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A B S T R A C T   

Background: Gestational diabetes (GDM) is a distinctive form of diabetes that first presents in pregnancy. While 
most women return to normoglycemia after delivery, they are nearly ten times more likely to develop type 2 
diabetes than women with uncomplicated pregnancies. Current prevention strategies remain limited due to our 
incomplete understanding of the early underpinnings of progression. 
Aim: To comprehensively characterize the postpartum profiles of women shortly after a GDM pregnancy and 
identify key mechanisms responsible for the progression to overt type 2 diabetes using multi-dimensional 
approaches. 
Methods: We conducted a nested case-control study of 200 women from the Study of Women, Infant Feeding and 
Type 2 Diabetes After GDM Pregnancy (SWIFT) to examine biochemical, proteomic, metabolomic, and lipidomic 
profiles at 6–9 weeks postpartum (baseline) after a GDM pregnancy. At baseline and annually up to two years, 
SWIFT administered research 2-hour 75-gram oral glucose tolerance tests. Women who developed incident type 
2 diabetes within four years of delivery (incident case group, n = 100) were pair-matched by age, race, and pre- 
pregnancy body mass index to those who remained free of diabetes for at least 8 years (control group, n = 100). 
Correlation analyses were used to assess and integrate relationships across profiling platforms. 
Results: At baseline, all 200 women were free of diabetes. The case group was more likely to present with dys-
glycemia (e.g., impaired fasting glucose levels, glucose tolerance, or both). We also detected differences between 
groups across all omic platforms. Notably, protein profiles revealed an underlying inflammatory response with 
perturbations in protease inhibitors, coagulation components, extracellular matrix components, and lipoproteins, 
whereas metabolite and lipid profiles implicated disturbances in amino acids and triglycerides at individual and 
class levels with future progression. We identified significant correlations between profile features and fasting 
plasma insulin levels, but not with fasting glucose levels. Additionally, specific cross-omic relationships, 
particularly among proteins and lipids, were accentuated or activated in the case group but not the control group. 
Conclusions: Overall, we applied orthogonal, complementary profiling techniques to uncover an inflammatory 
response linked to elevated triglyceride levels shortly after a GDM pregnancy, which is more pronounced in 
women who progress to overt diabetes.   
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1. Introduction 

Pregnancy embodies a physiologic stress test for underlying meta-
bolic dysfunction. It induces rapid metabolic adaptations such as 
increased fat mass [1], enhanced glucose production [2], and reduced 
insulin sensitivity [3,4], which are fine-tuned by the maternal system for 
the eventual return to the pre-pregnancy state following delivery [4,5]. 
Disruptions in these regulatory mechanisms may result in a new-onset 
hyperglycemic complication known as gestational diabetes mellitus 
(GDM) [6]. 

While GDM typically resolves following delivery, roughly 30 % of 
affected women reclassify as having prediabetes within three months 
postpartum [7,8]. GDM may therefore not only reveal latent suscepti-
bilities [9] but also exacerbate long-term islet β-cell dysfunction, 
accelerating the onset of overt diabetes [10,11]. To curb this health 
burden, several landmark clinical trials for type 2 diabetes prevention 
following a GDM pregnancy were launched in the late 1990s. Promising 
reductions in progression to diabetes by thiazolidinediones were 
thwarted by concerns over troglitazone-induced hepatotoxicity [12,13] 
and pioglitazone use during breastfeeding [14,15]. Randomization to 
either metformin or intensive lifestyle changes effectively lowered 
incidence rates of diabetes over a 10-year follow-up [10]. Yet, women 
with a GDM history are nearly ten times more likely to develop type 2 
diabetes than those with normoglycemic pregnancies [16,17], under-
scoring the gaps and cracks of current prevention measures. 

Heterogeneity in responses to pharmacological and lifestyle inter-
vention warrants a more comprehensive investigation into the early 
pathways for disease progression. The postpartum period facilitates a 
timely dissection into the early changes associated with a full recovery 
or progression to type 2 diabetes, which can be readily quantified in 
maternal plasma using omics. Applying these analytic methods may not 
only uncover novel biomarkers for high-risk subpopulations but also 
delineate their putative roles as effectors, protectors, or bystanders in 
key mechanisms. In fact, our prospective, longitudinal Study of Women, 
Infant Feeding, and Type 2 Diabetes after GDM Pregnancy (SWIFT) 
stands alone in employing large-scale, clinical metabolomic and lip-
idomic techniques to clarify the postpartum underpinnings of disease 
progression as well as the potential protective effect of lactation against 
diabetes development [7,18–22]. These clinical omic research studies 
characterized early metabolic disturbances after GDM pregnancy that 
precede the development of diabetes. 

In the current nested case-control study, we now seek to expand our 
work on the SWIFT cohort using proteomics as it provides orthogonal 
and complementary insights into the early stages of progression to type 
2 diabetes beyond the restricted purview of clinical observations and 
metabolomic investigation. 

2. Materials & methods 

2.1. Study design 

SWIFT is an ongoing prospective, longitudinal epidemiologic 
research study of women after a GDM pregnancy. More specifically, 
1035 pregnant women diagnosed with GDM (according to the Carpenter 
and Coustan criteria) who delivered at a Kaiser Permanente Northern 
California (KPNC) hospital were enrolled. All participants consented to 
three in-person research visits with 2-hour 75-gram oral glucose toler-
ance test (OGTT), anthropometry measurements, and clinical assess-
ments, at 6–9 weeks postpartum (baseline) and annually thereafter for 
up to 2 years postpartum (follow-up). 

The primary outcome of SWIFT is new-onset type 2 diabetes (diag-
nosed according to the American Diabetes Association criteria). Women 
who were positively indicated by the baseline 2-hour 75-gram OGTT 
results for diabetes underwent repeated testing on two separate occa-
sions. A total of 1010 women returned to a non-diabetic state and were 
therefore included in the follow-up study for progression to diabetes. 

Post-baseline reclassification was performed based on two strategies: 1) 
annual research 2-hour 75-gram OGTTs at study visit for the first two 
years and 2) electronic health record surveillance (of laboratory testing, 
medical diagnoses from ICD codes, medication use) within the Kaiser 
Permanente integrated health system, which were reviewed every two 
years through October 2020 for the current analysis. Of the 990 women 
with follow-up testing for diabetes, 226 (23 %) developed new-onset 
type 2 diabetes. The SWIFT timeline is shown in Fig. 1A. Preliminary 
outcomes have been published elsewhere [7,23,24] and can also be 
found at ClinicalTrials.gov (#NCT01967030). 

The present study employs a nested case-control design within the 
broader SWIFT cohort, as outlined in Fig. 1B. We included all women 
who progressed to type 2 diabetes within 4 years post-baseline (n = 127) 
and selected a control group of women who remained diabetes-free for 
at least 8 years. The final study population included a total of 100 cases 
and 100 controls, pair-matched by age, race, and pre-pregnancy body 
mass index. 

2.2. Plasma handling & biochemical analysis 

All profiling techniques were performed on EDTA-treated plasma 
samples collected during the fasting timepoint of the 2-hour 75-gram 
research OGTT at the baseline SWIFT research visit. Aliquots were 
stored at − 80◦C until further analyses. Biochemical assessment of 
baseline plasma samples was performed within several weeks of baseline 
visit (Northwest Lipid Research Laboratories, Seattle, Washington). All 
subsequent omic analyses were performed in singlicate. 

2.3. Discovery proteomics 

We manually prepared all samples in-house using a previously 
published workflow [25]. Briefly, plasma samples were boiled in a one- 
pot mixture for simultaneous lysis, reduction, and alkylation. Linearized 
proteins were then trypsinized overnight. Peptides were then loaded 
onto EvoTips and separated on a pre-set 60SPD gradient on an EvoSep 
One liquid chromatography system coupled to a Bruker timsTOF Pro 
mass spectrometer. Additionally, we prepared 10 technical replicates 
from a pooled sample and demonstrated high reproducibility (Fig. S1). 
Raw data files were analyzed on a closed search against the human 
UniProt FASTA database followed by label-free quantification with 
match-between-runs (LFQ-MBR) using a built-in FragPipe workflow 
[26]. Using the protein output lists from FragPipe, we removed non- 
human contaminants, log2-transformed total MaxLFQ intensities, and 
applied a filter cut-off of 30 % missingness. Batch correction to minimize 
plate effects and imputation to handle missing values were performed. 

2.4. Targeted metabolomics 

We accessed a metabolomic dataset from a previously published 
SWIFT study that measured 188 metabolites from 658 women who had 
GDM [18], including 200 women from the present study. Metabolite 
concentrations were measured with Biocrates AbsoluteIDQ p180 plates, 
according to the manufacturer's instructions, using a targeted mass 
spectrometry-based technique known as multiple reaction monitoring. 
Concentrations below the quantitative threshold (either the limit of 
detection or lower limit of quantification) were deemed missing and 
subsequently replaced with half of its quantitative threshold value for 
each specific analyte. A filter cut-off of 30 % missingness was applied to 
isolate the 128 robustly quantified proteins for further analyses. 

2.5. Targeted lipidomics 

We accessed a lipidomic dataset from a previously published nested 
case-control SWIFT study that measured 1008 lipid species from 350 
women who had gestational diabetes [20], including 100 cases and 54 
controls from the present study. Therefore, for the lipidomic analyses, 
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we profiled a subset of the present study's full cohort (Table S1). These 
1008 lipid species were measured and characterized by fatty acid 
composition with the Metabolon Complex Lipid Panel using multiple 
reaction monitoring technology. We applied a stringent filter cut-off of 
100 % quantitation (accounting for a reduced sample size) to isolate the 
739 robustly quantified proteins for further differential analyses. 

2.6. Multi-omic integration 

Joint pathway analysis was first conducted to simultaneously eval-
uate the standalone protein list and the combined metabolite/lipid list 
using MetaboAnalyst (version 4.0) [27]. We also examined co- 
expression networks of differentially abundant metabolites/lipids and 
their protein correlates based on Spearman's rank correlation analyses of 
overall and within-group relationships. Significant correlations were 
defined by Benjamini-Hochberg (BH) adjustment (q < 0.05) and 

absolute Spearman's rank correlation coefficient cut-offs (|rs| > 0.3 or 
0.4 for full-cohort and within-group analyses, respectively). 

Full details on the SWIFT design, Matching criteria, Plasma protein 
profiling, Differential analysis of proteins, metabolites, and lipids, Bioinfor-
matics and other analyses can be found in the Supplemental Methods. 

3. Results 

3.1. Clinical characterization of study cohort 

We conducted a nested case-control study on a diverse subsample of 
200 women following a GDM pregnancy from the SWIFT cohort (aged 
33.9 ± 4.6 years; 13 % White, 37 % Asian, 10 % Black, and 40 % His-
panic; and 57 % obese at study baseline) (Table 1, Fig. 1). Women who 
developed incident type 2 diabetes within four years of delivery (inci-
dent case group, n = 100) were pair-matched by age, race, and pre- 

Fig. 1. Overview of the study design. (A) The Study of Women, Infant Feeding and Type 2 Diabetes After GDM Pregnancy (SWIFT) recruited 1035 pregnant women 
with GDM. All participants consented to three annual in-person research examinations, including 2-hour 75-gram oral glucose tolerance tests (OGTTs), anthro-
pometry measurements, and clinical assessments, at baseline (6–9 weeks postpartum, pp) and for the first two years after delivery. Ongoing follow-up through the 
Kaiser Permanente Northern California (KPNC) electronic health records (EHR) system captured clinical assessments and new diagnoses of diabetes. (B) Current 
nested case-control study within the SWIFT cohort on 100 women who progressed to T2D within 4 years and 100 peers who remained free of diabetes for at least 8 
years. Baseline plasma profiles were examined to identify potential networks of proteins, metabolites, and lipids associated with the progression to T2D using an 
integrative approach. 
*Lipidomic data was not available for 46 women in the control group. 
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Table 1 
Characteristics of the cohort by future outcome.  

Demographic & clinical characteristics Incident T2D 
(n = 100) 

No T2D 
(n = 100) 

P 

Mean age at baseline, years (SD) 34.1 (4.7) 34.0 (4.5)  0.8611 
Race, n    1.0000 

Non-Hispanic White 13 13 
Asian 37 37 
Non-Hispanic Black 10 10 
Hispanic 40 40 

Family history of diabetes, n 62 45  0.0233 
Personal history of PCOS, n 14 8  0.2585 
Current history of smoking, n 1 2  0.3650   

Anthromopetric characteristics Incident T2D No T2D P 

Median pre-pregnancy BMI, kg/m2 (IQR) 30.2 (26.8–34.3) 30.2 (26.4–33.8)  0.8883 
Pre-pregnancy BMI categories, n    0.9772 

Under/normal weight (<25 kg/m2) 17 16 
Overweight (25 to 30 kg/m2) 31 32 
Obese (>30 kg/m2) 52 52 

Median post-pregnancy BMI, kg/m2 (IQR) 30.9 (27.8–34.7) 30.3 (27.5–34.1)  0.5951 
Post-pregnancy BMI categories, n    0.5905 

Under/normal weight (<25 kg/m2) 12 9 
Overweight (25 to 30 kg/m2) 30 36 
Obese (>30 kg/m2) 58 55 

Mean weight, kg (SD) 80 (18) 79 (17)  0.7596 
Mean height, cm (SD) 159 (7) 159 (7)  0.8942 
Mean waist circumference, cm (SD) 94 (12) 92 (13)  0.3281 
Mean weight loss after pregnancy, kg (IQR) 8 (4) 9 (4)  0.2281 
Mean body fat, % (SD) 47 (6) 47 (7)  0.9442   

Prenatal & delivery characteristics Incident T2D No T2D P 

GDM treatment, n    0.0006 
Diet 46 70 
Oral medication only 45 29 
Insulin 9 1 

Median sum of 4 prenatal 3-hour 100-g OGTT glucose z-scores for GDM diagnosis (IQR)a 1.5 (− 0.6–3.4) − 0.8 (− 2.0–1.0)  <0.0001 
Caesarean section delivery, n 39 32  0.3753 
Parity, n    0.8275 

Primiparous (1 birth) 32 35 
Biparous (2 births) 37 33 

Multiparous (>2 births) 31 32   

Biochemical characteristics at study baseline (6-9 weeks postpartum) Incident T2D No T2D P 

Median fasting plasma glucose (IQR)    <0.0001 
mmol/L 5.6 (5.3–6.1) 5.1 (4.8–5.4) 
mg/dL 102 (96–111) 93 (89–98) 

Median 2-hour post-load plasma glucose (IQR)    <0.0001 
mmol/L 7.1 (6.3–8.4) 5.8 (4.9–7.0) 
mg/dL 129 (115–153) 105 (89–127) 

Median fasting plasma insulin (IQR)    <0.0001 
pmol/L 149 (104–225) 113 (80–154) 
μU/mL 24 (17–38) 19 (13− 21) 

Median 2-hour plasma insulin (IQR)    <0.0001 
pmol/L 672 (476–1004) 478 (343–661) 
μU/mL 112 (79–167) 81 (57–111) 

Median HOMA-IR score (IQR) 6.5 (4.3–9.4) 4.2 (3.0–5.8)  <0.0001 
Median HOMA-B score (IQR) 235 (169–334) 241 (190–334)  0.8546 
Median ISI0,120 score (IQR) 1.2 (1.1–1.5) 1.6 (1.4–1.8)  <0.0001 
Glycemic tolerance categories, n    <0.0001 

Normal 31 74 
IFG only 32 14 
IGT only 13 10 
Both IFG and IGT 24 2 

Mean fasting plasma HDL-C (SD)    0.3116 
mmol/L 1.3 (0.3) 1.3 (0.3) 
mg/dL 49 (13) 51 (12) 

Mean fasting plasma LDL-C (SD)    0.5253 
mmol/L 3.2 (0.8) 3.2 (0.8) 
mg/dL 122 (31) 125 (31) 

Mean fasting plasma total cholesterol (SD)    0.9839 

(continued on next page) 
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pregnancy body mass index to those who remained free of diabetes for at 
least 8 years (control group, n = 100). Median time-to-diabetes in the 
case group was 1.7 years (interquartile range, IQR, from 0.9 to 2.2). 

Comprehensive participant characteristics are summarized in 
Table 1. Notably, we observed baseline differences in glycemic status 
between those who did and did not develop diabetes, as the incident case 
group was at least three times more likely to present with some form of 
baseline glucose abnormality such as impaired fasting glucose levels (as 
having fasting levels above 5.5 mmol/L or 100 mg/dL; 56 % vs. 16 %, p 
< 0.01), impaired glucose tolerance (as having 2-hour post-load levels in 
a 75-g oral glucose tolerance test above 7.8 mmol/L or 140 mg/dL; 37 % 
vs. 12 %, p < 0.01), or both (24 % vs. 2 %, p < 0.01), compared to the 
control group (Table 1). Altogether, only 31 % of the case group had 
normal glycemic control at baseline, compared to 74 % of those who did 
not develop diabetes (p < 0.01). Notable differences associated with 
baseline glycemic status were also reflected in prenatal history and 
baseline biochemistry. While the homeostatic model assessment scores 
for insulin resistance (HOMA-IR) were indeed higher in the case group, 
compared to the control group (p < 0.01), scores for beta cell function 
(HOMA-B) were similar between groups (p = 0.85). Expectedly, insulin 
sensitivity index (ISI0,120), calculated from OGTT fasting and endpoint 
measurements [24], were markedly lower in the case group (p < 0.01). 
As a result, this early postpartum stage may be characterized by a dys-
glycemic state coupled with insulin resistance, possibly extant from 
before delivery, especially in women who later developed type 2 
diabetes. 

3.2. Plasma protein profile of the early postpartum period after GDM 
pregnancy 

Given that the study baseline (6–9 weeks postpartum) remains a 
vastly unexplored timepoint in proteomics, we first sought to charac-
terize the plasma protein profile of the postpartum period shortly after a 
GDM pregnancy. Using label-free discovery techniques, we quantified a 
total of 358 unique proteins (average of 235 per sample, Fig. S2A) 

spanning four orders of magnitude (Fig. S2B). Log-transformed in-
tensities exhibited a bimodal relationship with reference blood con-
centrations from the Human Protein Atlas [28] (Fig. S2C): one group of 
proteins whose intensities were linearly correlated with reference con-
centrations (Spearman's rank correlation coefficient rs = 0.75) and 
another group lacking any correlation (rs = − 0.05). After applying a 
filter cut-off of 30 % missingness, we observed that most of these latter 
proteins were removed and therefore deemed as unreliably quantified. 

From the 358 total proteins remained a subset of 210 robustly 
quantified proteins. This subset included a higher percentage of proteins 
with some degree of tissue enrichment or enhancement, compared to the 
total proteome (Fig. S2D). Tissue expression analyses highlighted a 
preponderance of liver-associated proteins, accounting for 46 % of 
proteins (Fig. S2E). Given our interest in the postpartum profile, we 
noted that the placenta was the top enriched tissue within the repro-
ductive system with seven mapped proteins, including the primariy 
hemoglobin in fetal circulation, HbG. Its quantification demonstrates 
that our plasma protein profile may contain potential remnants of 
pregnancy at 6–9 weeks postpartum. Protein enrichments to the 
placenta and/or endometrium may reflect physiologic processes un-
derlying the return to the pre-pregnancy state such as involution. 
Accordingly, our protein profile therefore captures time-sensitive nu-
ances of the female plasma profile. 

3.3. Proteomic differences between groups 

Of the 210 robustly quantified proteins, 21 were differentially 
abundant between women who did and did not develop new-onset type 
2 diabetes within 4 years after baseline (t-test, p < 0.05, Fig. 2A, 
Table S2). Three proteins (proteoglycan-4, PRG4; pigment epithelium- 
derived growth factor, PEDF; and alpha-1-antichymotrypsin, AACT) 
remained significant after multiple testing correction (BH, q < 0.1), 
reflecting modest separability and discrimination of profiles between 
groups at this postpartum juncture (Fig. S3). To better capture the 
broader schemes of networks, we performed enrichment analyses on the 

Table 1 (continued ) 

Biochemical characteristics at study baseline (6-9 weeks postpartum) Incident T2D No T2D P 

mmol/L 5.2 (0.9) 5.2 (0.9) 
mg/dL 201 (34) 202 (36) 

Median fasting plasma triglycerides (IQR)    0.0351 
mmol/L 1.3 (0.9–2.2) 1.1 (0.8–1.6) 
mg/dL 118 (77–195) 96 (73–140)   

Behavioral characteristics at study baseline (6-9 weeks postpartum) Incident T2D No T2D P 

Median dietary glycemic index (IQR) 232 (170–312) 211 (167–279)  0.1761 
Median dietary fiber, g/100 kcal (IQR) 1.0 (0.8–1.2) 0.9 (0.7–1.2)  0.1573 
Mean dietary animal fat, % of kilocalories (SD) 26.8 (7.3) 26.0 (8.8)  0.4946 
Median total physical activity, metabolic equivalent hours per week (IQR) 46.8 (36.0–71.9) 44.2 (33.3–58.9)  0.0777 
Lactation intensity categories, n    0.2056 

Exclusively breastfeeding 18 16 
Mostly breastfeeding 35 49 
Mostly formula-feeding 22 14 
Exclusively formula-feeding or <3 weeks breastfeeding 25 21 

Median lactation duration through 2 months postpartum (IQR) 1.7 (0.6–2.0) 1.9 (1.0–2.0)  0.4396 

Case and control groups were matched by age, race, and pre-pregnancy BMI in this case-control study nested within the broader SWIFT population of 1010 women who 
did not have diabetes at baseline (6–9 weeks postpartum) after GDM pregnancy. Categorical variables were compared using the chi-squared test; continuous variables 
were assessed using the two-sample independent t-tests for normally distributed variables (presented as mean and SD) or Mann-Whitney tests for non-normally 
distributed variables (presented as median and IQR). Patient data were incomplete for body fat percentage (for 14 women in the case group and 23 in the control 
group) and waist circumference (2 in the case group and 1 in the control group); dietary characteristics ([i.e., fiber, glycemic index, and percentage of animal fat in 
diet] 1 in the control group); and physical activity (1 in the control group). 
BMI, body mass index; DM, diabetes mellitus; GDM, gestational diabetes mellitus; HDL-C, high-density lipoprotein cholesterol; HOMA-B, homeostatic metabolic 
assessment of beta-cell function; HOMA-IR, homeostatic metabolic assessment of Insulin Resistance; IFG, impaired fasting glucose levels; IGT, impaired glucose 
tolerance; IQR, interquartile range; ISI0,120, insulin sensitivity index, LDL-C, low-density lipoprotein cholesterol; OGTT, oral glucose tolerance test; PCOS, polycystic 
ovarian syndrome; SD, standard deviation. 

a Sum of the four z-scores for the prenatal 100-g OGTT glucose values (fasting, 1, 2, and 3 h timepoints). 
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21 differentially abundant proteins (p < 0.05). Seven of the nine 
downregulated proteins (78 %) demonstrated some degree of tissue 
enrichment to the liver, whereas most upregulated proteins (75 %) 
mapped broadly to other origins such as the lymphoid tissues, intestines, 
adipose tissue, and placenta, (Fig. 2B), suggesting increased leakage or 
accumulation of tissue proteins into the circulatory system. 

Given the clinical and biochemical characteristic differences be-
tween case and control groups at baseline, we next examined the impact 
of specific clinical biochemical characteristics on protein associations 
for future type 2 diabetes risk. Cross-sectional analyses revealed signif-
icant associations for having impaired fasting glucose levels at baseline 
with 12 of 21 differentially abundant proteins after multiple testing 
correction (BH adjustment, q < 0.05, Fig. 2C, Fig. S4). Interestingly, no 

differentially abundant protein was significantly associated with having 
impaired glucose tolerance at baseline, post-correction. Next, we iden-
tified statistically significant correlations (absolute rs > 0.3, q < 0.05) 
with fasting plasma insulin levels and HOMA-IR scores (Fig. 2D) in four 
proteins: PRG4, PEDF, ITIH3, and apolipoprotein D. Since having 
impaired fasting glucose levels was widely associated with the differ-
entially abundant proteins (Table S3), we included it in our multivari-
able conditional logistic regression analysis. At baseline, 9 of 21 
differentially abundant proteins remained significantly associated with 
future type 2 diabetes risk (Fig. 2E), after adjusting for having impaired 
fasting glucose levels. In a stratified analysis, we demonstrated that the 
lists of proteins significantly associated with incident T2D within 
women who presented with impaired fasting glucose levels at baseline 

Fig. 2. Differential analysis of proteins associated with incident type 2 diabetes. Plasma protein profiling was performed on all participants in the current study. (A) 
Volcano plot showing fold changes (x axis) and t-test p values (y axis) of the 210 robustly quantified proteins (missing in >30 % of samples). (B) Distribution of liver 
specificity (left) and overall tissue enrichment (right) by fold change. (C) Cross-sectional associations between differentially abundant proteins and clinical risk 
factors for type 2 diabetes at baseline from logistic regression analyses. Asterisks indicate statistical significance after Benjamini-Hochberg (BH) correction for 
multiple comparisons (q < 0.05). (D) Spearman correlation coefficients between protein intensities and clinical characteristics, highlighting significant correlations 
(BH-adjusted q < 0.05 and |rs| > 0.3). (E) Odds ratios per standard deviation increase in log2-transformed protein intensities for incident type 2 diabetes risk after 
adjusting for having impaired fasting glucose levels. 
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(Fig. S5A) were completely distinct from those within women with 
normal fasting glucose levels (Fig. S5B); however, these proteins shared 
some overlap with those analyzed using the full cohort (Fig. SC–D). 
Overall, early differences in protein abundance may therefore reflect 
impairments in glucose regulation in the progression to type 2 diabetes. 

We next assessed relationships for time to diabetes by stratifying the 
case group: women who developed T2D with 1 year postpartum (n =
35), 2 years postpartum (n = 38), and 4 years postpartum (n = 27). Case 
subgroups were compared against control subgroups with original pair- 
matching. Within the case group, time-to-diabetes was most strongly 
correlated with weight loss after pregnancy (rs = − 0.28, p < 0.01) and 
fiber intake (rs = − 0.27, p < 0.01) (Fig. S6A). As a result, these variables 
were included in the multivariable conditional logistic regression ana-
lyses (Fig. S6B). We identified three nearly exclusive sets of 14, 13, and 9 
significantly associated proteins for a total of 34 unique proteins, of 
which eleven were differentially abundant between the full case and 
control groups (Fig. S6C). Our findings reveal unique insights into the 
timing of progression as a risk stratification tool. 

3.4. Pathway analyses of differentially abundant proteins 

To better understand the physiologic roles and regulatory mecha-
nisms that may be disrupted in the progression from GDM to T2D, we 

performed a functional and pathway enrichment analysis using g:Pro-
filer [29]. We uncovered 67 total terms and pathways represented by the 
21 differentially abundant proteins (Table S4), save for IGHD. Half of 
these enriched terms and pathways could be assigned to four annotation 
clusters (Fig. 3): 1) inflammation, 2) protease inhibitor activity, 3) 
extracellular matrix components, and 4) lipid structure and function. 
Each cluster comprises at least 2 specific terms or pathways with at least 
3 common proteins. Notably, the “inflammation” cluster captured 11 
total proteins involved the acute-phase response, platelet function, and 
the complement cascade. We also identified an enriched protein com-
plex in carboxypeptidase N involved in the complement cascade, 
wherein its two and only two subunits (CPN1 and CPN2) were both 
downregulated in the case group, compared to the control group. 
Furthermore, among the proteins involved in the “inflammation” cluster 
were four of five proteins (ITIH3, ITIH4, SERPINA3, SERPINA4) from 
the “protease inhibitor activity” cluster, suggesting a possible regulatory 
role in inflammation. The “extracellular matrix” cluster was unique in 
that it predominantly included upregulated proteins, as 9 of 12 proteins 
were increased at baseline. Finally, the “lipid structure and function” 
cluster highlighted an important cellular component in lipoproteins and 
interactions within the apolipoprotein L1 complex B. Non-clustered GO 
enrichments reflected more generalized GO terms and pathways, such as 
extracellular space, proteolysis, and protease regulation (Table S4). 

Fig. 3. Functional enrichment of differentially abundant proteins using g:Profiler. Half of the significantly enriched terms and pathways were organized into 4 main 
clusters: inflammation, protease inhibitor activity, extracellular matrix, and lipid structure and function. Non-clustered terms and pathways are not shown. The 
accompanying heatmap delineates the specific involvement of differentially abundant proteins. Proteins are also annotated and organized by fold change between the 
case (purple) and control (pink) groups. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Using this multi-resource approach, we also identified key associations 
between four proteins with two motifs in HNF1A and HNF1B, two genes 
that have been extensively linked in the development of type 2 diabetes 
[61,62]. 

From the previous stratified analysis, we identified unique lists of 
proteins associated with incident type 2 diabetes when separately 
examining women who presented with impaired fasting glucose levels 

and those with normal levels. These proteins also revealed distinct en-
richments, where dysregulation of inflammation and the immune sys-
tem may be more complicit in the progression to diabetes within women 
with impaired fasting glucose levels, and lipid dysregulation may be the 
focal point within those with normal fasting glucose levels (Fig. S5E–F). 

Fig. 4. Differential analysis of metabolites associated with incident type 2 diabetes. Plasma metabolomics was performed on all 200 participants in the current study. 
(A) Distribution of metabolites by subclass in the assay before (inner) and after (outer ring) removing metabolites that were missing from >30 % of samples. (B) 
Volcano plot showing fold changes (x axis) and t-test p values (y axis) of the 128 robustly quantified metabolites. (C) Summed concentrations of metabolite subclasses 
with significant differences between groups (p < 0.05). (D) Individual fold changes of differentially abundant metabolites. (E) Spearman's rank correlation co-
efficients rs between metabolite concentrations and clinical characteristics, highlighting significant correlations (Benjamini-Hochberg-adjusted q < 0.05 and | rs | >
0.3). (F) Spearman's rank correlation coefficients for fasting plasma glucose, insulin, and triglyceride levels. Amino acid, AA; biogenic amines, BA; acylcarnitines, AC; 
glycerophospholipid, GP; and sphingolipids, SL. 
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3.5. Metabolomic profile differences between groups 

Given the metabolic disturbances associated with diabetes develop-
ment, we next sought to integrate our proteomic analysis with metab-
olomic and lipidomic data for a comprehensive multi-omic investigation 
into the early underpinnings. Targeted mass spectrometry-based tech-
niques using the Biocrates p180 assay were employed to accurately and 
reliably measure plasma concentrations of 128 robustly quantified me-
tabolites belonging to 6 subclasses of analytes: amino acids, biogenic 
amines, acylcarnitines, glycerophospholipids, sphingolipids, and sugar 
(Fig. 4A). 

We next characterized the baseline metabolite profiles between the 
case and control groups. At first glance, the metabolite profile featured 
an uneven distribution of analytes based on direction of change (Fig. 4B, 
Table S5), as 25 of 27 were significantly upregulated in the case group, 
compared to the control group (p < 0.05). Notably, hexose was the most 
statistically significant metabolite (fold change of 1.13, p < 0.01) 

(Fig. 4C). Differences at the subclass level were easily discerned, espe-
cially in total amino acid and glycerophospholipid levels (Fig. 4C, 
Table S6). Individually, 14 amino acids and 11 phospholipids were 
significantly increased, whereas the sphingolipid SM(C20:2) and 
biogenic amine kynurenine were downregulated (Fig. 4D). Five amino 
acids (His, Ile, Leu, Ser, and Tyr) as well as five acyl-alkyl- 
glycerophosphoslipids (C30:0, 32:2, 36:2, 38:3, and 40:4) remained 
significant after multiple testing correction (BH, q < 0.05), strength-
ening the utility of studying individual analytes. Correlations between 
metabolites and clinical biochemical characteristics revealed class-level 
patterns (absolute rs > 0.3, Q > 0.05) (Fig. 4E), wherein amino acid 
levels (notably, Glu, Ile, Leu, and Tyr) displayed positive correlations 
with insulin-related measurements (e.g., fasting plasma insulin), and 
glycerophospholipids aligned with lipid-related measurements (e.g., 
triglyceride levels) (Fig. 4F). Besides hexose (rs = 0.53, q < 0.05), fasting 
plasma glucose levels did not significantly correlate with any of the 
quantified metabolites (Fig. 4F). 

Fig. 5. Differential analysis of lipids associated with incident type 2 diabetes. Plasma lipidomics was performed on all 100 participants from the case group and 54 
participants from the control group. (A) Distribution of lipid species by subclass in the assay before (inner) and after applying the filter cut-off of 100 % completeness 
(outer ring). (B) Volcano plot showing fold changes (x axis) and t-test P values (y axis) of the 739 robustly quantified lipids. (C) Summed concentrations of tri-
glycerides by groups. (D) Individual fold changes of differentially abundant non-triglyceride lipids. (E) Fold changes of differentially abundant lipids reorganized by 
fatty acid type. (F) Pathway analysis using LIPID MAPS revealed an accumulation of TG via activated biosynthesis pathways. Nodes represent lipid subclasses, and 
directed edges (arrows) between nodes represent reactions. Edge thickness corresponds to the strength of a given direction based on z-scores of the pathways. 
Activated reactions are highlighted in red. Glycerophospholipid, GP; glycerolipids, GL, including monoglycerides, MG, diglycerides, DG, and triglycerides, TG; 
cholesterol esters, CE; fatty acids, FA; and sphingolipids, SL. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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3.6. Lipidomic profile differences between groups 

Given the enrichment of lipoprotein cellular compartments within 
the protein profiles associated with future type 2 diabetes progression, 
we sought to more comprehensively investigate the lipid profiles using 
the Metabolon Complex Lipid Panel containing 1008 lipid species across 
5 lipid subclasses (sphingolipids, glycerophospholipids, glycerolipids, 
cholesterol esters, and free fatty acids) (Fig. 5A). Unlike the other 
platforms, we applied a more stringent filter cut-off of 100 % 
completeness because lipidomic data was available for only 154 in-
dividuals in the current study. We therefore examined 739 total lipid 
species. 

Remarkably, concentrations of 255 individual lipid species were 
significantly increased in the case group (Mann-Whitney test, p < 0.05), 
compared to the control group. No lipid species was significantly 
downregulated, which may reflect a hyperlipidemic state at baseline. As 
234 (92 %) of these lipid species were triglycerides (Fig. 5B, Table S7), 
we also assessed differences at the subclass level. Summed concentra-
tions of all measured triglyceride species were indeed elevated in the 
case group but did not achieve statistical significance (p = 0.08) (Fig. 5C, 
Table S8), likely owing to the reduced power and size of the control 
subgroup. The remaining upregulated lipid species were 13 diglycerides, 
4 glycerophospholipids, 2 sphingolipids, and 2 cholesterol esters 
(Fig. 5D). Lipid species classified by fatty acid composition revealed 

significant increases in 6 triglyceride subclasses (12:0, 14:0, 18:0, 14:1, 
20:3, 20:4), 3 sphingolipid subclasses (DCER22:0, DCER22:2), 2 
diglyceride subtypes (14:0 and 15:0), 1 glycerophospholipid subclasses 
(LPC12:0, PC18:3) (Fig. 5E). Pathway analysis using LIPID MAPS 
[30,31] highlighted an activation of triglyceride biosynthesis pathways 
and suppression of glycerophospholipid pathways, culminating in the 
accumulation of triglycerides (Fig. 5F). 

To investigate potential mediators for postpartum hyper-
triglyceridemia in women who later developed type 2 diabetes, we 
examined cross-sectional relationships between differentially abundant 
triglycerides and specific patient characteristics (Fig. S7). Triglycerides, 
as expected, significantly correlated with all fat-related biochemical 
clinical measures, except for LDL-cholesterol levels. We also demon-
strated that elevated triglyceride levels were linked to increased insulin 
resistance, as shown by significant positive correlations for HOMA-IR 
scores (median rs = 0.45; IQR 0.40–0.49, q < 0.01). Interestingly, tri-
glyceride concentrations were not related to weight, waist circumfer-
ence, and BMI (p > 0.05) and may better characterize adiposity than 
clinical anthropometry measures. 

3.7. Multi-omic integration of proteins, metabolites, and lipids 

By dissecting each profile individually, we have so far uncovered 
distinct insights into the future development of type 2 diabetes and now 

Fig. 6. Integrative omics. (A) Circos plot showing significant correlations of the full cohort among differentially abundant metabolites/lipids and protein correlates. 
Coloured links represent significant correlations (absolute Spearman's rank coefficient rs > 0.3), with strength of the relationship depicted by opacity and direction by 
colour (blue, negative; red, positive). (B) Distribution of enriched terms and pathways associated with the negatively and positively correlated proteins by cluster. (C) 
Comparison of correlations within the case (purple) or control (pink) groups between differentially altered triglycerides and protein correlates. Full-cohort corre-
lations are also shown (yellow). Size corresponds with the number of significantly correlated triglycerides (|rs| > 0.3 for the full cohort; |rs| > 0.4 for within-group 
subsets). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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aim to better understand the interconnected nature, if any, of these 
distinct features. To assess possible interactions within common mech-
anisms, we first performed a joint pathway analysis on the differentially 
abundant proteins metabolites/lipids using MetaboAnalyst [27]. How-
ever, none of the significantly enriched pathways were simultaneously 
represented by both protein and metabolite/lipid classes (Table S9). 
While proteins of interest might not directly regulate lipid metabolism, 
they may carry out other essential functions, such transport and uptake 
(e.g., apolipoproteins). These multi-omic platforms therefore offer 
orthogonal information for a more complete understanding. 

We next performed a correlation analysis to identify possible co- 
expression networks across features, namely identifying protein corre-
lates of differentially altered metabolites and lipid subclasses. Of the 116 
significant correlations (|rs| > 0.3 and q < 0.05), the most common type 
of relationship was found between triglycerides and proteins. Proteins 
consistently correlated with individual analytes within the same class in 
the same direction (Fig. 6A), which further highlights a more general-
ized metabolic regulation. Of the 28 unique protein correlates, only six 
were differentially abundant at baseline between groups (Table S1) and 
may allude to the tighter regulation of proteins. Interestingly, 19 of 28 
protein correlates were negatively correlated with metabolites and 
lipids. Notable exceptions include three apolipoproteins (B, C3, and C4), 
which were moderately-to-strongly and positively correlated to several 
lipid subclasses, shedding light on their critical roles in plasma lipid 
transport. Positive protein correlates (whose abundance changes in the 
same direction as concentrations of selected metabolites and lipids) 
were predominately related to lipid structure and function, accounting 
for roughly 80 % of pathways and terms, whereas negative protein 
correlates (whose abundance changed inversely) displayed a more 
diverse distribution that favoured the inflammatory response (Fig. 6B). 
Overall, these networks reveal a coexistence and possibly co-regulation 
of triglyceride levels and inflammation. 

We next examined these cross-omic relationships within each group 
to determine early differences associated with progression (Fig. 6C). 
Correlations between apolipoprotein C (particularly C3 and C4) and 
differentially abundant glycerolipids were strengthened within the case 
group, compared to the control group (Table S10). Relationships be-
tween apolipoprotein B and glycerolipids however were strongest 
within the control group, suggesting a potential compensatory role. 
Within-group assessments also uncovered significant correlations that 
might have been missed when analysing the full cohort. Gelsolin, for 
example, was negatively correlated with triglycerides in the case group 
(rs ranging from − 0.49 to − 0.40), but this relationship was neither 
replicated in the control group (ranging from 0.10 to 0.14) nor detected 
in the full cohort (rs ranging from − 0.29 to − 0.24). Pregnancy-zone 
protein (PZP) and IGFB3 were most strongly and inversely related to 
triglyceride levels within the control group only, suggesting a loss in 
those who later developed diabetes. These group-specific relationships 
may reveal an early divergence toward future outcomes at baseline. 

4. Discussion 

In this nested case-control study, we examined the early un-
derpinnings of progression to type 2 diabetes following a GDM preg-
nancy using integrated multi-omics. At 6–9 weeks postpartum 
(baseline), profile differences were detected across all platforms be-
tween women who developed type 2 diabetes within four years (case 
group) and those who did not (control group). Individually, these pro-
files offer distinct implications for wound healing and metabolic 
dysfunction in the future development of diabetes. Together, co- 
expression networks suggest that wound healing and metabolic 
dysfunction may contribute to progression via a positive feedback loop 
(Fig. 7). 

We first demonstrated that specific metabolic adaptations of GDM – 
impaired fasting glucose levels, impaired glucose tolerance, and 
increased insulin resistance – are extant after delivery and more 

prevalent in the case group. These adaptations were nuanced within the 
protein profiles, as differentially altered proteins for incident diabetes 
were also significantly associated with having impaired fasting glucose 
levels and, to a lesser extent, impaired glucose tolerance. Interestingly, 
we identified significant protein correlations for fasting plasma insulin 
levels, but not with fasting glucose levels, implicating involvement of 
these proteins in upstream causes of dysglycemia like insulin resistance. 
Protein profile differences highlighted key players involved in coagu-
lation, inflammation, and extracellular matrix – three important phases 
of wound healing. Women who later developed diabetes generally had a 
higher abundance of proinflammatory proteins (e.g., PEDF, PRG4, FN1) 
and lower abundance of inflammatory regulators (e.g., SERPINA3, 
ITIH3, ITIH4, CPN complex, ITIH3), suggesting a chronic inflammatory 
state. While only PRG4 had been previously identified as a proteomic 
biomarker for gestational diabetes [32–34], our profiles share similar 
enrichments of complement and coagulation cascades with other studies 
on gestational diabetes or type 2 diabetes [32–36]. These proteomic 
findings therefore hint at an inflammatory state underlying this post-
partum interface, likely in response to the lingering insulin resistance 
and dysglycemia at baseline. 

Unlike the protein profile, metabolites and lipids were more sus-
ceptible to change at both individual and class levels. These profiles also 
broadened the scope of dysmetabolism beyond dysglycemia with global 
increases in amino acids and triglycerides, which further underscore a 
compromised resolution of GDM. Interestingly, decreased levels of 
plasma amino acids have been well-documented in normal pregnancy to 
support fetal development with a physiologic recalibration during the 
postpartum period [37,38]. Evidently, GDM distorts the pregnancy 
profile with significant dysregulation of individual plasma amino acids 
[39,40]. A comparison between pregnancy and postpartum levels indi-
cated that higher postpartum levels of branched-chain amino acids may 
be distinctive of GDM [41]. In the early postpartum period, we previ-
ously demonstrated that increased amino acid levels were often 

Fig. 7. Insights from early postpartum profiling into the progression from 
gestational diabetes (GDM) to type 2 diabetes. Circulatory profiles of women 
shortly after a GDM pregnancy uncovered perturbations in metabolic and 
wound healing processes that may contribute to the development of overt 
diabetes. Chronic dysmetabolism (marked by increased plasma levels of 
glucose, amino acids, and triglycerides) initiates and perpetuates the wound 
healing response, impairing the physiologic resolution of injury. Consequently, 
the accumulation of proteins involved in the activation of coagulation, 
inflammation, and extracellular matrix remodeling may exacerbate the chronic 
dysmetabolism and insulin resistance. This cycle ultimately accelerates the 
progression to diabetes in women with a GDM history. 
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sustained or exacerbated during the two-year follow-up after a GDM 
pregnancy in women who later developed diabetes [18]. Similar to our 
findings, specific amino acids have been previously linked to increased 
insulin resistance [42–44] and may therefore signal, if not contribute to, 
future development of diabetes. Longitudinal analyses of pregnancy 
profiles highlight a physiologic accumulation of triglyceride in the 
maternal system, with an inflated response in GDM pregnancy 
[38,45,46]. Additionally, given the comorbidity of obesity and diabetes, 
it was not surprising that elevated triglyceride levels have been previ-
ously linked to progression [20,47–49]. While plasma triglycerides are 
believed to rapidly decrease following delivery, we speculate that those 
who develop type 2 diabetes are more likely to sustain a subclinical 
hypertriglyceridemia or have a slower decline in plasma triglyceride 
levels. 

Our multiomic approach uncovered two contemporary hallmarks of 
diabetes: inflammation (through proteomics) and dysmetabolism 
(through metabolomics and lipidomics). These hallmarks are indeed 
interconnected, as evidenced by our co-expression networks of differ-
entially abundant triglycerides and proteins involved in the complement 
cascade. An emerging hypothesis of diabetes pathophysiology suggests 
that imbalances in metabolites and nutrients activate the wound healing 
response [50–52]. Normal wound healing delivers a complete return to 
normal structure and function [53] – a prime example is the postpartum 
recovery following a healthy pregnancy. Repeated or prolonged expo-
sure to injury however can culminate in a hypercoagulable state, unre-
solved inflammation, and scar tissue formation [53]; these hallmarks of 
a perturbed wound healing state have been extensively described in 
diabetes [52,54,55]. Our findings provide more evidence that this pos-
itive feedback loop between metabolic dysfunction and inflammation, 
termed meta-inflammation, may persist at 6–9 weeks postpartum, albeit 
in a milder form compared to GDM pregnancy, and contribute to the re- 
emergence of diabetes in later life. 

The current study has many strengths. We are first to apply multi- 
dimensional profiling techniques in combination with extensive clin-
ical characterization on a diverse cohort of women with GDM who later 
developed type 2 diabetes, leveraging an extensively characterized 
SWIFT population of 1035 women after a GDM pregnancy (with 95 % 
retention from recruitment to follow-up and 98 % testing rates captured 
by electronic medical records). Furthermore, our systematic gold stan-
dard testing procedures, including multi-timepoint OGTT measurements 
of plasma glucose and insulin, ensure accurate classification of glycemic 
status during and after pregnancy. Another major strength is the racial 
and ethnic diversity of our study participants (87 % are Asian, Black, or 
Hispanic women), which befits the population of women with GDM in 
the United States, especially those at increased risk of both GDM and 
type 2 diabetes. Importantly, our baseline profiles provide a wide-range 
window into the postpartum period, a largely unexplored timepoint 
between GDM to type 2 diabetes that offers early insights into pro-
gression. We revealed key differences in each of the plasma profiles, 
whereby protein profiles featured a more balanced distribution of 
upregulated and downregulated changes and metabolite/lipid profiles 
depicted both individual- and class-level changes. These lopsided pro-
files also reflected the nature of proteins, metabolites, and lipids in 
physiology, supporting our application and integration of orthogonal 
approaches. 

Limitations of this study will serve as future directions for our 
investigation. Notably, with rapid breakthroughs in artificial intelli-
gence, our work can be bolstered by machine learning to expand the 
proteome coverage, to build prediction models, and to assess prognostic 
performance [56–58]. In this study, we decided against current library 
matching algorithms to maximize reproducibility and specificity. 
Although other proteomic analyses have quantified larger numbers of 
proteins, differential expression was often detected at similar concen-
tration ranges as found in our study [25,59,60]. Our workflow therefore 
provides a suitable and intact examination of plasma profiles. As for 
biomarker discovery and prediction modeling, our study lacked a 

suitable independent validation cohort, namely of women with glucose 
tolerance testing during the early postpartum period after a GDM 
pregnancy. This nested case-control study design also restricts the 
investigation of time-to-diabetes as an important outcome, and as a 
result, differences in women who progress from GDM to diabetes at 
other time points after 4 years were not captured by our current analysis 
but may be assessed in the future within the entire SWIFT cohort (which 
is in ongoing follow-up). Additionally, our matching strategy does not 
comprehensively account for all possible confounders and may reduce 
generalizability of the study. The singlicate analysis is another limita-
tion, influencing variability; though, our analysis of only fasting plasma 
samples in part alleviates this concern (along with our quality control 
assessment on ten technical replicates). Overall, our study provides 
interesting avenues for future work with broader and larger cohorts to 
better assess and deconstruct the heterogeneity of the progression from 
GDM to T2D over time. 

5. Conclusion 

The postpartum period, especially after a GDM pregnancy, encap-
sulates a critical crossroad for the return to the pre-pregnancy state or 
progression to type 2 diabetes. We uncovered an inflammatory and 
dysmetabolic state, which was more pronounced and interconnected in 
women who later developed diabetes. Multidimensional approaches, 
such as integrative omics combined with machine learning, may provide 
a full-scope dissection into the precise mechanisms underlying this 
heterogeneous disease. 
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