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A B S T R A C T   

Severe Acute Respiratory Coronavirus (SARS-CoV-2) has been emerging in the form of different variants since its 
first emergence in early December 2019. A new Variant of Concern (VOC) named the Omicron variant 
(B.1.1.529) was reported recently. This variant has a large number of mutations in the S protein. To date, there 
exists a limited information on the Omicron variant. Here we present the analyses of mutation distribution, the 
evolutionary relationship of Omicron with previous variants, and probable structural impact of mutations on 
antibody binding. Our analyses show the presence of 46 high prevalence mutations specific to Omicron. Twenty- 
three of these are localized within the spike (S) protein and the rest localized to the other 3 structural proteins of 
the virus, the envelope (E), membrane (M), and nucleocapsid (N). Phylogenetic analysis showed that the Omi
cron is closely related to the Gamma (P.1) variant. The structural analyses showed that several mutations are 
localized to the region of the S protein that is the major target of antibodies, suggesting that the mutations in the 
Omicron variant may affect the binding affinities of antibodies to the S protein.   

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), 
the pathogen causing Coronavirus Disease 19 (COVID-19), first emerged 
in Wuhan city in China nearly two years ago [1]. SARS-CoV-2 is a 
positive-strand RNA virus of ~30 kb nucleotides that encode 29 proteins 
from 15 open reading frames (ORFs) [2,3]. As with all RNA viruses, 
SARS-CoV-2 has been continuously evolving through mutations in 
different viral genes, presumably resulting in increased transmissibility 
and infectivity as observed among recent variants of concerns (VOCs). A 
striking example is the emergence of the Delta variant that caused a 
surge in infections in many parts of the world, leading to millions of 
causalities [4]. 

Recently, a new SARS-CoV-2 variant named Omicron has been re
ported [5–7]. Initially identified in Botswana (Nov. 11, 2021), the 
Omicron variant quickly spread to neighboring countries, and now it has 

been found in at least 26 countries around the world, including the first 
case reported in California, USA, as of December 1, 2021. An unprece
dented number of mutations, particularly in the Spike (S) protein of the 
Omicron variant, has been related to its high transmissibility and 
infectivity. Therefore, we analyzed the available sequences of Omicron 
variant and the structural data on the Spike protein either in an apo form 
or in complex with neutralizing antibodies to gain insights into (i) the 
prevalence of mutations in SARS-CoV-2 genes, (ii) co-existence of mu
tations in Spike and other viral genes, (iii) evolutionary relationship 
with other VOCs, and (iv) possible impact of mutations on the binding of 
antibodies to the S protein. 

We used the high-quality and complete sequences (n = 77) of the 
Omicron (B.1.1.529) variant downloaded from the GISAID repository 
(November 26, 2021) [8], and processed the sequences using the 
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NextClade CLI [9] and/or an in-house Python script to calculate the 
prevalence of mutations. Considering mutations with >50% prevalence 
as signature mutations, a total of 30 mutations (A76V, T95I, Y145del, 
G339D, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, 
Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, 
N764K, D796Y, N856K, Q954H, N969K, L981F, L212I, S371L, 
S373P, S375F, K417N) were identified as signature mutations in the 
Omicron variant. Of these 30 signature mutations, 23 (bold-faced) are 
unique to the Omicron variant, i.e., these mutations were not identified 
in any of the previously reported variants. Further, we also identified 
nine additional mutations in other genes that were >85% prevalent in 
all Omicron (n = 70) sequences. These mutations are ORF1a:K856R, 
ORF1a:L2084I, ORF1a:A2710T, ORF1a:T3255I, ORF1a:P3395H, 
ORF1a:I3758V, ORF1b:P314L, ORF1b:I1566V, and ORF9b:P10S. Of 
these, only two mutations (ORF1a:T3255I or nsp4:T492I and ORF1b: 
P314L or nsp12:P323L) were observed in Delta and Delta Plus variants 
that were present with significant prevalence (>40%) [4]. Mutation 
P323L in nsp12 has co-evolved with D614G [10,11]. Altogether, our 
results showed 46 unique mutations in ORF1a, ORF1b, and S genes of 
the SARS-CoV-2 Omicron variant prevalent at more than 50% fre
quency. Additionally, we identified E: T9I, M:D3G, M:Q19E, M:A63T, N: 
P13L, N:R203K, and N:G204R mutations in nearly all sequences 
analyzed (i.e., ~100% prevalent). 

Thirty signature mutations in S protein were used to identify co- 
evolving mutations and their prevalence in all (n = 77) sequences 
analyzed. We calculated relative abundance using an in-house Python 
script to examine if the aforementioned mutations have co-evolved. As 
shown in Fig. 1A, all Omicron-specific mutations in S protein appear to 

have co-evolved. Additionally, high prevalent mutations in genes other 
than S protein also appear to have co-evolved (Fig. 1B). Next, in order to 
determine evolutionary relationships of Omicron with other variants, 
we randomly selected 10 high-quality and high-coverage sequences 
from our dataset (n = 77) of Omicron and aligned with the latest, high- 
quality, high-coverage sequences of the Alpha (n = 10), Beta (n = 10), 
Gamma (n = 10), Delta (n = 10), and Mu (n = 10) variants using the 
MAFFT program [12]. Phylogenetic analyses suggest that the Omicron 
variant is closely related to the Gamma (P.1) variant (Fig. 1C) that 
emerged simultaneously in Brazil and Japan, as reported elsewhere 
[13]. It is important to note that some more recent studies indicate that 
the SARS-CoV-2 Spike protein may have insertion sequences that may 
have been derived from either other coronaviruses or host derived [14]. 
These findings have important implications for the use of different re
ceptors for viral entry and for the potential failure of antibodies to 
neutralize this new variant. Clearly, additional studies are needed to 
confirm these new findings. 

We next examined whether the mutations in the Omicron variant 
would affect the binding of antibodies generated by previous infection 
or immunizations. We used an in-house R-script to search the Protein 
Data Bank (PDB) (www.rcsb.org) for S protein structures that would 
affect antibody binding. As of December 1, a total of 194 structures of 
the S protein or receptor-binding domain of S protein (S-RBD) in com
plex with antibodies/nanobodies have been deposited within the PDB. 
Of these, 81 structures have been determined by the X-ray crystallog
raphy and the remaining by the cryo-Electron Microscopy (cryo-EM). 
We selected the crystal structure of the IGHV3-53 antibody in complex 
with the SARS-CoV-2 S-RBD since this structure was solved at a high 

Fig. 1. Relative abundance (RA) of signature Omicron variant mutations. Panel A shows the RA of Spike signature mutations and high prevalent mutations in 
OFR1a and ORF1b. Panel B shows the RA of Omicron variant mutations in ORF1a and ORF1b and signature mutations in structural proteins E, M, and N. Please note 
ORF1b:P314L corresponds to nsp12 mutation nsp12:P323L. Panel C shows the phylogenetic relationship among different SARS-CoV-2 variants. The GISAID iden
tification numbers for the sequences used in Panel B are as below. 1_Alpha to 10_Alpha: EPI_ISL_5803029, EPI_ISL_6000214, EPI_ISL_6026865, EPI_ISL_6027306, 
EPI_ISL_6141708, EPI_ISL_6227805, EPI_ISL_6229383, EPI_ISL_6251101, EPI_ISL_6383583, EPI_ISL_675143; 1_Beta1 to 10_Beta: EPI_ISL_5053750, EPI_ISL_5274500, 
EPI_ISL_5430264, EPI_ISL_5515861, EPI_ISL_5524663, EPI_ISL_6422293, EPI_ISL_6699711, EPI_ISL_6751445, EPI_ISL_6774033, EPI_ISL_6774035; 1_Gamma to 
10_Gamma: EPI_ISL_6121588, EPI_ISL_6121598, EPI_ISL_6121603, EPI_ISL_6569634, EPI_ISL_6689781, EPI_ISL_6689782, EPI_ISL_6689786, EPI_ISL_6689787, 
EPI_ISL_6689788, EPI_ISL_6689789; 1_Delta to 10_Delta: EPI_ISL_6739692, EPI_ISL_6739693, EPI_ISL_6761790, EPI_ISL_6763188, EPI_ISL_6769723, EPI_
ISL_6772657, EPI_ISL_6775864, EPI_ISL_6775870, EPI_ISL_6795204, EPI_ISL_6809412; 1_ Mu to 10_Mu: EPI_ISL_6526278, EPI_ISL_6526285, EPI_ISL_6569586, 
EPI_ISL_6569593, EPI_ISL_6569599, EPI_ISL_6569609, EPI_ISL_6569625, EPI_ISL_6569673, EPI_ISL_6675615, EPI_ISL_6675624, and 1_Omicron to 10_ Omicron: 
EPI_ISL_6752026, EPI_ISL_6774086, EPI_ISL_6699747, EPI_ISL_6699744, EPI_ISL_6699751, EPI_ISL_6752027, EPI_ISL_6699728, EPI_ISL_6699764, EPI_ISL_6699734, 
EPI_ISL_6698790. 
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resolution (1.71 Å) (PDB entry 7JMP) [15] to assess the implications of 
Omicron S-RBD mutations on the binding of antibodies. The rationale 
behind selecting this structure is based on the fact that the Cα atoms of 
the S-RBD from this structure when superimposed onto the Cα atoms of 
S-RBD encoded by Pfizer vaccine candidate BNT162b1 (abandoned for 
use after clinical trials) in complex with ACE-2 (PDB file 7L7F) [16] 
resulted in a root-mean-square-deviation (RMSD) of 1.26 Å. Our analysis 
showed that the positions of 8 residues corresponding to the Omicron 
variant signature mutations (T478, E484, Q493, G496, G446, Q498, 
N501, and Y505) are at S-RBD (encoded by BNT162b1)/ACE2 interface 
(Fig. 2A). The identical 8 residues (T478, E484, Q493, G496, G446, 
Q498, N501, and Y505) are also present at the interface of the 
S-RBD/IGHV3-53 complex (Fig. 2B). Mutations such as G446S, Q493R, 
and G496S can create steric interference for the binding of antibodies to 
the S-RBD, whereas mutations such as E484A and Y505H may result in 
the loss of interactions with the antibody. It appears that the net result of 
the mutations is the reduced affinity between the S-RBD and antibodies 
that bind to this domain, which suggests that the pre-existing immuni
zation may not impart the necessary and optimal protection to prevent 
infection by the Omicron variant. 

We also analyzed the cryo-EM structure of an NTD-directed 
neutralizing antibody in complex with prefusion SARS-CoV-2 spike 
glycoprotein (PDB entry 7L2D) [15]. We selected this structure because 
the RMSD between Cα atoms of the antibody binding domain of this 
structure and corresponding Cα atoms of the S protein encoded by 
currently used Pfizer vaccine BNT162b2 (PDB entry 7L7K) [16] was 1.8 
Å. It is important to note that the BNT162b2-encoded S protein structure 
does not include the bound antibody. As shown in Fig. 2C, Y145 forms 
hydrophobic interactions with antibody residues A97 and V98. A dele
tion mutation (Y145del), as seen in the Omicron variant, will result in 
the loss of these interactions and thereby reduce the binding affinity of 
the appropriate antibodies. Notably, Y145del is in close vicinity of po
sitions where some signature mutations in Delta and Delta Plus have 

been reported [4]. 
In summary, in this report, we show that the Omicron variant has 

many mutations in the S protein. These mutations co-evolved with the 
mutations throughout the viral genome at a very high prevalence and 
the Omicron variant is closely related to the Gamma variant. The 
structural analyses suggest that the uniquely positioned mutations in the 
Omicron variant may reduce the binding of antibodies present in an 
individual induced by either prior infection or following vaccination 
against the SARS-CoV-2 virus. However, our structural analyses were 
restricted to monoclonal antibodies and their impact on polyclonal an
tibodies remains to be analyzed. 
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