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Adolescent Nutrition 1

Nutrition in adolescent growth and development 
Shane A Norris*, Edward A Frongillo*, Maureen M Black, Yanhui Dong, Caroline Fall, Michelle Lampl, Angela D Liese, Mariam Naguib, 
Ann Prentice, Tamsen Rochat, Charles B Stephensen, Chiwoneso B Tinago, Kate A Ward, Stephanie V Wrottesley, George C Patton†

During adolescence, growth and development are transformative and have profound consequences on an individual’s 
health in later life, as well as the health of any potential children. The current generation of adolescents is growing up 
at a time of unprecedented change in food environments, whereby nutritional problems of micronutrient deficiency 
and food insecurity persist, and overweight and obesity are burgeoning. In a context of pervasive policy neglect, 
research on nutrition during adolescence specifically has been underinvested, compared with such research in other 
age groups, which has inhibited the development of adolescent-responsive nutritional policies. One consequence has 
been the absence of an integrated perspective on adolescent growth and development, and the role that nutrition 
plays. Through late childhood and early adolescence, nutrition has a formative role in the timing and pattern of 
puberty, with consequences for adult height, muscle, and fat mass accrual, as well as risk of non-communicable 
diseases in later life. Nutritional effects in adolescent development extend beyond musculoskeletal growth, to 
cardiorespiratory fitness, neurodevelopment, and immunity. High rates of early adolescent pregnancy in many 
countries continue to jeopardise the growth and nutrition of female adolescents, with consequences that extend to the 
next generation. Adolescence is a nutrition-sensitive phase for growth, in which the benefits of good nutrition extend 
to many other physiological systems.

Introduction 
Adolescence is a transformative life phase, with growth 
and maturation of all organs and physiological systems. 
On average, 10–19 year olds gain 20% of their final adult 
height and 50% of adult weight during this phase, with a 
considerable remodelling of the skeleton and an increase 
in bone mass of up to 40%.1 Inevitably, the link between 
nutrition and adolescent development is strong. For 
example, particularly in girls, iron requirements increase 
sharply during adolescence to meet additional needs 
relating to menstruation. Iron deficiency in adolescents 
results in compromised growth, decreased cognitive 
function, and depressed immune function.2 Despite this 
understanding, iron deficiency anaemia remains 
prevalent worldwide, showing little reduction over three 
decades, and is the third most important cause of lost 
disability-adjusted life-years in adolescents.3

Not only are there more adolescents nowadays than at 
any other timepoint in human history but they are also 
growing up at a time of momentous shift—ie, rapid 
urbanisation, climate change, food systems shifting 

towards foods with an increased caloric and decreased 
nutritional value, the COVID-19 pandemic, and growing 
socioeconomic inequality. The consequences of these 
changing contexts have profound impacts on adolescent 
nutrition and development. Figure 1 presents data from 
54 million children and adolescents (aged 5–19 years) 
and shows the effects that varying nutrition and living 
conditions can have on height and adiposity (ie, body-
mass index [BMI]) over age and time, and across 
countries. There is a difference of at least 20 cm in the 
mean height of individuals aged 19 years between the 
tallest and shortest populations. The data highlight that, 
for many countries, linear growth in children and 
adolescents still falls below the WHO reference. Despite 
this evidence of persisting undernutrition, overweight 
and obesity are now widespread. Since height and BMI 
have been considered together over the past two decades, 
the unhealthiest changes of gaining too little height, too 
much weight, or both, have been prevalent in both high-
income countries and low-income and middle-income 
countries (LMICs).4 Consequences include an increased 
risk of non-communicable diseases (NCDs) and a 
suboptimal start to life in the next generation.5

Understanding adolescent biology and its relationship 
to nutrition is essential for identifying the best timing 
and form of action, and for avoiding potentially negative 
consequences. Therefore, this first Series paper 
synthesises our understanding of adolescent biological 
development and its relationship with nutrition.

Pubertal maturation
The adolescent growth phase starts with puberty, which 
drives linear growth; accrual of bone, muscle, and fat 
mass; and maturation of biological systems. The onset and 

Search strategy and selection criteria

For this narrative review, we searched Pubmed, MEDLINE, 
Google Scholar, and Embase, without date or language 
restrictions, from Jan 31, 2020, to March 30, 2021, for 
literature pertaining to the general domains of puberty, 
physical growth, body composition, neurodevelopment, 
cardiorespiratory fitness, immune development, and 
adolescent pregnancy and intergenerational consequences. 
We also sought longitudinal studies to illustrate further 
effects of nutrition on adolescent growth and development.
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duration of puberty differ markedly between adolescents 
living in environments with varying childhood nutrition.6 

Pubertal timing, as indicated by the late pubertal event of 
menstruation (menarche) in girls, has decreased by 
1·0 year in high-income countries over time, from a mean 
of 13·5 years for births before 1930 to 12·6 years for births 
between 1970 and 1984.7 Among healthy girls in LMICs 
during 2009–17, mean age at menarche was estimated to 
be 12·3 years.8 In some LMIC populations, where nutrition 
has improved to a lesser extent than typical LMIC 
populations, the mean age of menarche is significantly 
later; for example, 15·1 years in rural parts of The Gambia.

Adiposity is associated with pubertal form. For girls, the 
mean age of thelarche (ie, breast budding)—an early 
indicator of gonadal maturation—is 10·2 years for 
individuals with underweight, 10·4 years for individuals 
with normal weight, and 8·4 years for individuals with 
overweight.8 In boys, mean age of puberty onset—
indicated by the scrotum becoming pendulous—is 
11·3 years for individuals with underweight, 11·0 years 
for individuals with normal weight, and 10·3 years for 
individuals with overweight.8 Nutritional status not only 
affects onset of puberty but also its duration.9 In 
Australian children aged 8–9 years, high androgen 
concentrations, reflecting adrenal maturation as the 
earliest pubertal change, were associated with an 
increased BMI and waist circumference.10 In turn, 
pubertal form has implications for obesity in later life, 
with early onset and short duration predicting increased 
adiposity in adulthood (aged ≥40 years).11,12

Furthermore, previous parental and childhood nutrition 
influences pubertal form. For example, maternal obesity 
before conception predicts early pubertal onset in 
offspring.13 Children who were breastfed for 6 months or 
longer have a later onset of pubertal development than do 
those who were not breastfed or were breastfed for less 
than 6 months, perhaps in part reflecting different growth 
patterns in infancy.14 A high intake of animal protein in 
children at age 5–6 years and 12 years predicted an earlier 
onset of the pubertal growth spurt, whereas a high intake 
of vegetable protein predicted a later onset.15–17 A high 
dietary intake of carbohydrates and fats in girls aged 
8 years predicted earlier gonadal maturation and 
menarche, and faster pubertal tempo than did a high 
intake of protein.18 Consumption of sugar-sweetened 
beverages advances onset of menarche in girls.19 Given the 
extent to which pubertal form is a marker of growth, 
development, and NCD risk in later life, there is a need 
for research to develop a comprehensive lifecourse 
understanding of its nutritional and other, potentially 
modifiable, determinants.

Linear growth 
Adolescent linear growth has the highest velocity after 
infancy and occurs at the growth plate in a two-step 
cellular process. First, bone elongation cells—chondro
cytes—sequentially proliferate, secrete matrix, and 

undergo hypertrophy, hydraulically propelling bone 
elongation and producing a protein model of the 
lengthened bone. Second, bone-secreting cells—
osteoblasts—secrete a mineral matrix on the newly 
created protein model to consolidate the new growth into 
bone.20–22 Without the first step, linear growth cannot 
occur; without the second step, new growth is lost, and 
the protein model is resorbed. Mechanisms underlying 
progress across the phases of the chondrocytic lifecycle, 
from stem cells to hypertrophic transition, involve 
prompts and inhibitions from complex networks of 
regulatory proteins23,24 and endocrine signals.25 Many 
nutrients are important for chondrocytic function and 
for ensuring mineral consolidation.26–29 Any nutritional 
intervention to ameliorate retardation in linear growth 
should consider both of these steps, with the added 
challenge that the underlying cause originates from past 
conditions in which the child lived and might be neither 
evident nor reparable due to missed opportunity, 
epigenetic effects, or both. Albeit incomplete, some 
restoration of lost linear growth can occur; however, this 
can only happen if the intervention substantially 
improves socioeconomic and living conditions, such as 
through adoption. Nutrition-specific interventions alone 
are not likely to restore lost growth.30

Height has increased in all populations over decades.31,32 

In high-income countries, this trend is modest in 
children aged 6 years and largest in adolescents aged 
10–14 years; in LMICs, trends vary.33 Preschool children 
(aged <60 months) living in conditions conducive to 
good health and development grow similarly. For 
preadolescent children in favourable conditions, height 
across global populations differs by 3–5 cm,34 and Asian 
populations are slightly shorter.31 Both nutrition and 
living conditions contribute to attained height.35 South 
Asian children living in the Netherlands grew taller 
between 1992 and 2010, but remained shorter than their 
Dutch peers at each age, with greater divergence during 
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Key messages

•	 Adolescence is a time of transformative growth when both undernutrition and 
obesity affect the maturation of multiple physiological systems

•	 Adolescent malnutrition is multiplicative in that, if any one physiological system is 
affected, the development of other systems will also be compromised

•	 Nutrition in childhood and early adolescence affects the timing and form of puberty 
with consequences on linear growth, body composition, and maturation of other 
physiological systems

•	 Although some catch-up growth in height can occur in late childhood and early 
adolescence, it rarely happens if the adverse nutritional environment of early life 
persists into adolescence

•	 Across late childhood and early adolescence, the pubertal transition offers a nutrition-
sensitive window to promote healthy growth and reduce risk of obesity in later life

•	 Given that nutrition is a cornerstone of investments in human capital, scaling up 
research into the effects of nutrition on adolescent growth and development is a 
pressing need
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Figure 1: Z scores for mean height and BMI of 54 million children and adolescents globally
Z scores for mean height of girls (A) and boys (B). Z scores for mean BMI for girls (C) and boys (D). Individuals were born in 2000 and data were collected every year from age 5 years to 19 years. Each 
cell represents the Z score, derived from the WHO growth reference for a given age. Countries are ordered by region. For height, the heat map represents Z scores ranging from up to –3 (dark red) to 
above 3 (dark blue). For many countries, children and adolescents are shorter (stunted <2 Z score) than the WHO standard, as seen through the proliferation of red across the dial. For BMI, the heat 
map represents Z scores ranging from up to –3 (dark blue) to above 3 (dark red). For an increasing number of countries, children and adolescents are becoming overweight or obese (>1 Z score). 
BMI=body-mass index.
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adolescence.36 Economic hardship during preadolescent 
and adolescent periods is associated with short adult 
height.37 Preference to have boys in China is associated 
with greater sex differences in height during childhood 
and adolescence than in the Philippines, where 
preference for boys exists to a lesser extent.38 In Japan, 
day length predicts a regional gradient in height in late 
adolescence.39 This mechanism might relate to regional 
gradients in photoperiod (ie, day length), which affects 
secretion of melatonin, inhibiting sexual and skeletal 
maturation, and inducing an increase in height.

In preschool children from Belarus and the USA, high 
BMI was associated with an increased velocity of upper 
body length and height in the following 4–5 years and 
with decreased height velocity during the next 5-year 
period.40 Higher BMI in middle childhood (aged 
6–8 years) was associated with earlier puberty and 
increased standing height and trunk length in 
adolescence. Data for the roles of specific nutrients or 
foods in adolescent height are scarce. In a cohort study of 
children aged 2–17 years in Iowa, USA, a high dietary 
intake of milk throughout childhood and adolescence 
(adjusted for nutrient adequacy, energy intake, and 
baseline socioeconomic status) was associated with 
greater height in adulthood than a low intake of milk.41 

Whether this association is specifically due to milk or to 
other attributes of the family or child is not known. 
Exposure to the Dutch famine of 1944–45 in young 
children during gestation or aged 1–2 years was 
associated with 3–4 cm deficits in adult height; however, 
inconsistent, smaller associations were seen for exposure 
at older ages (2–15 years).42 Exposure to famines in 
Nigeria and Cambodia during adolescence reduced adult 
height more than exposure during younger ages (aged 
<12 years).43,44 In Alabama (USA), early undernourishment 
delayed skeletal growth and menarche, and prolonged 
the period of growth in girls, with no difference in final 
adult height.45 In Guatemala, receipt of a high protein-
energy supplement improved nutrition, resulting in 
increased growth during the preschool period.46 At 
adolescence, these children had greater height, muscle, 
and bone mass than did adolescents who had not 
received the supplement and, for boys only, skeletal 
maturation had advanced by 0·5 months.46 A follow-up 
study in The Gambia explored the effect of calcium 
supplementation on the timing of puberty in children, 
and found a negative effect on attained height (panel 1).

Data from three decades of research in China suggest 
the interplay between socioeconomic context and the 
prevalence of stunting, thinness, and overweight or 
obesity over time. These findings highlight that linear 
growth restriction is reduced when environmental 
constraints are lifted (appendix p 1). These same 
environmental transitions have a substantial effect on 
the prevalence of overweight and obesity among 
adolescents. Given the consequences of undernourish
ment on health, such as an increased risk of NCDs 

(eg, diabetes and hypertension), as well as the rising 
incidence of overweight and obesity, achieving a balance 
between optimising linear growth and avoiding the 
negative consequences of excessive weight gain is needed 
to reduce the burden of NCDs.

Body composition 
During adolescence, changes in the proportions and 
distribution of bone, muscle, and fat form the 
foundation of metabolic and musculoskeletal health.50 

The timing of onset, duration, and velocity of these 
indicators of body composition are important for 
nutrition-sensitive interventions to optimise body 
composition trajectories. Body composition is com
monly calculated with dual-energy x-ray absorptiometry 
measures of total body fat mass, fat free mass, and bone 
mineral content (BMC), which is a marker of bone 
strength and fracture risk. Lean mass is used as a 
surrogate of muscle mass and is derived by fat free mass 
minus BMC.51 According to data from high-income 
countries, girls reach peak height velocity (PHV)—ie, 
the period of time with the fastest upward growth 
(8·3 cm/year for girls and 9·5 cm/year for boys)—at an 
average age of 11·8 years, which is earlier than boys. By 
contrast, boys reach PHV at an average age of 
13·5 years.1,52 Additionally, girls have lower total body 

Panel 1: Long-term effects of calcium supplementation on pubertal timing and 
skeletal growth

Most studies on calcium supplementation have been done in populations with adequate 
habitual calcium intakes. Therefore, in populations with extremely low calcium intake, 
interventions might be beneficial to skeletal development. Although most studies 
reported an initial increase in bone mineral density or size-adjusted bone mineral content 
(BMC), after a period of follow-up, the differences between intervention and control 
groups were attenuated.47–49 To date, the study with the longest period of follow-up 
following supplementation is the 11-year follow-up study in The Gambia, in which 
calcium intakes were, on average, 300 mg/day. Pre-pubertal children aged 8–11 years 
were given 1000 mg of calcium or placebo for 5 days per week over 1 year.49 The 
participants were then followed up until the end of growth, approximately 12 years later. 
At the end of the trial and 1 year and 2 years after supplementation, the calcium group 
had higher size-adjusted BMC at the midshaft radius than did the placebo group; the 
mean difference in size-adjusted BMC at the end of the trial was 4·6% (SE 0·9), reduced to 
2·5% (1·3) by 2 years after supplementation. After modelling longitudinal growth for the 
entire follow-up period, group differences in pubertal timing, the velocity of growth, and 
final size were found, split by sex. In girls, no significant differences were found between 
the intervention groups in the amount of bone accrued or in the timing of puberty. In 
boys, pubertal timing (age at peak height velocity) was brought forward by 
approximately 7 months in participants in the calcium group and, although they 
transitioned through puberty at the same velocity as the placebo group, they stopped 
growing earlier (figure 2). Consequently, the boys in the calcium group were taller and had 
greater BMC in mid-adolescence compared with their counterparts in the placebo group; 
however, on average, they were 3·5 cm shorter at the end of the follow-up period. There 
were no significant group differences in bone outcomes at the end of growth, which 
could suggest that the supplementation had a negative effect on longitudinal growth 
with no direct benefit on bone mineralisation.

See Online for appendix
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lean mass but greater fat mass than do boys.1,52 Alongside 
greater lean mass, boys exhibit less total fat mass but 
similar (or greater in some cases) central fat mass than 
do girls.52 These generalised values do not apply to all 
populations; for example, the age of PHV in The 
Gambia is approximately 16 years for boys and 13 years 
for girls (panel 1; figures 2, 3).

As height increases in girls and boys (for approximately 
3 years after reaching PHV), there are corresponding 
increases in bone area and BMC.1 Patterns of bone 
acquisition are relatively consistent between girls and 
boys; however, final BMC is higher1,53 and reaches its 
plateau approximately 2 years later (at an average age of 
18 years in girls and 20 years in boys) in boys than in 
girls.1 Furthermore, ethnic differences are evident, with 
data suggesting that African American children have a 
higher BMC than do White children, despite similarities 
in height.53 The onset and duration of puberty and 
nutrition can affect peak bone mass. A late onset of 
puberty has been associated with 10% decrease in bone 
mineral density and an increased risk of hip fracture in 
later life.54,55

Lean mass increases in girls and boys during 
adolescence; however, the rate of lean mass acquisition 
is higher in boys.54 On average, girls attain stable, adult 
levels of lean mass at approximately 15–16 years of 
age.45,54 In boys, steady acquisition of lean mass occurs 
from approximately 8–18 years of age, with more 
rapid increases at 12–15 years.50,56 Independent of 

chronological age, puberty is associated with an average 
1·14 kg/year increase in absolute fat mass in girls.56,57 In 
boys, absolute fat mass is relatively stable over the 
pubertal period, which results in a decrease in body fat 
percentage during adolescence as a result of rapid 
increases in lean mass.56 There are no significant sex 
differences in peripheral fat mass in the upper body 
compartments (ie, arm and torso), suggesting that 
differences in lower body (ie, legs) fat mass are the 
primary contributor to the sexual dimorphism in 
adiposity.52 In general, boys have been shown to have 
higher amounts of visceral fat mass in later adolescence 
than do girls.52 Panel 2 and figure 4 detail the trajectories 
of body composition in adolescents from South Africa, 
and show the altered trajectories of fat mass in 
individuals who have obesity as young adults. These 
results suggest that efforts to prevent obesity need to 
start earlier in adolescence (age 9–11 years). Furthermore, 
given the variations in timing and duration of puberty 
between girls and boys, interventions should be tailored 
by sex.

Cardiorespiratory fitness 
High cardiorespiratory fitness (ie, reduced oxygen 
uptake during exercise, as measured by a maximal 
oxygen consumption test) attained during adolescence 
might decrease risk of cardiovascular disease in 
adulthood. A 2018 review concluded that, regardless 
of sex, cardiorespiratory fitness in childhood and 
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Figure 2: Effect of calcium supplementation on distance curves for linear, bone, and muscle growth in adolescents from The Gambia
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adolescence was associated with decreased fat mass over 
time.58 Additionally, analyses of the Swedish military 
conscription register indicated that low cardiorespiratory 
fitness at conscription strongly predicted being on a 
disability pension in later life due to ischaemic heart 
disease, cerebrovascular diseases, or heart failure.59,60 

Cardiorespiratory fitness in adolescence predicts a 
favourable risk factor profile for cardiovascular disease 
during adulthood, including reduced blood pressure, a 
favourable lipid profile, and reduced plasma fasting 
glucose concentrations.61 Although cardiorespiratory 
fitness has a strong genetic component, high amounts 
of moderate-to-vigorous activity during adolescence have 
been associated with increased cardiorespiratory 
fitness.62,63 The beneficial effects of cardiorespiratory 
fitness on body composition and adiposity, as well as the 
early establishment of healthy physical activity habits, 
could be jointly responsible for these health benefits in 
the long term (appendix pp 2–4).

Neurodevelopment 
The brain reaches approximately 90% of its adult size by 
age 6 years, but the grey and white matter subcomponents 
continue to undergo dynamic changes throughout 
adolescence.5 Considerable brain growth and develop
ment occur during adolescence in the construction 
and strengthening of regional neurocircuitry, with 
rewiring accomplished through dendritic pruning 

and myelination. In particular, the prefrontal cortex 
continually reconstructs, consolidates, and matures.64 

The adolescent brain is characterised by neuroplasticity, 
which is the ability of neural networks to reorganise in 
response to different social, learning, and nutritional 
environments.65 On one hand, plasticity enables learning 
and adaptation; on the other hand, it brings a sus
ceptibility to adverse environmental exposures, such as 
poor nutrition and stressful experiences.66,67 This 
susceptibility raises the possibility of lasting changes in 
neurocircuitry, perhaps one explanation for why many 
psychiatric disorders first manifest in adolescence.64

Adolescent nutrition can have direct and indirect 
effects on the maturing brain. The severe undernutrition 
of anorexia nervosa can interrupt pubertal development, 
with impairment of cognitive flexibility and working 
memory.68 Extended undernutrition results in a reduction 
in grey and white matter of the brain,68,69 especially the 
frontoparietal network, with effects on higher executive 
functions.68 These changes are also associated with poor 
emotional regulation, poor processing of social cues, and 
altered responses to reward.68,70 Changes in brain 
structure in people with non-chronic anorexia nervosa 
seem largely reversible in response to improved nutrition 
and weight gain, with one study showing that the volume 
of grey and white matter normalised within 2–8 years of 
remission;69 however, there might be less reversibility in 
chronic disorders.
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Excessive consumption of energy-dense foods can alter 
self-regulatory processes by affecting brain function.71 

High-fat and high-sugar diets might affect neuro
development through alterations in two neurotrans
mitter systems: dopamine-mediated reward signalling 
and inhibitory neurotransmission controlled by γ-amino
butyric acid.71 Consequently, modifications of these two 
systems during adolescence could lead to dysregulated 
eating and impulsive behaviours.

Neurodevelopment seems to be linked to the maturation 
of other biological systems. For example, there appears to 
be a bidirectional communication between the gut 
microbiome and the brain. Dysbiosis (ie, change in the 
gut microbiome composition with metabolic and 
inflammatory effects) seems to affect neural function in 

vitro, in vivo, and in human studies, raising the possibility 
of neurodevelopmental consequences.72 Additionally, 
musculoskeletal growth has consequences for 
neurocognitive development, with absence of the bone-
derived hormone, osteocalcin, linked to anxiety and 
depression, as well as inhibited exploration, spatial 
learning, and memory.73,74

Immune system development 
In infancy, passively acquired maternal immunity and 
breastfeeding provide protection against pathogens. Both 
innate (eg, neutrophils, monocytes, macrophages, and 
dendritic cells) and adaptive (eg, B and T lymphocytes) 
components of the immune system deliver tempered 
responses to pathogens and commensal microorganisms. 
In childhood, this pattern changes to provide more 
robust innate responses to pathogens and to allow for the 
development of protective immunological memory to 
pathogens through memory B and T cells, as well as 
pathogen-specific antibody responses. By late childhood, 
adult-like innate and adaptive responses are typically 
observed: the number of memory B and T cells reach 
adult numbers, and the output of naive T cells by the 
thymus diminishes substantially as immune memory to 
childhood infectious diseases has developed.75 Therefore, 
adolescents have adult-like innate and adaptive immune 
responses, with adult-like sex differences in these 
responses.76 Although some sex differences result from 
X-linked immune system genes and are seen throughout 
life, the differences that develop after puberty are caused 
primarily by the different actions of androgens and 
oestrogen on immune cells.77 Sex can also influence the 
development of the immune system due to gender-
specific differences in behaviour that affect exposure to 
environmental factors, including diet.76,78–80

Thus, nutritional status might affect adolescent health 
in a sex-specific manner, in which these effects are 
mediated by immune function. For example, as children, 
girls have a more robust adaptive immune response to 
infection than do boys and, consequently, lower mortality 
rates from infectious disease.81–83 However, these mortality 
rates are similar for adolescent girls and boys, and are 
higher in adult women than in adult men, highlighting 

Panel 2: Body composition of adolescents from Soweto, 
South Africa

As part of the Birth to Twenty Plus Birth Cohort, longitudinal 
sub-cohort data on the body composition of children born in 
1990 in Soweto, Johannesburg, South Africa, were derived 
from dual-energy x-ray absorptiometry. Data from 
3067 scans, performed in 174 girls and 196 boys annually 
from age 9 years to 18 years, highlighted variation in timing 
and development of body composition between the sexes 
(figure 3). The peak velocity for bone mineral content (BMC) 
and fat-free soft-tissue mass (surrogate for lean mass) in 
boys occurred significantly later than in girls (BMC 14·6 years 
vs 12·2 years; fat-free soft-tissue mass 14·3 years vs 
11·4 years). By contrast, peak velocity for fat mass occurred 
earlier in boys (10·9 years vs 13·9 years), although the 
magnitude of the mass and velocity for fat is significantly less 
in boys than in girls. However, after standardising for puberty, 
similar patterns for bone mass accrual were evident in boys 
and girls, and occurred approximately 1 year following peak 
height velocity (PHV), with boys having greater bone mass 
accrual. This finding was similar for lean mass, but not for fat 
mass. The peak fat mass velocity in boys occurred 
approximately 2·0 years before PHV, whereas for girls it was 
2·5 years after, with significant differences in fat mass accrual 
between the sexes. This result aligns with the deposition of 
post-menarche fat mass in female adolescents in preparation 
for pregnancy. We know from longitudinal data that over 
40% of female participants and 15% of male participants in 
the Birth to Twenty Plus Birth Cohort had overweight or 
obesity by adulthood. Using body-mass index in young 
adulthood (aged 20 years) to classify overweight or obesity, 
we examined the adolescent profile of fat mass accrual in 
young adults with or without overweight or obesity 
(figure 3). Unlike in adolescents without overweight, male 
adolescents with overweight or obesity have similar profiles 
to female adolescents with or without overweight or obesity 
in terms of peak fat mass velocity occurring after PHV. 
These data suggest that prevention should start in early 
adolescence to minimise excess accumulation of fat mass.

Figure 4: Longitudinal modelling of fat mass and velocity of fat mass accrual 
by chronological age and APHV

Whole-body fat mass (solid line) and velocity of fat mass accrual (dashed line) in 
female and male adolescents by chronological age (A, B) and by years from APHV 

(C, D) from the Birth to Twenty Plus Birth Cohort in South Africa. Longitudinal 
modelling of whole-body fat mass and velocity of fat mass accrual in female and 

male adolescents by chronological age (E, F) and years from APHV (G, H), stratified 
by individuals with (green) or without (purple) overweight or obesity at age 

20 years. Unlike in adolescents with healthy weight, overweight and obesity in 
male adolescents have similar profiles to female adolescents, with peak velocity of 

fat mass accrual occurring after peak height velocity. In individuals with 
overweight or obesity, fat mass accrues early in adolescence and continues to 

increase until late adolescence. For more detail on this study, see panel 2. 
APHV=age at peak height velocity.
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the impact of nutrition and social influences on biology 
(appendix p 4). In populations with a high HIV prevalence 
in adolescents, infection exacerbates undernutrition, 

which can further impair immunity. Dietary deficiencies 
in both macronutrients (eg, too little dietary protein) and 
micronutrients (eg, deficiencies in vitamins B12, C, and D) 
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can impair most aspects of immune function, including 
compromising epithelial barriers (particularly relevant in 
HIV and other sexually transmitted infections) and 
impairing the development and function of innate and 
adaptive immune cells, with the predictable result of 
increasing the severity of common infectious diseases. 
For example, in adolescents with a dietary deficiency, 
macrophages and neutrophils have a diminished ability to 
take up and kill pathogenic bacteria, lymphocyte cell 
counts in the spleen and lymph nodes are reduced, and 
development of memory T and B cells is impaired.84 One 
example is seen with protein-energy malnutrition, which 
particularly impairs the T-cell arm of adaptive immunity 
by diminishing thymic function to reduce the supply of 
naive T cells to peripheral lymphoid tissue. Therefore, this 
reduction might impair development of immunological 
memory, leading to an increased risk of death from 
infectious disease in childhood.84 Nevertheless, studies in 
adolescence are scarce. Nutritional interventions that 
support resistance to infectious disease could benefit girls 
and boys.

Chronic inflammation caused by activation of the 
immune system during adolescence can decrease linear 
growth, partly due to the activity of proinflammatory 
cytokines (including IL-1β, TNFα, and IL-6) on the 
growth plate of long bones.85 Obesity in adolescence 
stimulates chronic inflammation that increases the risk 
of various NCDs during adulthood, including fatty liver 
disease, type 2 diabetes (also in adolescence; 
appendix pp 2–4), and cardiovascular disease.86 The cause 
of inflammation in obesity is complex, probably involving 
activation of innate immune cells in adipose tissue 
depots because of metabolic or cellular stress. The 
mechanism might involve diet-induced disruption of the 
intestinal barrier, perhaps initially causing changes to the 
intestinal microbiome that lead to increased exposure to 
microbial products (eg, bacterial lipopolysaccharides), 
which trigger systemic or local inflammation in 
abdominal adipose tissue.87 During adolescence, the 
inflammation observed in obesity is associated with 
increased risk of chronic inflammatory diseases, 
including asthma.88 Thus, preventing or treating obesity 
in adolescence could have clinically significant benefits 
by preventing immune-mediated exacerbations of 
infectious or chronic inflammatory diseases.

Adolescent pregnancy, nutrition, and 
intergenerational effects 
Sexual maturation and relationships during adolescence 
set the scene for future parenthood. Reproductive success 
and optimal upbringing of children are best achieved 
after parents have largely completed the physical, mental, 
social, and emotional development of adolescence. 
Nevertheless, WHO estimates that around 16 million 
adolescent girls become mothers every year in LMICs.89 

Although the rate of adolescent pregnancy has decreased 
globally, an increasing number of adolescents overall 

means that the absolute number of adolescent 
pregnancies is increasing, particularly in settings with 
the greatest nutritional disadvantage.

The occurrence of adolescent pregnancies varies greatly 
across regions and within countries, but the number 
tends to be high in groups facing nutritional disadvantage, 
including rural and Indigenous populations.90 These 
pregnancies occur more frequently in socioeconomically 
disadvantaged populations and among girls with unstable 
relationships and financial resources.89 Adolescent 
pregnancy compounds disadvantages for girls by leaving 
education, limiting life chances (eg, employment), and 
perpetuating the cycle of poverty.91 Neonates of adolescent 
mothers in LMICs are at increased risk of low birthweight 
and short birth length, at least partly because of maternal 
stunting and competition for nutrients between the 
mother and fetus during pregnancy.92,93 Neonates of 
adolescent mothers are also at increased risk of preterm 
delivery,94,95 with heightened risks for poor childhood 
growth and nutritional status, low educational attainment, 
and increased fasting glucose concentrations in 
adulthood.94,95 These risks are most pronounced among 
children of the youngest adolescent mothers (figure 5),95 

and are likely to result from the biological immaturity of 
their mothers and their socioeconomic context.94 Even 
though there are almost no data available from LMICs, 
scarce evidence suggests that adolescent fathers have 
similar offspring outcomes to adolescent mothers in 
terms of low birthweight, increased risk of preterm birth 
and infant mortality, and poor childhood health overall.97

When considered in the context of pregnancy and 
parenthood, the growing burden of adolescent mal
nutrition is of concern.98 Undernutrition, food insecurity, 
and poor quality, monotonous diets remain common, 
especially in sub-Saharan Africa and south Asia. Gender 
inequality in nutrition often emerges in adolescence.99 

Both undernutrition and overweight or obesity in mothers 
before conception or during pregnancy predict altered 
growth and health in their offspring. Maternal height is 
positively associated with birthweight, adult stature, and 
educational attainment and income in the offspring.100 

Low maternal folate, vitamin B12, and vitamin D status in 
pregnancy have been associated with reduced cognitive 
function and changes in glucose and insulin 
concentrations in offspring, which indicate an increased 
future risk of diabetes.101–103 Mothers with overweight or 
obesity are at an increased risk of developing gestational 
diabetes.104 In turn, gestational glucose intolerance risks 
congenital malformations in the fetus, increasing the 
child’s risk of increased adiposity and insulin resistance, 
elevated blood pressure, and early onset type 2 
diabetes.105,106 Although none of these associations are 
specific to adolescent pregnancy, stunting, micronutrient 
deficiencies, and overweight or obesity among adolescents 
all persist into later pregnancies, and shape fetal 
programming, development in early life, and 
cardiometabolic health of the offspring in the long term.
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There is growing research interest into whether 
paternal nutritional status has similar intergenerational 
effects through epigenetic changes in sperm, although 
most available evidence currently comes from animal 
studies.107,108 In rodents, changes in paternal diet or 
exposure to stress between weaning and sexual maturity 
have been shown to alter the metabolism of offspring 
(ie, glucose tolerance and lipid metabolism), stress 
responsiveness, and mood. Although other epigenetic 
mechanisms could be involved, micro RNAs carried in 
sperm are strong candidates for messengers that link 
paternal nutritional state before conception to offspring 
phenotype.107

Conclusion 
Biological development during adolescence involves a 
finely tuned orchestration of maturation of different 
physiological systems, with varying onsets and durations. 
Furthermore, this orchestration differs between girls and 
boys. Although undernutrition and overnutrition have 

diverse and different effects on biological development 
during adolescence, research has been scarce and there is 
still much to learn, particularly around adolescent growth 
and development in LMICs. Future studies into adolescent 
growth and nutrition should move beyond a focus on a 
single physiological system, towards integrated system-
wide approaches over the lifecourse. Such research should 
include a better understanding of the relationships 
between pubertal development and nutrition, physical 
activity, and metabolic state, which could give rise to 
strategies that optimise growth and prevent diseases 
(eg, type 2 diabetes, osteoporosis and other musculoskeletal 
disorders, and cardiovascular disease) in later life. At a 
time when a rapid nutrition transition is shifting diets for 
most young people globally, improving adolescent 
nutrition provides an opportunity to shape the health and 
wellbeing of this generation and the next.
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Figure 5: Associations between maternal age and outcomes in offspring
Z scores provided for birthweight, gestational age, height at 2 years, weight for height at 2 years, years of schooling attained, adult height, adult systolic blood pressure, 
and adult fasting plasma glucose concentration. Data taken from the COHORTS collaboration of five birth cohorts from low-income and middle-income countries.96 
For each maternal age group, the amount (95% CI) by which the outcome differs from offspring of mothers aged 20–24 years was obtained using linear regression of a 
pooled dataset from 19 403 women from five cohorts in Brazil, Guatemala, India, the Philippines, and South Africa, adjusted for offspring sex, maternal height, parity, 
marital status, schooling, wealth, race (Brazil and South Africa), urbanicity (the Philippines), breastfeeding duration (postnatal outcomes only), and offspring age (adult 
outcomes only). p values were derived using maternal age as a continuous variable. p lin is the p value from a test for linear trends in the outcome with maternal age; 
p quad is the p value from a test for quadratic trends; het lin is the F test p value for heterogeneity in the linear trends between the five cohorts; and het quad is the 
p value for heterogeneity in the quadratic trends.
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