosfomycin) and function (ie, polymyxins), protein synthesis 
(ie, aminoglycosides and tetracyclines), folic acid synthesis (ie, trimethoprim and sulphonamides), and DNA replication (ie, fluoroquinolones). Because of increasing 
antimicrobial resistance, novel antibiotics have been developed to overcome some of these mechanisms; for example, by inhibiting antibiotic modification 
(ie, β-lactamase inhibitors) or by altering entry pathways (ie, cefiderocol, which enters via iron transporters). This figure was created with BioRender.com. 
DHF=dihydrofolic acid. PABA=para-aminobenzoic acid. THF=tetrahydrofolate.
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AmpC β-lactamases are most often found in 
Enterobacter spp, S marcescens, Citrobacter freundii, 
Morganella morganii, and Providencia spp. Despite their 
resistance to third-generation cephalosporins, these 
pathogens often remain susceptible to cefepime and 
carbapenems. AmpC can be distinguished from ESBLs 
by their resistance to some β-lactamase inhibitors 
(eg, clavulanic acid) and cephamycins (eg, cefoxitin), to 
which ESBLs remain susceptible.45 ampC genes are most 
often located on the bacterial chromosome and their 
expression can be induced by exposure to various 
β-lactam antibiotics, including third-generation cepha
losporins.46 The bacteria can initially show in vitro 
susceptibility to these agents, but then develop resistance 
if induction ensues.47 Considerable inducible chromo
somal ampC expression is most often encountered in the 
Enterobacter cloacae complex, Klebsiella aerogenes, and 
C freundii, whereas S marcescens, M morganii, and 
Providencia spp. have lower levels of inducible ampC 
expression and are therefore less likely to develop third-
generation cephalosporin resistance.48–50 In contrast, 
plasmid-mediated ampC genes are typically detected in 
K pneumoniae, E coli, and Salmonella spp. and confer 
resistance without requiring induction.46

Carbapenemases are enzymes that hydrolyse a broad 
range of β-lactams, including carbapenems. They can 
be further classified as carbapenemases that rely on a 
serine residue in the active site (eg, KPC [Klebsiella 
pneumoniae carbapenemase], IMI [Imipenem-
hydrolysing β-lactamase], and OXA-48 groups) or those 
that rely on zinc, also known as metallo-β-lactamases 
(eg, NDM [New Delhi metallo-β-lactamase], VIM 
[Verona Integron-encoded metallo-β-lactamase], and 
Imipenemase [IMP]).19 With the advent of new 
β-lactamase inhibitors that are enzyme-specific, it has 
become more important to know the mechanism of 
carbapenem resistance to help guide optimised antibiotic 
choice. Carbapenem resistance in Enterobacterales can 
also result from non-carbapenemase mechanisms, such 
as ESBL overproduction, porin mutation and loss, and 
upregulation of efflux pumps.8 Globally, rates of 
carbapenem resistance in Enterobacterales remain less 
than 10%, but there is substantial variation between 
regions, with more than 50% of K pneumoniae 
isolates from Greece and Russia being carbapenem 
resistant.8,43,51,52 Rates of resistance also differ according to 
bacterial species, with more carbapenem resistance 
in K pneumoniae, and a higher proportion being 
carbapenemase producers.53 The predominant type of 
carbapenemase also varies between regions, with KPCs 
most commonly noted in North America, Asia, and 
Southern Europe, while NDMs predominate on the 
Indian subcontinent, the Middle East, and the Balkans, 
and IMPs in Asia and Australia.54,55 However, systematic 
sampling in community and hospital settings is not 
typically undertaken globally and therefore reported rates 
could be affected by sampling bias.

Pseudomonas aeruginosa
P aeruginosa is a common nosocomial pathogen that can 
readily develop resistance to multiple antibiotics. While 
resistance in Enterobacterales is driven by acquired 
β-lactamases, resistance in P aeruginosa is often due to 
the presence of efflux pumps that actively remove 
multiple antibiotics (eg, MexAB-OprM), and mutations 
of porins (eg, OprD) that decrease permeability to 

Categories Examples

β-lactams19,20 (eg, piperacillin–tazobactam, cefepime, meropenem, and ceftazidime–avibactam)

Antibiotic 
modification

β-lactamase enzymes Extended-spectrum β-lactamases 
(SHV, TEM, and CTX-M); 
carbapenemases (KPC, OXA-48, NDM, 
IMP, and VIM)

Decreased entry Porin mutations Escherichia coli (OmpC and OmpF); 
Klebsiella pneumoniae (OmpK35 and 
OmpK36); Pseudomonas aeruginosa 
(OprD); Acinetobacter baumannii 
(CarO)

Increased efflux Efflux pumps E coli (AcrAB-TolC); P aeruginosa 
(MexAB-OprM); A baumannii 
(AdeABC and AdeIJK)

Aminoglycosides21–24 (eg, gentamicin, tobramycin, and amikacin)

Antibiotic 
modification

Aminoglycoside-modifying enzymes 
(AMEs)

N-acetyltransferases (AAC); 
O-adenyltransferases (ANT); 
O-phosphotransferases (APH)

Decreased entry Alterations in bacterial cell outer membrane PhoPQ; PmrAB; ParRS; CprRS

Target alteration 16S-ribosomal RNA methyltransferases 
(RMTs) 

ArmA; RmtA; RmtB; RmtC; RmtD; 
RmtE; RmtF; RmtG; NpmA; NpmB; 
NpmC

Target alteration 30S ribosome subunit binding site 
mutations

rrs and rpsL gene mutations

Tetracycline derivatives25–28 (eg, minocycline, tigecycline, and eravacycine)

Antibiotic 
modification

Increased breakdown Tet(X); Tet(X2); Tet(X3); Tet(X4)

Increased efflux Major facilitator superfamily (MFS) of 
transporters

Tet(A); Tet(B); Tet(C); Tet(D)

Increased efflux Resistance nodulation division (RND)-type 
multidrug efflux pumps

AdeABC; TmexCD1-ToprJ1

Target alteration Ribosomal protein alteration RpsJ

Fluoroquinolones29,30 (eg, ciprofloxacin)

Antibiotic 
modification

Increased breakdown AME: AAC(6’)-Ib-cr

Increased efflux Efflux pumps QepA; OqxAB

Target alteration Topoisomerase substitution GyrA; GyrB; ParC; ParE 

Target alteration DNA gyrase protection QnrA

Polymyxins31 (eg, colistin and polymyxin B)

Target alteration Two component systems K pneumoniae (PhoPQ, PmrAB, MgrB, 
and CrrAB); P aeruginosa (PhoPQ, 
PmrAB, ParRS, ColRS, and CprRS); A 
baumannii (PmrAB)

Target alteration Mobile (plasmid-mediated) colistin 
resistance enzymes

Encoded by mcr genes

Fosfomycin32

Antibiotic 
modification

Fosfomycin modifying enzymes Encoded by fos genes

Decreased entry Alterations in fosfomycin transporters GlpT; UhpT; CyaA; PtsI

Table 1: Mechanisms of resistance to key classes of antibiotics used for the treatment of multidrug-
resistant Gram-negative bacterial infections
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antibiotics.56 These factors act in concert with 
overexpression of Pseudomonas-derived cephalosporinase 
(PDC), a chromosomal AmpC-type β-lactamase. In 
addition to these intrinsic mechanisms, P aeruginosa can 
also acquire resistance mechanisms via plasmids, such 
as β-lactamase genes (including carbapenemase genes—
eg, blaVIM and blaKPC) and quinolone resistance.57,58 Global 
rates of carbapenem resistance in P aeruginosa generally 
range from 10–20% and MDR rates from 5–30%, 
depending on the region and the site of infection.8,43,57,59,60 
Due to the novelty of the DTR definition, few 
epidemiological data are available that document DTR 
prevalence in P aeruginosa globally, with 2·3% and 16·9% 
representing the proportion of P aeruginosa that have 
DTR reported in the multicentre US study of Gram-
negative bacteria bloodstream isolates that proposed the 
definition of DTR and in the global ATLAS surveillance 
network, respectively.35,61

Acinetobacter baumannii
Similar to P aeruginosa, AMR in Acinetobacter baumannii 
results from multiple coexisting mechanisms including 
porin mutations and the production of multiple 
β-lactamases, aminoglycoside-modifying enzymes, and 
efflux pumps.62,63 While these mechanisms often act 
together, the most concerning development leading to 

the rise of carbapenem resistance has been the 
acquisition of carbapenemases, predominately the 
OXA-type (eg, OXA-23) and metallo-β-lactamases 
(eg, IMP, NDM, and VIM).62 In a recent global survey, 
91% of carbapenem resistant isolates carried a 
carbapenemase gene, with blaOXA-23 accounting for 88%.64 
It is possible for multiple carbapenemases to be acquired 
by the same bacterium, both in A baumannii and other 
Gram-negative pathogens. Rates of carbapenem 
resistance in A baumannii are greater than 30% globally, 
with many regions, such as southern and eastern Europe 
reaching greater than 50%, and parts of Asia greater 
than 80%.8,43,65,66

Recent advances in diagnostics
Rapid diagnosis of AMR helps guide treatment and has 
been shown to improve timeliness and appropriateness of 
antibiotic use, and in some cases, patient outcomes.67–71 
Traditional laboratory techniques for antibiotic 
susceptibility testing require culture of an organism with 
subsequent quantitative (eg, broth dilution tests or 
antibiotic gradient methods) or qualitative (eg, disk 
diffusion) phenotypic methods for detecting resistance.72 
Despite some of these techniques being automated in 
commercial instruments,73 turn-around times for 
susceptibility testing results can vary from 18 h to 48 h 

Figure 2: Diagnostic testing of multidrug-resistant Gram-negative bacteria
Diagnosis of multidrug-resistant Gram-negative bacterial infections involves both species identification and antibiotic susceptibility testing. Although clinical 
microbiology laboratories have undergone automation of these processes and have seen the introduction of proteomic methods, such as MALDI-TOF, delays in 
turnaround time remain and might affect patient outcomes. New biochemical, molecular (eg, PCR), automated microscopy, and hybridisation-based rapid 
diagnostics now allow faster detection of antimicrobial resistance, including by testing clinical samples directly. Emerging technologies are seeking to improve both 
the speed of testing and provide more detailed information regarding the underlying mechanisms of antimicrobial resistance. This figure was created with BioRender.
com. MALDI-TOF=matrix-assisted laser desorption/ionisation time-of-flight.
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depending on sample type and use of rapid phenotypic 
methods (figure 2).73–75 More prolonged testing times can 
be seen for MDR-GNB, where additional tests for non-
first-line antibiotics are often needed. Moreover, in most 
cases, these phenotypic tests do not provide information 
regarding the underlying mechanism of resistance, which 
increasingly helps guide antibiotic therapy and infection 
prevention and control interventions.

Current rapid diagnostics
There are multiple biochemical assays aimed at rapid 
identification of AMR in MDR-GNB, with a particular 
focus on carbapenemase detection.76,77 These include 
CarbaNP (an assay developed to detect the presence of 
carbapenemase production), the related Blue Carba 
and Beta Carba assays,78–80 and the carbapenemase 
inactivation method.76,81 Similar tests have also been 
developed for the detection of colistin and cefiderocol 
resistance.82,83

Molecular methods are being extensively used for AMR 
detection in clinical microbiology laboratories and have 
high sensitivity and rapid turnaround time (typically the 
same day to detect a broad category—eg, genes encoding 
KPCs).8,76,84,85 PCR-based methods that rely on nucleic acid 
amplification focus on acquired resistance genes as 
targets, including ESBL (eg, CTX-M) and carbapenemase 
genes (eg, KPC and NDM). While purely PCR-based 
assays are restricted in the number of targets, microarray 
technology can use hundreds of DNA probes that 
hybridise to DNA targets, which allows for the inclusion 
of numerous bacterial identification and resistance gene 
targets that can directly inform therapy (also known as 
theranostics). Several commercial multiplexed PCR and 
microarray panels are currently in use in clinical 
microbiology laboratories,77,84 and data on their clinical 
effects are being reported. A recent prospective 
multicentre study noted that PCR testing for the blaKPC 
carbapenemase gene was associated with faster 
administration of effective antibiotic therapy (median 
24 h vs 50 h) and decreased 14-day (16% vs 37%) and 30-day 
(24% vs 47%) mortality in patients with CRE bacteraemia.67 
Several other single-centre studies showed similar 
findings following the introduction of rapid diagnostics.86,87 
In addition, two systematic reviews focused on the use of 
rapid diagnostics in bloodstream infections (not 
MDR-GNB infections specifically) have been performed. 
The first review found improvement in timeliness of 
therapy when coupled with antimicrobial stewardship 
advice, and an association with mortality reduction.68 The 
second noted that rapid diagnostics have the potential to 
improve timeliness of targeted therapy and possibly 
improve other patient outcomes, but found there was low 
overall strength of evidence of effectiveness.69

Advances in microscopy have also played an important 
role in improving diagnosis, particularly through use of 
automated techniques that enable earlier detection of 
bacterial growth and high-throughput screening.88,89 

Automated microscopy techniques are being integrated 
with other diagnostic methods (eg, molecular diagnostics 
and fluorescence-based methods) and can be analysed 
using artificial intelligence.73,90,91 Other approaches 
currently available but not in widespread use include 
fluorescence in-situ hybridisation, which has been 
adapted for rapid bacterial identification and detection of 
specific AMR genes,77 T2 magnetic resonance-based 
biosensing for detection of several Gram-negative 
pathogens and resistance genes directly from blood, and 
the use of volatile organic compounds to establish 
antibiotic susceptibility.92–95

Emerging technologies
Several emerging technologies for rapid detection of 
AMR are undergoing development, including 
microfluidics, biosensor technologies, immune assays, 
and proteomic and genomic approaches. We will focus 
on proteomic and genomic assays but refer the reader to 
a comprehensive review for a more extensive discussion.77 
Matrix-assisted laser desorption/ionisation-time of flight 
(MALDI-TOF) mass spectrometry is a commercially 
available proteomic technology that is routinely used in 
many clinical microbiology laboratories for rapid 
organism identification.96 Rapid species identification 
can guide initial antibiotic choices, especially if a species 
with considerable rates of AMR is identified. In addition 
to this primary use, there has also been growing interest 
in using MALDI-TOF for AMR detection, including 
carbapenem resistance, but it has not reached widespread 
clinical use.97–99

The use of pathogen genomics for diagnostic purposes 
has also garnered increasing interest due to rapid 
decreases in cost and increases in accuracy of the 
technologies on offer. These efforts have included whole 
genome sequencing to characterise individual 
pathogens,100,101 and metagenomic approaches to detect 
multiple pathogens and resistance determinants directly 
from clinical samples.102,103 Several studies have shown 
good correlation in MDR-GNB between genotypic and 
phenotypic antibiotic susceptibility testing in research 
settings.104–106 While phenotypic antibiotic susceptibility 
testing remains the gold standard, it is often time 
consuming, suffers from low reproducibility, and for 
some antibiotics (eg, polymyxins) might be difficult to 
perform outside of a reference laboratory, thus making 
genomic testing an attractive addition.107 However, 
considerable logistical, technical, and regulatory barriers 
remain, such as access to sequencing instruments and 
computational resources, the need for bioinformatics 
expertise to analyse and interpret sequencing data, and 
the need for more data from diverse pathogens on the 
relationship between genotype and phenotype. As a 
result, pathogen genomics to diagnose AMR in clinical 
settings remains in development but considerable 
efforts are underway to facilitate access to this 
technology.100,108,109
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Treatment
In the last decade, several new antibiotics with activity 
against MDR-GNBs have reached clinical practice 
(figure 3). Numerous agents remain in development and 
several non-pharmacological approaches such as phage 
and microbiome-based therapies are being investigated. 
With the advent of newer and more targeted therapies, it 
has become increasingly important to have a framework 
of therapy for MDR-GNB that takes into account four 
key factors: (1) the site of infection (eg, urinary tract, 
lung, or blood), (2) the severity of infection, 
(3) the bacterial pathogen causing the infection 
(eg, Enterobacterales, Pseudomonas, Acinetobacter), and 
(4) the likely resistance mechanisms involved (eg, ESBL, 
AmpC, KPC, or NDM). Internationally recognised 
treatment guidelines now categorise recommendations 
based on these four factors (figure 4). There is some 
divergence in recommendations because of differences 
in MDR-GNB definitions, regional availability of 
antibiotics, and varied interpretations of the literature 

due to the lack of comparative effectiveness trials.112 In 
addition, guidelines from several other societies are 
available.110,111,113–115

Established antibiotics for MDR-GNB
Until the newly licensed antibiotics became available 
(figure 3), options for the treatment of MDR-GNB 
infections were chiefly restricted to older and sometimes 
more toxic antibiotics. Antibiotics such as trimethoprim–
sulfamethoxazole, quinolones, or nitrofurantoin remain 
useful for treatment of some MDR-GNB infections 
(eg, UTIs) if in vitro susceptibility is shown (figure 4).

β-lactam agents also continue to be cornerstones of 
therapy. Carbapenems (eg, meropenem, imipenem, and 
ertapenem) are broad spectrum β-lactam agents that 
are recommended for use against serious infections 
caused by third-generation cephalosporin-resistant 
Enterobacterales infections, irrespective of the resistance 
mechanism (figure 4).10,11,110,113,114 Of note, ertapenem can be 
hydrolysed by ESBLs, making it necessary to confirm 
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Metallo-β-
lactamases
(eg, NDM, VIM, 
and IMP)
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tazobactam

Ceftazidime–
avibactam
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vaborbactam

Imipenem–
relebactam

Cefiderocol

Ceftazidime–
avibactam and
aztreonam

Aztreonam–
avibactam

Cefepime– 
enmetazobactam

Sulbactam–
durlobactam†

Tetracycline derivative

β-lactam

Eravacycline

3 g IV every 8 h, 
infused over 3 h

2·5 g IV every 8 h,
infused over 3 h

4 g IV every 8 h,
infused over 3 h

1·25 g IV every 6 h,
infused over 30 min

2 g IV every 8 h,
infused over 3 h

Ceftazidime–avibactam: 
2·5 g IV every 8 h, 
infused over 3 h 
plus aztreonam: 
2 g IV every 8 h,
infused over 3 h*

2 g/0·67 g loading 
dose then 1·5 g/0·5 g 
every 6 h, 
infused over 3 h 

2 g/0·5 g every 8 h,
infused over 4 h 

1 g of each drug 
IV every 6 h, 
infused over 3 h†

1 mg per kg IV every 
12 h

Lactose non-fermenting organismsEnterobacterales
Active
Variable
Not 
recommended

Figure 3: Summary of new antibiotic agents for the treatment of multidrug-resistant Gram-negative bacterial infections
Green=antibiotic is reliably active in vitro and guideline recommended. Yellow=variable activity; antibiotic might be effective if in vitro susceptibility is shown, clinical data might be lacking to support 
routine use. Red=not recommended, likely absence of in vitro susceptibility. IV=intravenously. *Administered simultaneously via Y-site administration. †Administration was studied in combination 
with imipenem–cilastatin.
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Figure 4: Summary of IDSA and ESCMID guidelines for the treatment of multidrug-resistant Gram-negative bacterial infections
3GCephR-E=third-generation cephalosporin-resistant Enterobacterales. AmpC-E=β-lactamase producing Enterobacterales. CRAB=carbapenem-resistant Acinetobacter baumannii. CRE=carbapenem-
resistant Enterobacterales. DTR-P aeruginosa=difficult-to-treat resistant-Pseudomonas aeruginosa. ESBL-E=extended-spectrum β-lactamase-producing Enterobacterales. ESCMID=European Society for 
Clinical Microbiology and Infectious Diseases. IDSA=Infectious Diseases Society of America. MBL=metallo-β-lactamase. UTI=urinary tract infection. 

ESBL-E cystitis: preferred treatments are nitrofurantoin and 
trimethoprim–sulfamethoxazole. Alternative treatments include 
ciprofloxacin, levofloxacin, and carbapenems. Single-dose 
aminoglycoside or oral fosfomycin (for Escherichia coli only)
ESBL-E pyelonephritis or complicated UTIs: 
trimethoprim–sulfamethoxazole, ciprofloxacin, and levofloxacin 
are preferred. Ertapenem, meropenem, or imipenem if there is toxicity 
to trimethoprim and sulfamethoxazole or fluoroquinolones 
Alternative treatments include aminoglycoside for a full treatment 
course
All other ESBL-E infections (including serious infections): 
meropenem, imipenem, or ertapenem
AmpC infections: cefepime for organisms at moderate risk of 
considerable AmpC production (Enterobacter cloacae complex, 
Klebsiella aerogenes, Citrobacter freundii) that test susceptible or 
susceptible dose dependent

Cystitis: preferred treatments are nitrofurantoin, 
trimethoprim–sulfamethoxazole, ciprofloxacin, or levofloxacin.
Alternative treatments include a single dose of an aminoglycoside, 
oral fosfomycin (for E. coli only), colistin,ceftazidime–avibactam, 
meropenem–vaborbactam, imipenem–relebactam, or cefiderocol
Pyelonephritis or complicated UTIs: preferred treatments are
trimethoprim–sulfamethoxazole, ciprofloxacin, levofloxacin, 
ceftazidime–avibactam, meropenem–vaborbactam, imipenem–
relebactam, or cefiderocol. Alternative treatments are 
aminoglycosides
Ertapenem-resistant, meropenem-susceptible: Standard-infusion 
meropenem or imipenem for cystitis. Extended-infusion meropenem 
or extended-infusion imipenem for other indications
All other infections (including serious infections): Treatment 
depends on carbapenemase testing: (1) no carbapenemase 
production or carbapenemase testing unavailable:
 ceftazidime–avibactam, meropenem–vaborbactam, 
and imipenem–relebactam are preferred treatments. However, choice 
depends on local epidemiology. If previous MBL (metallo-β-lactamase) 
or suggestive epidemiology, use the recommendations for MBL 
producers. (2) KPC producers: meropenem–vaborbactam, 
ceftazidime–avibactam, and imipenem–relebactam. Cefiderocol is an 
alternative. (3) MBL (eg, NDM, VIM, and IMP) producers: 
ceftazidime–avibactam and aztreonam combination therapy, or 
cefiderocol. (4) OXA-48-like producers: ceftazidime–avibactam is
preferred and cefiderocol is an alternative.

Cystitis: preferred treatments are ceftolozane–tazobactam,
ceftazidime–avibactam, imipenem–relebactam, or cefiderocol. 
Alternative treatments include a single dose of tobramycin or 
amikacin
Pyelonephritis or complicated UTIs: ceftolozane–tazobactam, 
ceftazidime–avibactam, imipenem–relebactam, or cefiderocol. 
Alternative treatments are once-daily tobramycin or amikaci.
All other infections (including serious infections): preferred 
treatments are ceftolozane–tazobactam, ceftazidime–avibactam, 
and imipenem–relebactam. Alternatively treat with cefiderocol
MBL (eg, NDM, VIM, or IMP) producers: cefiderocol

Sulbactam–durlobactam in combination with a carbapenem 
(ie, imipenem–cilastatin or meropenem).
Alternative treatments are high-dose ampicillin–sulbactam in 
combination with at least one other agent (ie, polymyxin B, 
minocycline, tigecycline, or cefiderocol), if sulbactam–durlobactam is 
not available.

 • Durlobactam does not inhibit MBLs and therefore, other treatment 
    options are required if an MBL is present

Hospital-acquired pneumonia or ventilator-associated 
pneumonia with susceptibility to sulbactam: ampicillin–sulbactam
CRAB resistant to sulbactam: a polymyxin or high dose tigecycline
Severe and high-risk infections: combination therapy including two 
in vitro active antibiotics among the available antibiotics (polymyxin, 
aminoglycoside, tigecycline, or sulbactam combinations)
Meropenem with a minimum inhibitory concentration of 
8 mg per L or less: consider carbapenem combination therapy using 
high dose extended infusion carbapenem dosing

Severe infection: ceftolozane–tazobactam if active in vitro.
Currently insufficient evidence for use of cefiderocol, 
imipenem–relebactam or ceftazidime–avibactam 

 • In CRE infection, carbapenemase testing can be crucial to 
    informing optimal treatment decisions and is encouraged by the 
    IDSA
• Cefiderocol has in vitro activity against most CRE infections 
   (regardless of carbapenemase presence), but clinical data are 
    currently scarce. ESCMID recommends cefiderocol as a first-line 
   agent for MBL infection
• Older agents such as aminoglycosides, polymyxins, and tigecycline 
   are no longer recommended as first-line options. These agents 
   remain alternative agents if in vitro susceptibility is shown and there 
   is non-susceptibility to first-line therapies. These agents are 
   recommended by the ESCMID to be used in combination therapy 
   with more than one drug active in vitro
• Tetracycline antibiotics (eg, tigecycline and eravacycline) can be
   considered as alternative agents for CRE infection outside the 
   blood and urinary tract, regardless of carbapenemase presence
• Co-formulated aztreonam–avibactam can be used instead of 
   ceftazidime–avibactam and aztreonam combination therapy, 
   if available

Severe infection: meropenem–vaborbactam or ceftazidime–
avibactam if active in vitro
Non-severe infection: use of an old antibiotic (eg, aminoglycosides 
or tigecycline), chosen from among the in vitro active agents on an 
individual basis and according to the source of infection
Complicated UTI: aminoglycosides over tigecycline.
MBL and/or resistant to other antibiotics: Cefiderocol. 
Ceftazidime–avibactam and aztreonam combination therapy is an 
alternative

Bloodstream infection and severe infection: carbapenem 
(imipenem or meropenem)
Bloodstream infection with no septic shock: ertapenem can be 
considered instead of meropenem or imipenem
Low-risk non-severe infection: piperacillin–tazobactam, 
amoxicillin–clavulanic acid or quinolones
Complicated UTIs: aminoglycosides (for short durations) or 
intravenous fosfomycin

 • ESCMID guidelines use only a categorisation of 3GCephR-E and do 
    not make specific recommendations regarding the mechanism of 
    third-generation cephalosporin resistance

IDSA ESCMID

CRE

Comments

DTR-P aeruginosa

CRAB

3GCephR-E
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ertapenem susceptibility before treatment. Meropenem 
can still be considered for ertapenem-resistant, 
meropenem-susceptible organisms.11 The MERINO trial 
showed that definitive treatment with meropenem for 
ceftriaxone-resistant E coli and K pneumoniae resulted 
in reduced mortality compared with piperacillin–
tazobactam.116 Reanalysis of the original MERINO data 
using reference antibiotic susceptibility testing methods 
indicated that this difference is no longer statistically 
significant.117 Further studies are underway to validate 
these findings (eg, the PETERPEN study, NCT03671967). 
Based on numerous observational studies, there is a 
potential role for established β-lactam and β-lactamase 
inhibitors (eg, piperacillin–tazobactam) in non-serious 
third-generation cephalosporin-resistant Enterobacterales 
infections,10 or as a continuation of therapy if clinical 
improvement is seen.11

For Enterobacterales that produce AmpC 
(eg, Enterobacter spp.), cefepime can be considered.118,119 
While the European Society of Clinical Microbiology and 
Infectious Diseases (ESCMID) guidelines recommend 
against cefepime use for third-generation cephalosporin-
resistant Enterobacterales due to a paucity of data,10 the 
Infectious Diseases Society of America (IDSA) guidelines 
state that cefepime use could be appropriate for AmpC-
producing Enterobacterales at moderate risk of 
considerable AmpC production (eg, E cloacae complex, 
K aerogenes, and C freundii).11

Aminoglycosides remain a treatment option for many 
MDR-GNB and might have a particular role in UTIs. 
Aminoglycosides are currently recommended as 
alternative treatments for UTIs due to third-generation 
cephalosporin-resistant Enterobacterales, CRE, and 
DTR-P aeruginosa (figure 4), when susceptible. These 
agents carry risks of nephrotoxicity and ototoxicity, 
restricting long term use. Polymyxins (including colistin 
and polymyxin B) are cationic compounds that interact 
with lipopolysaccharides of the outer membrane of 
Gram-negative bacteria to cause increased permeability 
and cell death.31 These agents were previously first-line 
CRE therapy, but have considerable toxic effects (eg, 
nephrotoxicity) and have largely been replaced by novel 
β-lactam and β-lactamase inhibitor combinations, such 
as ceftazidime–avibactam, which have been associated 
with a mortality benefit in CRE treatment and fewer toxic 
events.120–122 As part of combination regimens, polymyxins 
remain a treatment option for serious carbapenem-
resistant A baumannii (CRAB) infections (figure 4) and 
might have a role in MDR-GNB infections that are not 
susceptible to any other antibiotic class.

Tetracycline derivatives, such as minocycline and 
tigecycline, remain a therapeutic option in combination 
regimens for treatment of CRAB and CRE infections, but 
are ineffective against P aeruginosa.25,38 After intravenous 
administration, tigecycline has rapid tissue distribution 
leading to poor concentrations in the serum and urine so 
caution is recommended for treating infection at these 

sites. Tigecycline also has poor lung penetration leading 
to concerns regarding its use as a treatment for ventilator-
associated pneumonia.38 Tigecycline is more suited to the 
treatment of intra-abdominal and skin and soft tissue 
infections. High doses of tigecycline (ie, 200 mg 
intravenous loading dose then 100 mg daily) are 
recommended for use in CRAB and CRE infections.11

Fosfomycin is available in both oral and intravenous 
formulations,32 and is an alternative treatment for 
uncomplicated UTI caused by ESBL-E coli or 
CRE-E coli.11 Several Gram-negative organisms (including 
K pneumoniae) have intrinsic resistance to fosfomycin 
due to the presence of fosA genes, which might lead to 
clinical failure.123,124 In a recent multicentre randomised 
controlled trial, intravenous fosfomycin did not show 
non-inferiority to β-lactam therapy for ESBL E coli 
bloodstream infection from a urinary source, 
however this was due to discontinuation because of side-
effects in the fosfomycin group, with clinical cure being 
similar for both groups.125

Sulbactam is an irreversible competitive β-lactamase 
inhibitor with activity against A baumannii (including 
CRAB) via saturation of penicillin-binding proteins,63 
which is unique to sulbactam and is not shown by other 
β-lactamase inhibitors. High dose sulbactam in 
combination with at least one other antibiotic is 
recommended as a treatment option for CRAB infections 
(figure 4).11,126 Of note, sulbactam is typically formulated 
as ampicillin–sulbactam.

New antibiotics for MDR-GNB
The arrival of multiple newer antibiotics has changed the 
treatment landscape for MDR-GNB infections. Several 
new β-lactam and β-lactamase inhibitor combinations 
have been useful additions for treatment. Ceftolozane–
tazobactam pairs a novel fifth-generation cephalosporin 
with an established β-lactamase inhibitor and has a role 
in therapy for carbapenem-resistant and DTR-P aeruginosa 
due to ceftolozane’s improved affinity for penicillin-
binding proteins that render it less affected by porin 
mutations or efflux pumps.127 In surveillance studies, 
66–98% of all P aeruginosa isolates were susceptible to 
ceftolozane–tazobactam, including 63–95% of MDR 
P aeruginosa isolates.127–130 As a result, ceftolozane–
tazobactam is broadly accepted as first-line therapy for 
serious DTR-P aeruginosa infections if active in 
vitro. Ceftolozane–tazobactam activity against ESBL-
Enterobacterales is mixed, with high rates of susceptibility 
for ESBL E coli (66–100%) but more restricted activity 
against ESBL K pneumoniae (42–84%).127,130

Other new combinations include ceftazidime–
avibactam, meropenem–vaborbactam, and imipenem–
relebactam. These agents are now first-line treatments for 
CRE infection and their activity varies depending on 
carbapenemase class. These combinations are active 
against most organisms producing Ambler class A 
carbapenemases (eg, KPC), but only ceftazidime–avibactam 

Descargado para Irene Ramírez (iramirez@binasss.sa.cr) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en enero 23, 
2025. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2025. Elsevier Inc. Todos los derechos reservados.



Review

www.thelancet.com   Vol 405   January 18, 2025	 265

has reliable activity against those with Ambler class D 
carbapenemases such as OXA-48. Observational data 
suggest that meropenem–vaborbactam might have a 
lower likelihood of resistance emergence for KPC-
producing bacteria.131 None of these agents alone are active 
against organisms producing metallo-β-lactamases 
(Ambler class B carbapenemases—eg, NDM, VIM, and 
IMP).132–134 In this scenario, treatment with a 
combination of ceftazidime–avibactam and aztreonam is 
recommended by both the ESCMID and IDSA guidelines.

Aztreonam is a monobactam β-lactam with stability 
against metallo-β-lactamases, while avibactam (given as 
ceftazidime–avibactam) inhibits the serine β-lactamases 
that can breakdown aztreonam and are often 
found concurrently in metallo-β-lactamase-producing 
organisms. Co-formulated aztreonam–avibactam has 
been approved for use by the European Medicines 
Agency (EMA) and is expected for US Food and Drug 
Administration (FDA) submission. Ceftazidime–
avibactam and imipenem–relebactam are also active 
against MDR-P aeruginosa, with susceptibility rates 
ranging from 68–89% for ceftazidime–avibactam and 
59–60% for imipenem–relebactam.130 There is a 
difference in recommendations regarding their use for 
treatment of DTR-P aeruginosa with a conditional 
recommendation from the IDSA, but not the ESCMID. 
Cefepime–enmetazobactam is a novel combination with 
activity against ESBL (eg, CTX-M, SHV, and TEM), 
AmpC, and OXA-48-producing Enterobacterales.135 This 
combination was approved for use by the EMA and FDA 
in 2024, following a phase 3 trial that showed non-
inferiority against piperacillin–tazobactam for treatment 
of complicated UTI and pyelonephritis.136

Sulbactam–durlobactam is one of the newest 
combination agents and was specifically developed to 
target CRAB infections. Sulbactam has direct activity 
against A baumannii via attachment of penicillin-
binding proteins, while durlobactam inhibits Ambler 
class A, C, and D β-lactamases (including OXA 
carbapenemases). A phase 3 trial showed non-inferiority 
to colistin with a statistically significantly lower incidence 
of nephrotoxicity leading to FDA approval for 
treatment of hospital-acquired and ventilator-associated 
pneumonia.137 Clinical data and availability are restricted, 
but given the paucity of alternative therapies, sulbactam–
durlobactam is an emerging treatment option for CRAB 
infections and was recommended (in combination with a 
carbapenem) as first-line therapy by the IDSA. Notably, 
in the registration trial, sulbactam–durlobactam was 
used in combination with imipenem–cilastatin but the 
role of adjunctive carbapenem therapy in clinical use 
remains to be established.137,138

Durlobactam is not active against metallo-β-lactamases 
(eg, NDM) and alternative regimens should be considered 
for treatment of metallo-β-lactamase-producing CRAB 
infections. Due to the high prevalence of CRAB 
in some countries and the lack of availability of 

sulbactam–durlobactam, less well-studied combinations 
that aim to have a similar effect are being explored. 
Similar to durlobactam, avibactam inhibits Ambler 
class A, C, and D β-lactamases.130 Combining avibactam 
with sulbactam has therefore been suggested as a potential 
treatment for CRAB, but clinical data are absent.139,140

Cefiderocol is a siderophore cephalosporin with a novel 
mechanism of action. By binding to iron, cefiderocol 
more easily enters bacterial cells via iron transporters, 
affording it protection from β-lactamases (including 
carbapenemases), porin mutations, and efflux pumps.141 
As a result, cefiderocol has broad in vitro activity against 
most MDR-GNB, with susceptibility rates of 97% for CRE 
(including all carbapenemases), 97% for carbapenem-
resistant P aeruginosa, and 95% for CRAB.142 However, 
metallo-β-lactamase-producing Enterobacterales and 
A baumannii show high rates of non-susceptibility (24·9% 
[95% CI 16·6–35·5%] and 40·9% [95% CI 34·5–55·4%], 
respectively), with NDM-producers being most 
problematic (38·8% [95% CI 22·6–58·0%] and 44·7% 
[95% CI 34·5–55·4%], respectively).143 CREDIBLE-CR, a 
randomised multicentre phase 3 trial, compared 
cefiderocol with the best available therapy in patients with 
carbapenem-resistant Gram-negative infections and 
noted similar clinical and microbiology efficacy, but a 
numerically higher number of deaths in the cefiderocol 
group, driven by patients with Acinetobacter spp. 
infections.144 For CRAB infections, IDSA guidelines 
recommend that cefiderocol should be restricted to 
infections refractory to or where there is intolerance to 
other antibiotics, while the ESCMID guidelines 
conditionally recommend against its use. Real-world 
clinical data are now emerging, with a retrospective 
observational study of cefiderocol use in Italy showing 
30-day mortality of 37% and identifying cefiderocol 
resistance in 28% of tested isolates.145

Beyond β-lactams, new tetracycline derivatives have 
reached clinical use. Eravacycline has good activity 
against MDR-GNB and received both FDA and EMA 
approval. Eravacycline has the same mechanism of 
action as previous tetracycline agents and has the same 
rapid tissue distribution as tigecycline, but is less affected 
by common tetracycline resistance mechanisms such as 
efflux.146 Eravacycline has a similar spectrum of activity as 
tigecycline, including activity against ESBLs, CRE, and 
CRAB, but not P aeruginosa, with minimum inhibitory 
concentrations being two-fold to four-fold lower against 
CRE than tigecycline.147

Agents in development
Several gaps in our pharmacological armamentarium for 
treating MDR-GNB exist. Apart from eravacycline, the 
described new agents require intravenous administration 
highlighting the need for oral alternatives. Oral 
carbapenems, such as tebipenem and sulopenem, are 
highly active against ESBL-producing Enterobacterales 
(ESBL-E) and have undergone phase 3 trials. In Japan, 
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tebipenem has been approved for clinical use.148–151 
These agents could have a role for treatment of 
complicated UTIs and pyelonephritis caused by ESBL-E. 
Pivmecillinam has extensive activity against ESBL-E with 
more than 80% isolates being susceptible to treatment.152 
After longstanding use in Europe, pivmecillinam has 
now been approved for use by the FDA in uncomplicated 
UTIs. Gepotidacin is a new oral type IIA topoisomerase 
inhibitor with activity against ESBL-E and fluoro
quinolone-resistant isolates.153 Two phase 3 trials 
(EAGLE-2 and EAGLE-3) compared gepotidacin with 
nitrofurantoin for treatment of uncomplicated UTI in 
women and were terminated early due to meeting the 
combined primary efficacy endpoint favouring 
gepotidacin (clinical and microbiological resolution at 
the test-of-cure visit).154,155

Several MDR-GNB pathogens still have few treatment 
options, including metallo-β-lactamase-producing CRE, 
DTR-P aeruginosa, and CRAB. Cefepime–taniborbactam 
is a promising novel β-lactam and β-lactamase inhibitor 
combination with activity against these groups (except 
IMP carbapenemases).156 A phase 3 trial showed su
periority of cefepime–taniborbactam to meropenem for 
treatment of complicated UTIs and has led to its 
submission for FDA approval.157 Cefepime–zidebactam 
and meropenem–xeruborbactam have a similar spectrum 
of in vitro activity and are undergoing evaluation.158,159

Non-antibiotic approaches
Although the availability of new antibiotics for MDR-GNB 
infections is promising, almost all agents discussed 
belong to pre-existing antibiotic classes. Clinical infections 
with organisms resistant to these agents have already 
been described,6,160,161 highlighting the need to develop 
alternative or adjunctive non-antibiotic treatments. Phage 
therapy is an example and consists of administering 
naturally occurring viruses (bacteriophages or “phages”) 
to kill bacterial pathogens.17 Phages have high specificity 
for a pathogen and therefore neither contribute to further 
emergence of AMR nor affect the surrounding 
microbiota.162 Phage therapy might also increase antibiotic 
susceptibility,163 leading to interest in its use in conjunction 
with antibiotics for potential synergistic effects and to 
prevent the emergence of resistance.164 Clinical data for 
MDR-GNB treatment are largely restricted to case reports 
and case series with therapy tested against the most 
common MDR-GNB pathogens, including ESBL-E, CRE, 
MDR P aeruginosa infections, and CRAB.162,165–167 Multiple 
clinical trials are ongoing (NCT05453578, NCT05498363, 
and NCT04596319). In addition, phages produce phage-
derived peptides (eg, endolysins) that are proteins that 
target the bacterial cell wall to cause lysis. While this 
process forms part of phage infection strategies, 
phage-derived peptides have been generated as 
recombinant proteins and experimentally evaluated as 
anti-infective treatments (eg, in A baumannii 
infections).168,169

Microbiota-based therapies (eg, faecal microbiota 
transplantation) are another non-antibiotic therapy 
being investigated for decolonisation of MDR-GNB 
before the development of active infection. Most studies 
have been case series and have focused on ESBL-E and 
CRE, with decolonisation rates varying substantially.170–172 
A single randomised controlled trial did not show a 
significant difference in ESBL-E or CRE colonisation 
when non-absorbable antibiotics were administered 
with faecal microbiota transplantation, but was 
terminated early due to poor enrolment and numerous 
trials are ongoing.173

Antivirulence therapies are also a potential alternative 
to antibiotics as these treatments target virulence factors 
rather than trying to kill or inhibit the growth of 
pathogens. This approach might cause less selection 
pressure compared with antibiotics, thus preventing 
further emergence of AMR.174 Some antivirulence strate
gies include targeting bacterial adhesion and colonisation, 
preventing biofilm formation, interference with bacterial 
toxins, inhibition of specialised secretion systems, and 
regulation of virulence gene expression.175,176 Although 
promising, these therapies remain investigational and 
have not undergone extensive clinical trials in Gram-
negative pathogens.

Several therapies that enlist the immune system 
against MDR-GNB pathogens also form important 
antibiotic alternatives.177 Antibody treatments typically 
target virulence factors and have also been combined 
with small-molecule therapies (eg, antibiotics) to form 
antibody–drug conjugates, which simultaneously target 
the pathogen and engage multiple components of the 
immune system.177,178 Vaccines for several common 
MDR-GNB pathogens are in development, including an 
extra-intestinal pathogenic E coli vaccine in phase 3, an 
enterotoxigenic E coli vaccine in phase 2, and a 
K pneumoniae vaccine in a phase 1 and 2 trial.179 However, 
vaccines for other important pathogens (eg, P aeruginosa 
and A baumannii) are either in preclinical development 
or are inactive due to several hurdles such as the need for 
broad coverage among diverse bacterial strains within a 
species.180 Mirroring the recent advances in cancer 
treatment, immunotherapy that targets host immune 
response (eg, checkpoint inhibition, cytokine therapies, 
and cellular therapies) rather than the pathogen itself is 
also in preclinical development for several MDR-GNB 
pathogens.177,181

Antibiotic adjuvants are compounds that enhance the 
effectiveness of antibiotics and help overcome bacterial 
resistance.182 While β-lactam and β-lactamase inhibitor 
combinations have been the most prominent examples, 
several other classes are in development. Efflux pump 
inhibitors prevent bacteria from expelling antibiotics, 
thus increasing their intracellular concentration and 
activity. Membrane permeabilisers assist antibiotics in 
penetrating bacterial cells, especially the outer membrane 
of Gram-negative bacteria. Some compounds (eg, NV716) 
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can act as both efflux pump inhibitors and membrane 
permeabilisers and also remain in preclinical 
development.183

Knowledge gaps in treatment
The role of combination therapy
Before the availability of novel MDR-GNB antibiotics, 
combination therapy of multiple agents with in vitro 
efficacy was recommended for CRE, DTR-P aeruginosa, 
and CRAB infections. Clinical data of the efficacy and 
safety of newer agents have led to acceptance of use of 
novel β-lactam and β-lactamase inhibitors as monotherapy 
for most CRE infections and serious DTR-P aeruginosa 
infections where in vitro activity is shown.10,11,110,113 However, 
there is a paucity of data regarding the role of newer 
agents in treating metallo-β-lactamase-producing CRE 
and CRAB, either as single agents or in combination 
therapy. While cefiderocol has activity against these 
organisms,184 further data from clinical trials are needed.

Duration of therapy for MDR-GNB infections
There have been multiple efforts to shorten the duration 
of therapy for treatment of bacterial infection but studies 
have not specifically focused on MDR-GNB.185 In studies 
where there was a considerable proportion of MDR-GNB, 
shorter courses were non-inferior.186–189 A retrospective 
observational study of CRE bacteraemia showed similar 
odds of recurrent bacteraemia or death within 30 days 
in patients receiving short courses (7–10 days) as in 
those receiving long courses of active therapy 
(14–21 days; odds ratio 1·21 [95% CI 0·55–2·31]).190 Of the 
guidelines reviewed, only two made specific recom
mendations regarding duration of therapy,110,113 while 
others made no recommendations or stated that therapy 
for resistant organisms should not differ to that of 
susceptible organisms with factors such as clinical 
response, achievement of source control, and the host’s 
immunological status playing an important role in 
determining duration of therapy.10,11 Several clinical trials 
on the duration of therapy with inclusion of MDR-GNB 
are ongoing (NCT05124977, NCT05124977, NCT05210387, 
and NCT03005145). Use of biomarkers (eg, procalcitonin) 
for personalised therapy duration has also been 
proposed.191

Conclusion
Infections caused by MDR-GNB will continue to be a 
considerable global health problem. We find ourselves at 
an exciting crossroads with several new diagnostic and 
antibiotic treatments becoming available. We must 
define the role of these newer diagnostics and antibiotics 
in clinical care, in turn allowing us to move towards a 
more precision-guided approach to treatment of MDR-
GNB infections. Our increased ability to rapidly detect 
underlying resistance mechanisms offers an important 
opportunity to guide and maximise the utility of novel 
antibiotics for MDR-GNB infections, which increasingly 

target specific mechanisms. Early detection of AMR with 
improved diagnostics also plays a key role in preventing 
the spread of MDR-GNB by allowing earlier institution 
of infection prevention and control measures.

Despite these advances, several key challenges remain in 
improving outcomes for patients with MDR-GNB 
infections. Many low-income and middle-income countries 
lack laboratory infrastructure and many of the new 
diagnostics discussed in this Review are not commonly 
used outside of reference laboratories,192 even in resource-
rich settings. Similarly, access to new antibiotics is highly 
restricted. In many regions, these treatments are simply 
unavailable, and even in resource-rich settings, ensuring 
access might require innovations in the economics of 
antibiotic use.16 Subscription-based rather than use-based 
models for restricted antibiotics, as recently introduced in 
the UK,193 are one such innovation, but ongoing incentives 
for obtaining regulatory approval and ensuring availability 
of new treatments post-approval are also needed.194

With these new diagnostics and treatments, we need 
robust clinical trial data to guide management decisions. 
Clinical trials in MDR-GNB infections struggle to enrol 
sufficient numbers of patients, making it difficult to 
obtain meaningful clinical efficacy data that compare 
new treatments not only to current best-available 
therapies, but also in head-to-head trials.195 Furthermore, 
defining the optimal duration of therapy and identifying 
meaningful outcomes to study remains challenging. 
Several novel clinical trial designs specifically address 
these shortcomings, including Bayesian adaptive 
randomisation, Sequential Multiple Assignment 
Randomized Trial-Comparing Personalized Antibiotic 
Strategies, Desirability of Outcome Rankings, and the 
DURATIONS design.196,197

Lastly, we need to think beyond antibiotics to avoid the 
Sisyphean cycle of AMR. While non-antibiotic therapies 
for MDR-GNB infections hold promise, most are at 
preclinical stages and require substantial development. 
Preserving new and established treatments with 
antimicrobial stewardship is therefore an urgent priority, 
while infection prevention and control remains a 
cornerstone of stopping further spread of MDR-GNB. 
Despite the desperate challenges posed by MDR-GNB 
infections, we now have many more tools in our 
armamentarium, giving reason for hope that we can 
better address this crucially important global health issue.
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