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Transcriptome analysis for identifying hub genes and
prognosis biomarkers of mRNA/lncRNA in
septic shock
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Abstract
Background:Septic shock is a life-threatening disease with high mortality rates, and the relevant hub genes and biomarkers are poorly
understood. We aimed to identify hub genes and prognostic biomarkers of mRNAs/lncRNAs in septic shock to rapidly and accurately di-
agnose infection, identify patients at a high risk of developing septic shock, and predict prognosis.

Methods: Gene expression profiles of 279 patients with septic shock and 100 healthy controls were analyzed using bioinformatics
methods. We screened for differentially expressed genes (DEGs), identified hub genes, and investigated the correlations between
mRNA/lncRNA expression and disease severity/prognosis. Protein level validation was performed using blood proteomic data from an in-
dependent cohort study.

Results: The protein–protein interaction network constructed using upregulated DEGs contained 102 nodes and 222 edges, with LTF,
MMP8, MMP9, CEACAM8, CTSG, LCN2, and PRTN3 identified as hub genes. There was a possible association between LCN2 mRNA
upregulation and increased severity of septic shock (odds ratio: 1.518; 95% confidence interval: 0.999–2.305; P = 0.050), approaching
statistical significance, and BCL2A1 mRNA upregulation correlated with higher mortality risk (odds ratio: 1.178; 95% confidence interval:
1.035–1.341; P = 0.013). No significant prognostic correlation was observed for lncRNAs. The validation cohort confirmed significant up-
regulation of MMP9, CTSG, LCN2, LTF, and MMP8 proteins in patients with septic shock, with MMP9, LCN2, CTSG, and LTF exhibiting
strong diagnostic performance (area under the curve >0.8).

Conclusion:Seven hub genes related to septic shock were identified, including MMP9, LCN2, CTSG, and LTF, which could potentially
function as biotargets and biomarkers for the diagnosis and prognostic prediction of septic shock.
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Introduction

Sepsis is a life-threatening organ dysfunction resulting from dysreg-
ulated host responses to infection[1,2] and has become the main
cause of death in intensive care unit patients, with millions of deaths
worldwide every year.[3] Septic shock is a subset of sepsis in which
the underlying circulatory, cellular, and metabolic abnormalities are
sufficiently profound to substantially increase the risk of mortality.[1]
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Patients with septic shock can be identified with a clinical construct
of sepsis with persisting hypotension requiring vasopressors to
maintain mean arterial pressure (MAP) ≥ 65 mmHg and having a
serum lactate level >2 mmol/L (18 mg/dL) despite adequate volume
resuscitation.[1] Sepsis and septic shock are major healthcare prob-
lems affecting millions of people worldwide each year and killing
over 26.7% of those affected.[4]

The pathogenesis of sepsis is complicated and currently unclear;
therefore, the treatment of sepsis is limited.[5] These mechanisms in-
clude systemic inflammation, coagulation, fibrinolytic disorders,
and excessive production of reactive oxygen and nitrogen.[5] Thus
far, no specific therapeutic drugs have been approved for the treat-
ment of sepsis, and treatment options are limited.[6] One important
reason for this discrepancy is that the definitions of sepsis and septic
shock cover a heterogeneous population of patients. The etiological
factors of sepsis and septic shock are so varied that it is difficult to
find a common treatment for these conditions.[7] Classification of
patients with sepsis or septic shock is one of the key areas of research
on sepsis, although biomarkers have been the subject of intensive re-
search for decades. Biomarkers identified by new technologies, such
as high-throughput technologies, have been used to better identify
subsets of patients with sepsis, identify patients at high risk of devel-
oping sepsis, and provide the possibility for rapid and accurate diag-
nosis of infection.[8]

Microarray technology and bioinformatics analysis have been
widely adopted, playing a key role in supporting life sciences and
bringing unique opportunities and challenges to human disease re-
search.[9] Based on bioinformatics analyses, many meaningful
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results and conclusions have been obtained and subsequently veri-
fied by other trials.[10,11] Bioinformatics analysis can help identify
differentially expressed genes (DEGs) and functional pathways in-
volved in sepsis/septic shock.

However, false-positive rates in independent microarray analyses
make it difficult to obtain reliable results. Therefore, in this study, we
downloaded and analyzed multiple microarray datasets from public
gene expression databases using a series of biological information tech-
nologies to identify DEGs between patients with septic shock and
healthy people, performed gene enrichment analysis on the DEGs,
and constructed a protein–protein interaction (PPI) network to identify
hub genes related to sepsis/septic shock. Next, we analyzed the corre-
lationbetweendifferentially expressedmRNAsand lncRNAs and clin-
ical prognosis. Our study aimed to detect the neglected biomarkers of
septic shock to better distinguish patients with septic shock from
healthy controls.Weaimed to identify differentially expressedmRNAs
and lncRNAs related to clinical prognosis to classify patients with sep-
tic shock for treatment and prognosis evaluation.

Materials and methods

Search strategy and selection criteria for included data

Wesearched “sepsis” inGene ExpressionOmnibus (GEO) database,[12]

an accessible functional genomics database of high-throughput re-
sources, which was one of the most commonly used sequencing (chip)
data bases in the National Center for Biotechnology Information
(https://pubmed.ncbi.nlm.nih.gov/), and we found 10 series from plat-
form GPL570. Our inclusion criteria were as follows: whole blood
RNA, including necessary clinical information (survival state, which
represents the prognosis of disease, and Simplified Acute Physiology
Score II (SAPS II), which represents the severity of disease); and samples
collected at 12 hours or 24 hours after diagnosis of septic shock. Our
exclusion criterion was reanalysis of other samples.

After screening, 279 patients with septic shock and 100 healthy
controls from five series were included (51 samples collected on
day 1 and 22 controls of GSE95233, 20 samples collected at
12 hours of GSE33118, 28 samples collected at 24 hours and 25
controls of GSE57065, 98 samples collected at 24 hours and 32 con-
trols of GSE26440, and 82 samples collected at 24 hours and 21
controls of GSE26378). We merged the clinical information includ-
ing sample IDs, age, gender (in this study, biological sex is consistent
with sociological gender and there is no difference between ‘sex’ and
‘gender’), survival state and SAPS II of 279 patients (the age range of
septic shock patients in GSE33118 were replaced by middle age of
each age range, in detail, 30, 50, 70, and 90 years old indicated
20–39, 40–59, 60–79, >80, respectively). A total of 279 patients
with septic shock had pneumonia (n = 20) or other infections
(n = 259), while 100 healthy controls were uninfected.

Merging samples from different series

First, we used R package “inSilicoMerging” to Merge the gene ex-
pression profile of samples from different series, and then removed
the batch effects using empirical Bayes methods. After removing
the batch effects, the data distribution among different datasets
tended to be consistent with similar medians, means, and variances,
and the samples among different datasets were clustered together,
suggesting good removal of batch effects.

Differentially expressed genes identification

The genes whose false discovery rate (FDR) < 0.05 and fold change
(FC) > 2 or FC < −2 were regarded as DEGs. Then, we used the
“limma” and “pheatmap” package in R to construct a heatmap. The
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heatmap shows data in a two-dimensional form, inwhich colors repre-
sent gene expression values, providing an instant visual overview of the
information and helping observers understand complex datasets.

A volcano plot was constructed using the website (http://www.
ehbio.com/ImageGP/).[13]

Gene Ontology and Kyoto Encyclopedia of Genes and
Genomes analyses

Gene Ontology (GO) (http://www.geneontology.org)[14] is the re-
sult of efforts to make the functional descriptions of gene products
in various databases more consistent. Kyoto Encyclopedia of Genes
and Genomes (KEGG) (http://www.genome.jp/kegg/)[15] is a knowledge
base for analyzing gene function systems that connect genomic and
high-level functional information. TheRpackages of“ClusterProfiler,”
“org.Hs.eg.db,” “enrichplot,” and “ggplot2” were used for enrich-
ment analysis of GO in biological function (BP), cellular component
(CC), andmolecular function (MF) andKEGGpathways for the previ-
ously identified DEGs. These data were used to generate the corre-
sponding histograms and bubble charts. GO data were acquired from
“org.Hs.eg.Db” using a cutoff value of q value (a kind of adjusted P
value, also called Benjamini-Hochberg q value or FDR) < 0.05.

Constructing PPI network of DEGs and screening of
hub genes

The Search Tool for the Retrieval of Interacting Genes (STRING)
(https://cn.string-db.org/)[16] is a database that searches for interac-
tions between proteins, including both direct physical interactions
and indirect functional correlations. The interaction with a com-
bined score >0.4 was considered statistically significant. Therefore,
the STRING database was used to build the PPI network.

Cytoscape, an open-source software project for integrating bio-
molecular interaction networks with high-throughput expression
data and other molecular states into a unified conceptual frame-
work, has been extensively used.[17]We used the Cytoscape software
(version 3.10.0) to identify hub genes related to septic shock. Plug-in
Molecular Complex Detection (MCODE) (version 2.0.0) is an APP
of Cytoscape for clustering a given network based on topology to
find densely connected regions.[18] CentiScaPe (version 2.2) is an
APP to find the most important nodes in a network and calculate
the centrality parameters for each node.[19] NetworkAnalyzer (ver-
sion 4.4.6) is another APP to calculate the topological properties of
a network.[20] The PPI network was analyzed using Cytoscape, and
the most significant module was identified using the above APPs.
The criteria for selection were MCODE scores >6, degree cutoff = 2,
node score cutoff = 0.2, maximum depth = 100, and k-score = 2.

Additionally, we listed the 30 genes with the highest adjacent node
counts from the PPI network data built using STRING. Finally, the
hub genes were selected with degree ≥5 and adjacent node count ≥30.

Differentiating mRNAs and lncRNAs of DEGs and
conducting statistical analyses

After identifying the hub genes of septic shock, to study the correla-
tions between mRNA/lncRNA expression and disease severity or
prognosis, we used Perl software (version 5.30.0) to differentiate
the mRNAs and lncRNAs of DEGs. We then selected 38 mRNAs
and two lncRNAs from BP and MF for GO and KEGG analyses.
Our inclusion criteria for mRNAs were as follows: P < 0.05 in GO
or KEGG enrichment analysis, and genes from enriched items with
more than eight genes in GO or KEGG analysis. Two differentially
expressed lncRNAs were included due to their limited number.
Then, we linked the clinical information including sample IDs,
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Figure 1. Flow diagram of screening samples and study design. GEO, Gene Expression Omnibus; DEG, differentially expressed gene; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction; ROC, receiver operating characteristic.

Gong et al. � Emerg Crit Care Med (2025) Vol. 00 No. 00 www.eccmjournal.org
age, gender, survival state and SAPS II to mRNAor lncRNA expres-
sion profile using “limma” package in R. We used the SAPS II to
represent the severity of septic shock, and the disease was more se-
vere with higher SAPS II scores. We used survival state to represent
the prognosis of septic shock. SPSS software (version 25) was used
for the statistical analysis of the correlation between gene expression
and clinical information.We usedχ2 test, Fisher’s exact test, orMann-
WhitneyU test to perform a simple correlation analysis between gene
expression and disease severity or prognosis, as appropriate. A multi-
ple logistic regression analysis was performed to further explore this
correlation. P < 0.05 meant that there was a significant correlation.

Validation of identified hub genes at the protein level

We recruited patients with septic shock from the emergency depart-
ment of Peking Union Medical College Hospital (PUMCH) and
healthy volunteers from physical examination centers and the com-
munity. Whole blood samples were collected from the participants
and serum was obtained by centrifugation for proteomic analysis.
3

We focused on the proteins encoded by the identified hub genes
and performed intergroup differential analysis using an independent
two-sample t test with Benjamini-Hochberg correction. Receiver op-
erating characteristic (ROC) curves were plotted to evaluate the
ability to distinguish septic shock. All participants provided written
informed consent, and the hospital ethics committee approved the
cohort recruitment and sample collection procedures.

Results

Identification of DEGs in patients with septic shock

We collected whole blood RNA from patients with septic shock
caused by pneumonia (n = 20) or other infectious diseases
(n = 259) and from uninfected controls (100 healthy people) from
the GEO database. The validation cohort included 18 patients with
septic shock and 20 age- and sex-matched healthy volunteers. A
flow diagram of the screening samples and study design is shown
in Fig. 1. The expression of genes in patients with septic shock and
healthy controls is shown in a volcano plot (Fig. 2A). Cluster analysis
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Figure 2. Differential gene expression and enrichment analyses. (A) Volcano plot: DEGs were selected with FC >2 or < −2 and FDR <0.05 among the gene
expression profiles of 279 septic shock patients and 100 healthy controls. Upregulated and downregulated genes are indicated in red and green,
respectively. (B) Heatmap analysis of identified DEGs between patients with septic shock and uninfected controls. Red indicates upregulated DEGs, and
blue indicates downregulated DEGs. (C) GO enrichment analysis: Histograms of BP, CC, and MF analyses of upregulated DEGs in patients with septic
shock. Color represents the q-value. (D) GO enrichment analysis: bubble plot of BP, CC, and MF analyses of the upregulated DEGs in patients with septic
shock. Color represents the q-value. Size of the bubbles represents the gene count. (E) Histogram of KEGG analysis of the upregulated DEGs in patients
with septic shock. Color represents the q-value. (F) Bubble plot of the KEGG analysis of the upregulated DEGs in patients with septic shock. Color
represents the q-value. Size of the bubbles represents the gene count. DEG, differentially expressed gene; BP, biological function; CC, cellular component;
MF, molecular function; FC, fold change; FDR, false discovery rate; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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of the identified DEGs is shown as a heatmap (Fig. 2B). We screened
112 DEGs, including 111 upregulated genes and 1 downregulated
gene based on the standard of FDR < 0.05 and FC >2 or FC < −2.

GOandKEGGenrichment analysesofDEGs in septic shock

GO enrichment analysis showed that the BPs of upregulated DEGs
were majorly enriched in defense response to bacteria, humoral im-
mune response, response to lipopolysaccharide, negative regulation
of cytokine production, antimicrobial humoral response, response
to fungus, defense response to fungus, and killing of cells of other or-
ganisms, whereas the MFs of upregulated DEGs were mainly
enriched in endopeptidase activity, serine-type endopeptidase activity,
serine-type peptidase activity, serine hydrolase activity, glycosamino-
glycan binding, and sulfur compound binding (Fig. 2C, Fig. 2D). The
KEGG pathways of the upregulated DEGs were mainly enriched in
transcriptional misregulation in cancer (Fig. 2E, Fig. 2F).

PPI network construction of DEGs and hub gene
identification

Subsequently, the PPI network of the DEGs was built using the
STRING database, and the most significant module was obtained
using Cytoscape. The PPI network comprised 102 nodes (proteins)
and 222 edges (interactions) (Fig. 3A). The 30 geneswith the highest
number of adjacent nodes are shown in the bar diagram (Fig. 3B).
Using CentiScaPe in Cytoscape, the centrality parameters for each
node, including degree, were obtained, which helped identify the
most important nodes in a network. Genes with a higher degree of
expression were more closely associated with septic shock. In addi-
tion, we screened the most significant module including 12 genes
4

with degree ≥4 (Fig. 3C). The degree was not completely consistent
with adjacent node count, so we selected hub genes with degree ≥5
and adjacent node count ≥30, and the final results included seven
genes which was showed in Venn diagram (Fig. 3D). The results
showed that the degree of LTF was 10, MMP8 was 9, MMP9 was
8, CEACAM8 was 7, CTSG was 7, LCN2 was 6, and PRTN3
was 6. Thus, we concluded that these geneswere significantly upreg-
ulated hub genes in septic shock.

Correlation between mRNA expression and prognosis

Correlation between relevant mRNAs and SAPS II. The
availability of SAPS II data in 28 patients enabled exploration of cor-
relations between mRNA expression and clinical disease severity. Re-
garding the correlation between sex and SAPS II, we conducted Fisher’s
exact test, and the results showed no statistically significant correlation
(χ2 = 0.164, P > 0.999). Regarding the correlation between age and 38
mRNA expression levels and SAPS II, we conducted the Mann-
Whitney U test, which showed that there were statistically significant
correlations between HGF (Z = −2.022, P = 0.044), LCN2
(Z = −2.619, P = 0.008), MERTK (Z = −2.389, P = 0.016), and SAPS
II, and there were no statistically significant correlations between the
other 35 mRNA expression levels and SAPS II (Table 1).

To further analyze the correlation between pertinent mRNA and
SAPS II, we included these three significantly statistical mRNA
(HGF, LCN2, andMERTK) and age (approaching statistical signif-
icance [Z = −1.966, P = 0.050]) into multiple logistic regression
model, the results illustrated that older age was associated with in-
creased severity of septic shock (odds ratio [OR]: 1.171; 95% con-
fidence interval [CI]: 1.023–1.339; P = 0.022); the upregulation of
LCN2 mRNA expression demonstrated a promising association
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Figure 3. PPI network construction and hub gene selection. (A) PPI network was established using significantly upregulated DEGs, which contains 102 nodes
and 222 edges. Nodes represent proteins, and edges indicate protein interactions. (B) First 30 genes with the most adjacent node count are listed from the PPI
network data built using STRING. (C) Most significant module was obtained from a PPI network with 12 nodes and 43 edges. Upregulated genes are marked in
red, and downregulated genes aremarked in blue. (D) Hub geneswere selectedwith degree≥5 and adjacent node count ≥30. They showed an overlap of seven
genes. DEG, differentially expressed gene; PPI, protein-protein interaction; STRING, Search Tool for the Retrieval of Interacting Genes.
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with increased severity of septic shock (OR: 1.518; 95%CI: 0.999–
2.305; P = 0.050), indicating its potential as a clinical biomarker de-
spite themarginal statistical significance. Therewas no statistically sig-
nificant correlation between the expression levels of HGF (OR: 0.971;
95% CI: 0.452–2.089; P = 0.941) or MERTK (OR: 3.755; 95% CI:
0.813–17.338; P = 0.090) and the severity of septic shock (Fig. 4A).

Correlation between relevant mRNAs and survival. Of the
69 patients included in the analysis, clinical information on survival
status was available, then we analyzed the correlations between rel-
evant mRNA expression and survival in these patients. Regarding
the correlation between sex and survival state, we conducted χ2

tests, and the results showed no statistically significant correlation
(χ2 = 3.423, P = 0.064). As for the correlation between age and
38 mRNA expression level and survival state, we conducted
Mann-WhitneyU test, and the results showed that there were statis-
tically significant correlation between ADAMTS3 (Z = −1.984,
P = 0.047), ARG1 (Z = −2.199, P = 0.028), AZU1 (Z = −3.111,
P = 0.002), BCL2A1 (Z = −2.848, P = 0.004), C1QB (Z = −2.401,
P = 0.016), CCNA1 (Z = −2.346, P = 0.019), CTSG (Z = −2.861,
P = 0.004), DEFA4 (Z = −3.987, P < 0.001), ELANE (Z = −4.652,
5

P < 0.001), IL1R2 (Z = −2.291, P = 0.022), LCN2 (Z = −2.677,
P = 0.007), MMP8 (Z = −2.587, P = 0.010), MPO (Z = −3.847,
P < 0.001), PGLYRP1 (Z = −2.067, P = 0.039), PRTN3
(Z = −3.347, P = 0.001), PTX3 (Z = −3.366, P = 0.001), RNASE3
(Z = −3.708, P < 0.001), and VSIG4 (Z = −2.775, P = 0.006) and sur-
vival state, and there were no statistically significant correlation be-
tween other 20 mRNA expression level and survival state (Table 2).

To further analyze the correlation between pertinent mRNA and
survival state, we included these 12 significantly statistical indepen-
dent variables whose P value was less than 0.01 (AZU1, BCL2A1,
CTSG, DEFA4, ELANE, LCN2, MMP8, MPO, PRTN3, PTX3,
RNASE3, and VSIG4) into multiple logistic regression model, the
results illustrated that the upregulation of BCL2A1 mRNA expres-
sion correlated with increased mortality risk of septic shock (OR:
1.178; 95%CI: 1.035–1.341;P = 0.013). Therewere no statistically
significant correlations between the expression levels of the other 11
mRNAs and the prognosis of septic shock (Fig. 4B).

Correlation between lncRNA expression and prognosis

Correlation between relevant lncRNAs and SAPS II. We
included 28 samples, including clinical information on SAPS II, to

www.eccmjournal.org


Table 1

Simple Correlation Analysis between Pertinent mRNAs and Simplified Acute Physiology Score II

Variations SAPS II-Low SAPS II-High
χ2 Test/Mann-Whitney U Test

χ2/Z P

Gender
Male 10 (52.6%) 9 (47.4%) 0.164 >0.999
Female 4 (44.4%) 5 (55.6%)

Age 58.5 (44.0,69.5) 74.5 (57.5,80.0) −1.955 0.050
ADAMTS3 2.68 (2.36,3.98) 5.06 (2.61,8.12) −1.838 0.069
ALPL 6.66 (6.17,7.76) 5.96 (5.59,7.23) −1.195 0.246
ANXA3 16.37 (15.33,17.17) 17.61 (15.02,18.31) −1.332 0.194
ARG1 22.07 (18.18,23.45) 21.93 (20.58,22.96) 0.000 >0.999
AZU1 4.69 (2.02,10.78) 7.11 (2.18,8.41) −0.138 0.910
BCL2A1 8.39 (7.13,9.35) 8.96 (7.35,9.92) −0.643 0.541
C1QB 6.46 (5.15,8.62) 6.65 (5.50,8.39) −0.092 0.946
CCNA1 5.89 (3.61,7.23) 6.34 (3.85,8.92) −1.011 0.329
CEACAM1 8.07 (7.30,8.90) 10.35 (6.95,11.57) −1.424 0.164
CLEC4D 9.80 (8.92,11.13) 11.49 (8.74,12.34) −1.287 0.210
CTSG 4.36 (3.33,9.02) 5.56 (3.44,7.16) −0.092 0.946
DEFA4 11.75 (6.97,11.66) 12.48 (7.59,15.25) −0.046 0.982
ELANE 8.00 (4.65,14.13) 10.27 (6.44,12.20) −0.459 0.667
GADD45 9.35 (8.64,9.91) 10.67 (8.02,11.24) −1.47 0.150
HGF 6.67 (5.25,8.15) 8.55 (6.04,10.91) −2.022 0.044*
HP 21.07 (19.62,22.21) 23.52 (19.06,25.48) −1.057 0.306
HPGD 7.60 (4.60,11.34) 8.67 (6.09,11.15) −0.505 0.635
IL1R2 14.80 (13.08,15.08) 14.91 (13.79,15.67) −0.827 0.427
IRAK3 8.33 (7.46,9.54) 8.68 (7.74,9.62) −0.276 0.804
LCN2 16.80 (15.17,20.21) 21.69 (19.42,25.29) −2.619 0.008**
LTF 17.54 (14.04,21.61) 20.45 (18.88,21.83) −1.746 0.085
MERTK 4.01 (3.43,4.66) 6.35 (4.03,7.95) −2.389 0.016*
MGST1 5.95 (5.04,6.91) 6.20 (5.27,7.19) −0.597 0.571
MMP8 63.76 (60.23,66.39) 68.08 (61.35,70.60) −1.700 0.094
MMP9 13.33 (12.12,14.12) 13.20 (11.94,14.77) −0.459 0.667
MPO 4.80 (2.79,8.85) 4.96 (4.12,7.17) −0.551 0.603
NAIP 9.56 (8.33,11.01) 9.92 (9.04,10.99) −0.965 0.352
NLRC4 8.01 (7.13,8.78) 8.07 (7.24,8.97) 0.000 >0.999
ORM1 7.22 (5.18,8.40) 6.12 (4.64,8.01) −0.827 0.427
PCOLCE2 8.87 (6.68,11.08) 12.19 (4.70,13.87) −1.103 0.285
PGLYRP1 7.83 (6.62,8.66) 8.18 (6.94,8.54) −0.276 0.804
PRTN3 4.08 (1.85,8.83) 4.01 (2.69,7.70) −0.368 0.734
PTX3 4.42 (3.12,7.08) 4.65 (3.44,6.08) 0.000 >0.999
RNASE3 5.78 (4.82,7.97) 6.86 (6.25,7.61) −1.195 0.246
S100A12 9.82 (8.74,10.13) 10.29 (9.37,10.54) −1.792 0.077
SLPI 7.88 (6.88,8.34) 6.18 (4.60,7.96) −1.700 0.094
TLR5 8.17 (7.79,8.61) 8.35 (7.58,8.88) −0.046 0.982
VSIG4 7.22 (6.63,8.96) 9.54 (6.28,10.28) −1.011 0.329

Data are reported as n (%) for categorical variables and median (IQR) for continuous variables, as appropriate.

*P < 0.05; **P < 0.01. P < 0.05 was considered statistically significant.

IQR, interquartile range.
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analyze the correlations between pertinent lncRNAs and SAPS II. As
for the correlations between the expression levels of the two lncRNAs
and SAPS II, we conducted the Mann-Whitney U test and found no
statistically significant correlation between LINC01093 (Z = −0.092,
P = 0.946), XIST (Z = −1.378, P = 0.178), and SAPS II (Table 3).

To further analyze the correlation between pertinent lncRNAs
and SAPS II, we included these three independent variables (age,
LINC01093, and XIST) in the multiple logistic regression model
and found that older agewas slightly associatedwith increased severity
of septic shock (OR: 1.075; 95% CI: 1.005–1.149; P = 0.035). There
was no statistically significant correlation between the expression levels
of LINC01093 (OR: 0.601; 95% CI: 0.273–1.327; P = 0.208) and
XIST (OR: 1.086; 95% CI: 0.899–1.313; P = 0.391) and the severity
of septic shock (Fig. 4C).
6

Correlation between pertinent lncRNAs and survival. We
included 69 samples, including clinical information on survival
state, to analyze the correlation between pertinent lncRNAs and sur-
vival state. As for the correlations between the expression levels of
the two lncRNAs and survival state, we conducted the Mann-
Whitney U test and found no statistically significant correlation be-
tween LINC01093 (Z = −1.044, P = 0.296), XIST (Z = −0.551,
P = 0.581), and survival state (Table 4).

To further analyze the correlation between pertinent lncRNAs
and survival, we included these four independent variables (age,
sex, LINC01093, and XIST) in the multiple logistic regression
model, which revealed that there was no statistically significant
correlation between them and the prognosis of septic shock
(Fig. 4D).
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Figure 4. Multiple logistic regression between mRNAs/lncRNAs and the prognosis of septic shock. (A) Multiple logistic regression analysis of pertinent mRNAs
and SAPS II. (B) Multiple logistic regression analysis of pertinent mRNA and survival. (C) Multiple logistic regression analysis of pertinent lncRNAs and SAPS II. (D)
Multiple logistic regression analysis of pertinent lncRNAs and survival. SAPS II, Simplified Acute Physiology Score II.
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Validation of the identified hub genes at the protein level

Among the proteins encoded by the identified hub genes, CEACAM8
was not detected in our cohort, whereas the levels of LTF, MMP8,
MMP9, CTSG, LCN2, and PRTN3 were successfully measured.
Comparative analysis between patients with septic shock and healthy
controls revealed no significant differences in PRTN3 levels. How-
ever, the remaining five proteins were significantly upregulated in
the patients with septic shock. Notably, four of these proteins demon-
strated an area under the curve (AUC) greater than 0.8 for discrimi-
nating septic shock patients, as illustrated in Fig. 5.

Discussion

Sepsis/septic shock was recognized as a global health priority by the
World Health Assembly and World Health Organization in 2017,
owing to its high mortality rate.[21] In high-income countries, ap-
proximately 28 million deaths per year are attributed to sepsis/
septic shock.[22] Overall, however, there is probably a substantial
underreporting of the incidence of sepsis/septic shock, and with an
aging population, the incidence will continue to increase.[23] As the
pathogenesis and treatment methods remain unclear, the clinical
treatment of sepsis/septic shock has placed a great burden on the so-
ciety and patients.[24] Therefore, it is important to identify potential
biomarkers for sepsis treatment and prognosis. Although Li et al. re-
ported that CEACAM8, MPO, and RETN were hub genes of sep-
sis,[25] they lacked correlation analysis of genes and clinical informa-
tion, and their results require further verification.Other studies have
identified several candidate biomarkers, including CX3CR1 and
LILRB2, as prognostic biomarkers of sepsis,[26,27] they did not reach
a conclusion consistent with that of Li et al. Therefore, we utilized
data frommultiple datasets to identify DEGs in septic shock and fur-
ther identified the genes most associated with septic shock and bio-
markers predicting patient severity and prognosis.

Our results showed that the defense response to bacteria, hu-
moral immune response, response to lipopolysaccharide, negative
regulation of cytokine production, antimicrobial humoral response,
response to fungus, defense response to fungus, and killing of cells of
other organisms were the most significantly enriched BPs of upregu-
latedDEGs. These biological processes are all related to antimicrobial
effects, indicating that a large number of genes related to antimicrobial
7

effects are expressed at higher levels in patients with septic shock. In
addition, endopeptidase activity, serine-type endopeptidase activity,
serine-type peptidase activity, serine hydrolase activity, glycosamino-
glycan binding, and sulfur compound binding were the most signifi-
cantly enriched MFs among the upregulated DEGs. Transcriptional
misregulation in cancer was the most significantly enriched KEGG
pathway for the upregulated DEGs. This pathway has been exten-
sively studied in hematopoietic cancers and solid tumors.[28–31] How-
ever, its significance in sepsis and septic shock remains unclear.

Using the STRING database, Cytoscape, and R software, we
found that the genesmost strongly associatedwith septic shockwere
LTF, MMP8, MMP9, CEACAM8, CTSG, LCN2, and PRTN3.
This included the same three genes as Pedro Martínez-Paz’s results,
which identified DEGs of IGHG1, IL1R2, LCN2, LTF,MMP8, and
OLFM4 to distinguish septic shock from nonseptic shock in postsurgi-
cal patients.[32] Xu et al. also reported the top hub genes as MMP9,
CEACAM8, ARG1, MCEMP1, LCN2, RETN, S100A12, GPR97,
and TRAT1 in pediatric septic shock, three of which were the same
as our results.[33]

LTF, a lactotransferrin, is a member of the transferrin family of
genes and its protein product is found in the secondary granules of
neutrophils. The protein and its peptides have been found to have
antimicrobial, antifungal, antiparasitic, and antiviral activities, in-
cluding activity against both DNA and RNA viruses and against
SARS-CoV-2 and HIV.[34–38] We conclude that LTF upregulation
indicates infection by various pathogens, which is consistent with
evidence that LTF is involved in the infectious disease pathway (R-
HSA-5663205).[39] Infection is necessary evidence for the diagnosis
of sepsis/septic shock, which indicates that LTF can help diagnose
the disease.

MMP8, matrix metallopeptidase 8, is a member of the MMP
family of proteins.[34] It is involved in the collagen catabolic pro-
cess,[35] positive regulation of neuroinflammatory response, positive
regulation of interleukin-6 production, positive regulation of nitric
oxide biosynthesis, and positive regulation of reactive oxygen spe-
cies biosynthetic process, and so on.[40] Wong et al. regarded
MMP8 as biomarker therapeutic target in septic shock,[41,42] which
is consistent with our results. MMP9, matrix metallopeptidase 9,
also encodes proteins ofMMP family, whichwere involved in extra-
cellular matrix disassembly.[34]
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Table 2

Simple Correlation Analysis Between Pertinent mRNAs and Survival State

Variations Survival Nonsurvival
χ2 Test/Mann-Whitney U Test

χ2/Z P

Gender
Male 31 (72.1%) 12 (27.9%) 3.423 0.064
Female 13 (50.0%) 13 (50.0%)

Age 4.2 (1.5,9.7) 9.6 (0.8,66.8) −1.863 0.062
ADAMTS3 2.69 (2.09,4.68) 3.29 (2.42,4.67) −1.984 0.047*
ALPL 4.31 (3.29,5.86) 4.35 (3.39,5.37) −0.714 0.475
ANXA3 14.61 (9.94,19.31) 14.88 (11.96,16.98) −0.213 0.831
ARG1 17.35 (7.90,24.42) 18.92 (15.73,26.39) −2.199 0.028*
AZU1 2.47 (1.94,4.35) 3.75 (2.30,6.78) −3.111 0.002**
BCL2A1 7.10 (5.21,9.09) 8.36 (6.55,9.26) −2.848 0.004**
C1QB 4.15 (2.43,6.92) 5.55 (3.37,7.61) −2.401 0.016*
CCNA1 3.34 (2.51,6.41) 5.21 (3.30,6.96) −2.346 0.019*
CEACAM1 6.83 (4.44,10.26) 7.89 (5.81,10.10) −1.688 0.091
CLEC4D 8.00 (5.04,10.89) 8.91 (6.36,10.48) −1.203 0.229
CTSG 2.84 (2.54,3.98) 3.39 (2.72,7.74) −2.861 0.004**
DEFA4 3.68 (2.23,12.03) 9.76 (4.38,12.28) −3.987 <0.001***
ELANE 2.92 (1.92,7.13) 6.86 (3.37,15.07) −4.652 <0.001***
GADD45 7.96 (4.98,9.79) 8.14 (6.87,9.76) −1.618 0.106
HGF 4.42 (2.19,8.31) 5.18 (4.00,7.09) −1.343 0.179
HP 19.29 (9.22,26.19) 20.39 (16.62,24.99) −1.159 0.246
HPGD 4.48 (2.45,8.72) 5.25 (3.09,8.65) −0.944 0.345
IL1R2 12.51 (5.97,16.60) 13.44 (11.36,16.37) −2.291 0.022*
IRAK3 6.48 (4.38,8.38) 6.36 (5.20,8.43) −0.123 0.902
LCN2 14.87 (4.13,24.32) 20.11 (14.40,24.12) −2.677 0.007**
LTF 16.21 (4.31,24.99) 18.42 (13.96,21.97) −1.852 0.064
MERTK 3.51 (2.64,5.45) 4.22 (3.39,5.36) −1.629 0.103
MGST1 4.96 (3.53,6.20) 4.71 (3.43,6.27) −0.247 0.805
MMP8 57.60 (3.57,95.11) 64.70 (57.90,92.35) −2.587 0.010**
MMP9 11.82 (6.31,15.72) 11.85 (7.26,15.32) −0.444 0.657
MPO 3.08 (2.64,4.55) 4.55 (2.97,9.70) −3.847 <0.001***
NAIP 8.00 (5.93,10.76) 7.83 (5.52,9.79) −1.025 0.305
NLRC4 6.72 (4.69,8.46) 6.84 (5.46,7.98) −0.255 0.799
ORM1 4.25 (3.22,6.41) 5.65 (3.46,7.65) −1.559 0.119
PCOLCE2 4.66 (2.48,10.25) 5.95 (2.71,10.94) −0.833 0.405
PGLYRP1 5.87 (4.51,7.83) 6.48 (5.40,8.29) −2.067 0.039*
PRTN3 2.19 (1.80,3.68) 3.70 (2.11,9.22) −3.347 0.001**
PTX3 2.75 (2.19,4.57) 4.26 (2.57,6.69) −3.366 0.001**
RNASE3 4.27 (3.15,6.17) 5.71 (4.13,7.90) −3.708 <0.001***
S100A12 9.04 (7.66,9.88) 9.08 (8.15,9.76) −0.583 0.56
SLPI 5.12 (3.96,7.69) 6.16 (4.35,7.97) −1.176 0.24
TLR5 7.16 (5.72,8.66) 6.64 (5.17,8.01) −1.88 0.06
VSIG4 4.29 (2.68,7.18) 5.41 (3.98,9.27) −2.775 0.006**

Data are reported as n (%) for categorical variables and median (IQR) for continuous variables, as appropriate.

*P < 0.05; **P < 0.01; ***P < 0.001. P < 0.05 was considered statistically significant.

IQR, interquartile range.
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CEACAM8, CEA cell adhesion molecule 8, belongs to the
carcinoembryonic antigen (CEA) family of the immunoglobulin.[43]

It is involved in heterophilic cell-cell adhesion via plasma membrane
cell adhesion molecules and the immune response.[35,44] Several
studies have reported that CEACAM8 exerts immunomodulatory
effects on sepsis occurrence.[45]

Literature retrieval revealed that the interaction between septic
shock and the hub genes CTSG and PRTN3 has not been widely re-
ported. Myeloperoxidase (MPO) is the main enzyme produced by
neutrophils and has antibacterial function in sepsis.[46] Demaret
et al. believed that upregulatedMPOexpressionwas the best predic-
tor for identifying a subgroup of high-risk death patients.[47] How-
ever, MPO was not screened as a hub gene in our study because of
differences in the methods and criteria.
8

LCN2, lipocalin 2, encodes a protein belonging to the lipocalin
family. This protein is a neutrophil gelatinase-associated lipocalin
that plays a role in innate immunity by limiting bacterial growth.[48]

We found that the upregulation of LCN2 mRNA expression might
be indicative of an increased severity of septic shock and that the up-
regulation of BCL2A1 mRNA expression could indicate an in-
creased mortality risk in septic shock. Therefore, these two mRNA
can potentially be used as biomarkers to predict the severity and
prognosis of septic shock.

Compared to traditional markers, such as cytokines, gene bio-
markers may exhibit greater advantages in reflecting an individual’s
susceptibility to septic shock.[49] Although traditional cytokine bio-
markers (e.g., IL-6 and IL-10) demonstrate diagnostic value in septic
shock, their utility is limited by their significant dynamic variability
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Table 3

Simple Correlation Analysis between Pertinent lncRNAs and Simplified Acute Physiology Score II

Variations SAPS II-Low SAPS II-High
χ2 Test/Mann-Whitney U Test

χ2/Z P

Gender
Male 10 (52.6%) 9 (47.4%) 0.164 >0.999
Female 4 (44.4%) 5 (55.6%)

Age 58.5 (44.0,69.5) 74.5 (57.5,80.0) −1.955 0.050
LINC01093 4.32 (3.99,6.45) 4.75 (4.17,5.22) −0.092 0.946
XIST 6.86 (6.38,14.56) 7.09 (6.77,17.18) −1.378 0.178

Data are reported as n (%) for categorical variables and median (IQR) for continuous variables, as appropriate. P < 0.05 was considered statistically significant.

IQR, interquartile range.
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and susceptibility to multiple confounding factors. In contrast, ge-
nomic biomarkers (e.g., mRNA expression profiles) exhibit superior
stability and specificity. For instance, while IL-6 and IL-10 levels
show significant disparities between patients with gram-positive
and gram-negative sepsis,[50] transcriptomic analyses revealed no
substantial differences between these groups, indicating a shared
host response at the transcriptional level.[51] In clinical practice,
these biomarkers can be assessed at the genetic level throughmRNA
quantification, or at the protein level bymeasuring the expression of
corresponding proteins, potentially providing valuable insights into
the diagnosis of septic shock and clinical prognosis.

Limitations

This study had some limitations. First, the specific mechanisms of
hub genes in septic shock need to be further explored. Second, we
lacked data on survival or in-hospital time; therefore, we could
not further analyze the correlation between key genes and survival
or in-hospital time. Detailed clinical information, such as the infec-
tion site and pathogens, could not be obtained, so its impact on
mRNA and lncRNA expression was not further discussed. In future
studies, we will collect more clinical information to further explore
the correlation between gene expression and the prognosis of pa-
tients with sepsis, and investigate the influence of other clinical fac-
tors on the expression of these biomarkers.

Conclusion

In this study, we identified seven hub genes of septic shock among
the DEGs, particularlyMMP9, LCN2, CTSG, and LTF, whichwere
significantly upregulated in septic shock and were validated at the
protein level with strong diagnostic performance. We found that
the upregulation of LCN2 mRNA expression showed a trend to-
ward an association with increased severity, and the upregulation
Table 4

Simple Correlation Analysis Between Pertinent lncRNAs and Su

Variations Survival Nonsurv

Gender
Male 31 (72.1%) 12 (
Female 13 (50.0%) 13 (
Age 4.2 (1.5,9.7) 9.6 (0.
LINC01093 2.43 (1.62,4.69) 2.89 (1.7
XIST 5.24 (−0.61,18.43) 7.71 (−1.13

Data are reported as n (%) for categorical variables and median (IQR) for continuous variables, as appropriate. P

IQR, interquartile range.
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of BCL2A1 mRNA expression correlated with increased mortality
in patients with septic shock. This study will help us further under-
stand the molecular mechanisms underlying septic shock and pro-
vide candidate biomarkers and targets for the rapid and accurate di-
agnosis of septic shock and prediction of prognosis.
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Figure 5. Validation of identified hub genes at the protein level using blood samples from patients with septic shock and healthy control (HC) subjects. (A)
Boxplot showing the abundance of MMP9 protein in the two groups, with a fold change (FC) of 7.22 and false discovery rate (FDR) of 2.21e-06. (B) ROC
curve demonstrating the ability of MMP9 protein to discriminate between patients with septic shock and healthy controls. (C) Box plot showing the
abundance of LCN2 protein in the two groups (FC = 5.99 and FDR = 3.97e-06). (D) ROC curve demonstrating the ability of LCN2 protein to discriminate
between patients with septic shock and healthy controls. (E) Box plot showing the abundance of CTSG protein in the two groups (FC = 23.73 and
FDR = 3.50e-06). (F) ROC curve demonstrating the ability of CTSG protein to discriminate between patients with septic shock and healthy controls. (G) Box
plot showing the abundance of LTF protein in the two groups (FC = 10.82 and FDR = 4.81e-05). (H) ROC curve demonstrating the ability of LTF protein to
discriminate between patients with septic shock and healthy controls. Comparison of protein abundance between the two groups was performed using an
independent two-sample t test with Benjamini-Hochberg correction. AUC, area under the curve; ROC, receiver operating characteristic.
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