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Purpose of review

Adoptive immunotherapy brings hope to children and young adults diagnosed with high-risk solid tumors.
Cellular (cell) therapies such as chimeric antigen receptor (CAR) T cell, CAR natural killer (NK) cell, and
T cell receptor (TCR) T cell therapy are potential avenues of targeted therapy with limited long-term
toxicities. However, development of cell therapies for solid tumors is in its nascent stages. Here, we will
review the current clinical experience, barriers to efficacy, and strategies to improve clinical response and
patient access.

Recent findings

Cell therapies are shown to be generally safe and well tolerated. Strategies to optimize antitumor activity
have now moved into early-phase trials. The immunosuppressive tumor microenvironment remains a major
barrier to efficacy, and efforts are underway to gain better understanding. This will inform future treatment
strategies to enhance the antitumor activity of cell therapies.

Summary

Clinical experiences to date provide important insights on how to leverage cell therapies against solid
tumors. Key factors in advancing the field include a better understanding of immune cell biology, tumor cell
behavior, and the tumor microenvironment. Lastly, improving access to novel cell therapies remains an
important consideration in the conduct of clinical trials and for future implementation into standard practice.
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Relapsed or refractory (R/R) solid tumors remain
difficult to treat with minimal improvement in out-
comes in recent decades. The advent of CD19-spe-
cific chimeric antigen receptor (CAR) T cell therapy
has significantly improved outcomes for patients
with R/R B-cell acute lymphoblastic leukemia, bring-
ing hope for other difficult-to-treat malignancies
[1,2]. Unsurprisingly, there have been efforts to
develop adoptive cellular (cell) therapies for high-
risk solid tumors, which present a unique set
of challenges.

CAR T cells are engineered by isolating and
transducing a patient’s own T cells to express
tumor-associated antigen (TAA)-binding receptors
derived from monoclonal antibodies. This allows
for major histocompatibility complex (MHC)-inde-
pendent T cell recognition, activation, and cytotox-
icity [3]. First-generation CAR T cells are composed
primarily of the extracellular CAR linked to the
intracellular cytotoxicity domain. However, experi-
ence from CD19-CAR T cells demonstrate the
importance of including a costimulatory domain
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vival and persistence, resulting in the second-
generation CAR [3–5]. Cell therapy utilizing CAR
technology extends to other immune cells such as
natural killer (NK) cells and macrophages [6]. NK
cells are a part of the innate immune system and do
not require additional activation to induce cytotox-
icity [7]. Similarly to T cells, NK cells can be engi-
neered to express a CAR, thereby directing its
antitumor activity. Use of NK cells is an attractive
alternative due to their lack of alloreactivity, which
rved. www.co-pediatrics.com
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KEY POINTS

� Early-phase clinical trials have demonstrated that
second-generation chimeric antigen receptor (CAR) T
cell and natural killer (NK) cell therapies are generally
safe for pediatric patients with relapsed/refractory solid
tumors. However, efficacy has been limited.

� Current clinical trials explore various strategies to
improve CAR T cell expansion and persistence.

� Future studies should include strategies to overcome or
leverage the tumor microenvironment to improve the
effectiveness of adoptive cell therapies.

� Access to cellular therapies remain inequitable due to
cost of manufacture and logistics of clinical trials- there
is a call to close these gaps in care which involve not
only providers and scientists, but systems-based
policy change.

Hematology and oncology
allows manufacturing from universal healthy
donors. However, NK cells lack persistence, with a
lifespan of about twoweeks, and this may contribute
to limited tumor response [6,8]. Alternatively, CAR
macrophages have a hypothetical advantage of
improved tumor trafficking and infiltration,with less
potential to be impacted by the immunosuppressive
tumor microenvironment (TME). However, efficient
transduction of the CAR construct intomacrophages
remains a challenge and thus, this approach remains
in early stages of clinical development [6,9].

Additional adoptive cellular therapy approaches
include T cell receptor-engineered (TCR) T cells as
well as tumor infiltrating lymphocytes (TILs). TCR T
cells utilize a modified version of the natural T cell
receptor to recognize target antigens within the
context of typical MHC-dependent presentation.
A major advantage of TCR T cells is the wider range
of targetable epitopes which can be derived from
bothmembrane as well as intracellular proteins [10].
Furthermore, TCR T cells have a lower activation
threshold compared to CAR T cells which require
exposure to a higher target density to become acti-
vated. However, TCR T cells require epitope presen-
tation by certain human leukocyte antigen (HLA)
alleles, which in turn limits the number of patients
eligible for therapy [10,11]. Alternatively, TILs are
lymphocytes isolated from resected tumor tissue
which are expanded ex vivo. The advantage of TILs
includes oligoclonal T cell activation by a variety of
tumor-associated antigens. Unfortunately, high
rates of adverse effects in addition to cost and logis-
tics of TIL manufacturing remain an obstacle.

This review will outline results from early-phase
clinical trials studying the use of adoptive cell thera-
pies in children and young adults with solid tumors,
68 www.co-pediatrics.com
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current challenges in development of effective
therapies, as well as considerations for pursuing
investigational cellular therapies for patients with
R/R solid tumors.
CLINICAL EXPERIENCE

Clinical experience in pediatric solid tumors has
mainly focused on investigation of CAR T cell ther-
apy. Targetable tumor-associated antigens (TAA) for
CAR therapy historically have been identified based
on the homogeneity and level of surface antigen
expression. Ideal TAAs also have little or no expres-
sion on normal tissue to reduce the risk of on-target,
off-tumor toxicity. TAAs currently being targeted
include disialoganglioside (GD2), human epidermal
growth factor receptor 2 (HER2), glypican-3 (GPC3),
and B7-H3 (CD276)which are expressed onmultiple
solid tumors [12

&

,13–16,17
&

,18
&

]. There have been
several phase 1/2 clinical trials evaluating CAR T or
NK cell therapy targeting these antigens (Table 1).

Results to date demonstrate overall safety and
tolerability of adoptive cell therapies in children and
young adults [12

&

,13–16,17
&

,18
&

]. Notable adverse
effects reported from these studies include cytokine
release syndrome (CRS) and hepatotoxicity after
CAR T cell administration. Severe CRS (defined as
grades 3 and 4) has been associated with higher dose
levels of CAR T cells, while reported hepatotoxicity
was associated with CAR T cell engraftment
[17

&

,18
&

]. In addition to safety, these early experi-
ences have highlighted several strategies to improve
treatment efficacy. Lymphodepletion, or the deliv-
ery of myelosuppressive chemotherapy prior to cell
infusion, aim to modulate the immunologic milieu
and allow for in vivo CAR T cell expansion
[12

&

,13,16,17
&

]. Addition of lymphodepletion has
been associated with better clinical response due
to improved CAR T cell persistence, with one group
reporting persistence of up to 30months [17

&

].
Another consideration is the amount of disease at
time of CAR T cell infusion, with some groups
demonstrating improved response and survival in
patients treated with lower disease burden
[14,17

&

,19]. Lastly, available data demonstrate that
multiple T cell infusions are safe with manageable
adverse effects [14,17

&

,18
&

]. However, further studies
are needed to investigate the optimal number of
doses, need for lymphodepletion prior to subse-
quent doses, and time interval between doses.

Clinical experience to date has been more lim-
ited for CAR NK cell therapy, with only one trial
reported to date for treatment of R/R neuroblastoma
[15]. This trial demonstrated GD2-CAR NK safety as
well as evidence of CAR NK cell tumor trafficking
and subsequent clinical response across all dose
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Hematology and oncology
levels. Similar to the CAR T cell experiences, clinical
response was most apparent in patients who
received the highest dose level, with one patient
achieving a CR after a second infusion [15]. These
results provide encouraging data to support future
efforts in advancing CAR NK cell therapy for
solid tumors.

Lastly, published clinical data for TILs and TCR
T cells have been limited to adult patients, though
with encouraging results [20]. Most notably, mel-
anoma-associated antigen 4 (MAGE-A4) TCR T cells
or afamitresgene autoleuecel (afami-cel) has dem-
onstrated significant clinical efficacy in treating
unresectable or metastatic synovial sarcoma in a
phase 2 trial (NCT03132922), accelerating the first
FDA-approval for an engineered TCR T cell therapy
[21,22

&&

]. This brings hope for pediatric and young
adult patients with synovial sarcoma, with a pedia-
tric focused study now underway (NCT05642455).
Another target of interest for TCR T cell therapy
against synovial sarcoma as well as other solid
tumors is New York esophageal squamous cell
carcinoma 1(NY-ESO-1) with promising results
from an early-phase clinical trials in adults and a
recently completed pediatric study (NCT03967223)
[23

&&

,24].
BARRIER TO EFFECTIVE CELLULAR
THERAPIES

Although great progress has been made advancing
adoptive cell therapies, clinical experiences to date
also provide important insight on obstacles that
must be addressed to improve efficacy. Some of
these barriers are being addressed by strategies
adopted into current clinical trials (Table 2). One
identified barrier to clinical success is inadequate T
cell expansion and persistence. As such, current
efforts are focused on improving CAR T cell fitness.
Approaches to mitigate this obstacle include addi-
tion of a second costimulatory domain (third-gen-
eration CAR), co-expression of CD19-specific
receptor to CAR constructs aimed at utilizing
CD19þ B cells to promote CAR T cell expansion,
and incorporation of constitutive cytokine signaling
by interleukin (IL)-7 or IL-15 to promote T cell
expansion [14,18

&

,25]. Another strategy is to
decrease T cell exhaustion by combining treatment
with immune checkpoint inhibition (ICI) such as
pembrolizumab, a PD-1 monoclonal antibody. A
preliminary study reports on three patients with
R/R neuroblastoma who received GD2-CAR T cells
in combinationwith lymphodepletion and pembro-
lizumab and subsequently achieved stable disease,
the best clinical response amongst the treated
cohort [13].
70 www.co-pediatrics.com
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Another obstacle in effective adoptive cell
therapies is difficulty identifying TAAs with
tumor-restricted expression, as many TAAs are also
expressed at low levels on normal tissue. This raises
concern for potential on-target, off-tumor effect
leading to toxicity [26]. Various strategies exist to
ameliorate this challenge, such as working to iden-
tify novel tumor-specific antigens, adjusting target
affinity to reduce binding at low expression levels,
and including an “AND-gate” or requiring co-rec-
ognition of two antigens for immune cell activa-
tion [27]. These strategies have yet to be evaluated
clinically.

The tumor microenvironment (TME) is perhaps
the greatest barrier to effective antitumor activity of
cell therapies in solid tumors and is thus the focus of
much of the current research in the field of solid
tumor immunotherapy. Notably, the presence of
three distinct inhibitory immune cells- regulatory
T cells (Tregs), tumor-associated macrophages
(TAMs), and myeloid-derived suppressor cells
(MDSCs)- use different mechanisms to inhibit the
ability of adoptive immune cells to invade the
tumor and eliminate malignant cells. Tregs are a
subset of CD4þ T cells which counteract potentially
harmful, uncontrolled helper T cell activity [28].
Unfortunately, this natural safety mechanism coun-
teracts the desired effect of adoptive T cells. Current
strategies to eliminate Tregs include lymphodeplet-
ing chemotherapy and co-administration of ICI
[17

&

,29,30].
Adoptive cell therapies require pro-inflamma-

tory cytokines to proliferate and expand. These
cytokines are secreted by activated CAR T cells upon
binding to its target and by nearbymacrophages and
endothelial cells [31]. However, tumor-associated
macrophages (TAMs) counteract pro-inflammatory
cytokine signaling in the TME, and associations
between the presence of macrophages and poor
outcome have been reported [32,33]. Preclinical
studies are underway to better understand the role
of TAMs in the TME and mitigate their immuno-
suppressive consequences on CAR T cells. One
potential strategy being investigated is TRUCKs,
or T cells redirected toward universal cytokine-ini-
tiated killing. TRUCKs are designed to release IL-18
upon activation, resulting in increased number of
pro-inflammatory M1 macrophages and NK cells
which in turn promote augmented CAR T cell anti-
tumor activity [25,34–36]. Another approach
includes blocking the tumor cells’ “don’t eat me”
signal with anti-CD47 antibodies, which could have
a synergistic effect with CAR T cell therapy [37,38].
Finally, approaches to reduce the immunosuppres-
sive effects of TAMs have also been considered,
including CAR T cell-mediated depletion of TAMs
Volume 37 � Number 1 � February 2025
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Table 2. Current clinical trials evaluating adoptive cellular therapies against solid tumors in pediatric and young adult patients

NCT Cell therapy Co-stimulation ‘‘Armor’’ Lymphodepletion Disease

Active, not recruiting

NCT02311621 CD171-CAR T 4-1BB
CD28 þ 4-1BB

N/A Yes R/R neuroblastoma,
ganglioneuroblastoma

NCT04483778 B7-H3
(CD276)-CAR T

4-1BB Bi-specific to CD19
Add pembrolizumab

Yes R/R solid tumors

NCT02932956 Glypican-3
(GPC3)-CAR T

Not specified N/A Yes R/R solid tumors (GPC3þ)

NCT03635632 GD2-CAR T Not specified IL-7 receptor No R/R neuroblastoma
R/R osteosarcoma
R/R solid tumor (GD2þ)

NCT03967223 NY-ESO-1 N/A N/A Yes Synovial sarcoma,
Myxoid/Round cell
liposarcoma

Active, recruiting

NCT03618381 EGFR-CAR T 4-1BB Bi-specific to CD19 Yes R/R solid tumor (EGFRþ)

NCT05312411 Fluorescein
(FITC-E2)- CAR T

Not specified UB-TT170
(Folate-Fluorescein)
tumor label

Yes R/R osteosarcoma

NCT04995003 HER2-CAR T CD28 Pembrolizumab
or Nivolumab

Yes R/R solid tumor (HER2þ)

NCT04377932 GPC3-CAR T Not specified IL-15 Yes R/R solid tumors (GPC3þ)

NCT04897321 B7-H3-CAR T Not specified N/A Yes R/R solid tumors (B7-H3þ)

NCT03721068 GD2-CAR T 2nd generation
(not specified)

IL-15 Yes R/R neuroblastoma or
R/R osteosarcoma

NCT03294954 GD2-CAR NK N/A IL-15 Yes R/R neuroblastoma

NCT05642455 MAGE-A4 TCR T N/A N/A Yes Synovial sarcoma, MPNST,
Neuroblastoma,
Osteosarcoma (MAGE-A4þ)

Not yet recruiting

NCT04715191 GPC3-CAR T Not specified IL-15, IL-21 Yes R/R solid tumors (GPC3þ)

CAR, chimeric antigen receptor; HER2, human epidermal growth factor receptor 2; IL, interleukin; Lymphodepletion, fludarabine/cyclophosphamide; MPNST,
malignant peripheral nerve sheath tumor.

Advances in cellular therapies for children and young adults with solid tumors Choe et al.
prior to administration of tumor-targeted CAR T
cells [39].

Lastly, myeloid-derived suppressor cells (MDSC)
are another major component of the TME known to
play an immune suppressive role [40]. MDSC are
derived from the bone marrow but accumulate in
peripheral lymphoid organs and tumor tissue. In
tumor tissue, MDSC induce immune suppression
through multiple mechanisms, such as producing
nitric oxide, reactive oxygen species, and anti-
inflammatory cytokines in response to its interac-
tion with the TME. Strategies to mitigate MDSC-
induced immune suppression include targeting che-
mokines such as CSF-1, which recruit myeloid cells
into the tumor [30,37]. Other measures to counter-
act MDSC recruitment include the use of tyrosine
kinase inhibitors such as sunitinib [41]. Future stud-
ies may draw from further investigations describing
1040-8703 Copyright © 2024 Wolters Kluwer Health, Inc. All rights rese
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the tumor microenvironment and its impact on
adoptive cell therapies, allowing for multipronged
approach to successfully treat solid tumors.
ACCESS TO CELLULAR THERAPY TRIALS

There are many prospective questions left to be
answered regarding optimal utility of cellular thera-
pies for solid tumors.When faced with limited treat-
ment options upon developing relapsed or
refractory disease, clinicians and patients are moti-
vated to explore novel therapies. However, there are
important factors to consider when pursuing an
early-phase clinical trial involving engineered cell
therapies (Fig. 1). Due to the logistics of cell product
manufacturing, patients are often required to travel
to the study site for trial enrollment and apheresis.
This may occur over multiple days, which incurs
rved. www.co-pediatrics.com 71
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FIGURE 1. Schematic and timeline of clinical trial enrollment and treatment.

Hematology and oncology
additional costs for travel and accommodations.
After enrollment procedures, patients can return
home to receive bridging therapy while awaiting
cell product manufacturing, often 4–6weeks.
Patients subsequently return to the study site for
lymphodepletion and cell therapy infusion, after
which they are usually required to stay within prox-
imity to the treatment site during the toxicity eval-
uation period, typically several weeks. During this
time, patients and their families may be separated
from their support system and medical home. This
emotional burden becomes especially challenging
with unexpected toxicities, hospitalizations, and
acute illnesses, and can be an obstacle to many
who may otherwise consider pursuing treatment.
It is critical that the patient’s medical team, which
may include a palliative care team, be aware of this
timeline and logistical complexity when counseling
patients and discussing potential cell therapy trials.
Additionally, discussions around the expectations
of a phase I trial (focused on treatment safety rather
than efficacy) and how this aligns with the patient’s
goals of care and end-of-life wishes is recommended
prior to referral and enrollment.

With only a limited number of centers offering
cell therapy, the logistical and financial barriers
impact equitable access to cell therapies. It is esti-
mated that the real-world cost of CAR T cell therapy
72 www.co-pediatrics.com
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ranges from $700 000 to $1 million when consid-
ering both the cost of productmanufacturing as well
as cost of travel and lodging while patients receive
therapy [42

&&

]. Experts have proposed mainstream-
ing late-stage development and commercialization
of cell therapy products by utilizing strategies
including automated manufacturing processes,
optimizing current regulatory procedures, and
amending current licensing practices which often
serve as barrier to timely access to novel therapies
[43

&&

]. There are additional identified disparities in
access to cell therapy. It has been reported that male
patients of higher socioeconomic status, and who
live closer to a center offering cell therapy are more
likely to receive cell therapy [44]. Additionally,
documented racial disparity in clinical trial enroll-
ment impacts the ability to effectively study the
safety and clinical utility of these therapies [45].
There is a call for continued efforts and research
to mitigate biases prior to study referral and to
improve community outreach raising awareness of
clinical trials and FDA-approved cellular therapies
[42

&&

,46
&&

].
CONCLUSION

Adoptive cell therapies remain an exciting oppor-
tunity to provide therapy to patients with relapsed
Volume 37 � Number 1 � February 2025
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or refractory disease and limited treatment options.
To date, cellular therapies have been safe and well
tolerated while demonstrating signals of clinical
activity. Various modalities of adoptive cell thera-
pies are being developed and investigated, and there
is a specific focus on strategies to overcome the
immunomodulatory tumor microenvironment.
Clinicians and investigators must also consider
the logistical and financial burden of current cellu-
lar therapy trials for patients, and efforts must be
undertaken to reduce the cost and ensure equitable
access to treatment.
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