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Simian malaria: a narrative review on emergence, 
epidemiology and threat to global malaria elimination
Kimberly M Fornace, Gabriel Zorello Laporta, Indra Vythilingham, Tock Hing Chua, Kamruddin Ahmed, Nantha K Jeyaprakasam, 
Ana Maria Ribeiro de Castro Duarte, Amirah Amir, Wei Kit Phang, Chris Drakeley, Maria Anice M Sallum, Yee Ling Lau

Simian malaria from wild non-human primate populations is increasingly recognised as a public health threat and is 
now the main cause of human malaria in Malaysia and some regions of Brazil. In 2022, Malaysia became the first 
country not to achieve malaria elimination due to zoonotic simian malaria. We review the global distribution and 
drivers of simian malaria and identify priorities for diagnosis, treatment, surveillance, and control. Environmental 
change is driving closer interactions between humans and wildlife, with malaria parasites from non-human primates 
spilling over into human populations and human malaria parasites spilling back into wild non-human primate 
populations. These complex transmission cycles require new molecular and epidemiological approaches to track 
parasite spread. Current methods of malaria control are ineffective, with wildlife reservoirs and primarily outdoor-
biting mosquito vectors urgently requiring the development of novel control strategies. Without these, simian malaria 
has the potential to undermine malaria elimination globally.

Introduction
Malaria remains a major cause of morbidity and mortality 
globally and is a focus for disease control and elimination 
programmes.1 All human malaria cases are caused by 
infections with apicomplexan parasites in the genus 
Plasmodium transmitted by Anopheles spp mosquitoes.2 
Over 250 malaria parasite species have been described, 
infecting a wide diversity of animals, including birds, 
bats, ungulates, reptiles, rodents, and notably non-
human primates.3 However, of these, only five malaria 
parasite species, Plasmodium falciparum, Plasmodium 
vivax, Plasmodium malariae, Plasmodium ovale wallikeri, 
and Plasmodium ovale curtisi, are fully adapted to humans. 
Although these parasites are likely to have zoonotic 
origins in ape populations, transmission is now entirely 
sustained by human populations.2

Additionally, multiple simian malaria parasite species 
circulating in non-human primate populations can cause 
malaria in humans (table 1). In the 1930s, experimental 
transmission studies showed that Plasmodium knowlesi, a 
simian malaria parasite typically carried by long-tailed 
and pig-tailed macaques (Macaca fascicularis and Macaca 
nemestrina) in southeast Asia, could infect and cause 
clinical malaria in humans.27 In the mid-20th century, the 
zoonotic potential of the simian malaria parasites 
Plasmodium cynomolgi and Plasmodium inui, also found 
in macaques, and Plasmodium eylesi, found in the 
Malaysian gibbon species Hylobates lar, was shown both 
through experimental studies and accidental laboratory 
infections.28–33 During the same time period, within South 
and central America, the zoonotic malaria parasites 
Plasmodium simium and Plasmodium brasilianum were 
isolated from platyrrhine (New World) monkeys and 
natural infections were identified in humans.34,35 Multiple 
malaria parasite species were identified in wild non-
human primates in Africa, with Plasmodium schwetzi, a 
simian malaria parasite found in chimpanzees (Pan 
troglodytes) and gorillas (Gorilla gorilla), experimentally 
shown to be capable of infecting humans.32,36 Human 

malaria parasites also circulate within African wild ape 
populations with evidence of genetically distinct P vivax 
populations in humans and non-human primates and 
vector-borne transmission of P vivax from a chimpanzee 
to a human described.37 The importance of non-human 
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Key messages

•	 Wild non-human pimates harbour diverse parasites 
capable of causing human malaria cases, with the highest 
reported burdens from Plasmodium knowlesi in Malaysia 
and Plasmodium simium in Brazil in rapidly changing 
landscapes.

•	 Simian malaria can have complex transmission cycles with 
spillover from non-human primates to humans, spillback 
of human malarias to wild non-human primates, 
and sylvatic circulation between non-human primate 
populations.

•	 Host switching and cross-species malaria transmission is 
determined by the ability of parasites to invade red blood 
cells, immunity, and the proximity of human and 
non-human primate populations with suitable vectors to 
transmit parasites between populations.

•	 Most simian malaria species from non-human primates 
are only identifiable by using molecular methods and are 
frequently misdiagnosed; new low-cost, accurate 
diagnostic tools are urgently needed for surveillance.

•	 Conventional antimalarial treatments are effective 
against zoonotic malaria in humans; however, treatment 
of cases and distribution of insecticide-treated nets has 
little efficacy on transmission of simian malaria with 
wildlife reservoirs and outdoor-biting mosquito vectors 
and there are no effective control measures currently 
available.

•	 WHO now only recognises malaria elimination in 
countries with negligible risks of zoonotic malaria, 
making zoonotic simian malaria a critical barrier to 
malaria elimination globally.
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primates in malaria transmission cycles in Africa 
remains largely unknown due to diagnostic limitations 
and circulation of human parasites in wild non-human 
primates.2

More than 30 species of primate malaria parasite have 
been identified; however, only a minority of these species 
can infect humans.19 Whereas close to 400 primate 
species are known and less than a third of these have 
been screened for malaria, with highly variable sampling 
efforts, resulting in major gaps in our understanding of 
circulating simian malaria parasites.38 Known simian 
malarias have been classified into stages of adaptation to 

humans, ranging from parasites only found in animal 
populations (eg, the orangutan malaria Plasmodium 
pitheci), parasites that can spill over from animals to 
humans and from humans to animals (eg, P knowlesi) to 
parasites fully adapted and transmissible within human 
populations (eg, P falciparum).39,40 This stage of emergence 
is determined by both biological and ecological factors. 
Malaria parasites need to invade red blood cells to sustain 
infections; differences in parasite binding affinities to 
human red blood cell receptors determine their ability to 
replicate within human and non-human primate 
hosts.19,41 Immune evasion pathways, cross-immunity 

Non-human primate host species Anopheles vector Human Infections Geographical distribution

Plasmodium coatneyi4 Macaca fascicularis, Macaca nemestrina, and Presbytis 
melalophos

Anopheles balabacensis, An 
hackeri, and An introlatus

Natural infection first recorded in 
2021;5 failed laboratory infection6

Thailand, Cambodia, Viet Nam, 
Laos, and Malaysia

Plasmodium cynomolgi7 M fascicularis, M nemestrina, and Presbytis cristatus Anopheles latens, An 
balabacensis, An introlatus, 
and An hackeri

Natural infection first recorded in 
2014;8 accidental laboratory 
infection9

Thailand, Indonesia, the 
Philippines, Cambodia, Laos, 
Viet Nam, Sri Lanka, Singapore, 
and Malaysia

Plasmodium eylesi10 Hylobates lar Unknown Laboratory human infection 
unconfirmed6

Malaysia

Plasmodium fieldi11 M fascicularis and M nemestrina An hackeri and An introlatus, 
and An latens

Laboratory trials with infected 
mosquitoes on humans failed to 
infect6

Thailand, Indonesia, Viet Nam, 
the Philippines, Singapore, and 
Malaysia

Plasmodium hylobati12 Hylobates moloch Unknown Infection trial on humans failed6 Indonesia and Malaysia

Plasmodium inui13 M fascicularis, M nemestrina, Presbytis cristatus, Presbytis 
obscurus, and others

An hackeri, An balabacensis, 
Anopheles cracens, An 
introlatus, and An latens

Natural infection first recorded in 
1966;14 laboratory infection 
successful15

Thailand, Indonesia, the 
Philippines, Taiwan, Cambodia, 
Viet Nam, Singapore, and Malaysia

Plasmodium jefferyi16 H lar Natural vector unknown Infection trial on humans failed6 Malaysia

Plasmodium knowlesi17 M fascicularis, M nemestrina, and Presbytis melalophos An hackeri, An latens, 
Anopheles vagus, 
Anopheles sinensis, 
An introlatus, 
Anopheles maculatus, 
Anopheles kochi, 
An balabacensis, 
Anopheles quadrimaculatus, 
and Anopheles dirus

First natural infection recorded in 
1965;18 laboratory infection 
successful19

Indonesia, Thailand, the 
Philippines, Laos, Myanmar, 
Viet Nam, Cambodia, Brunei, India, 
Singapore, and Malaysia

Plasmodium pitheci13 Pongo pygmaeus Unknown Unknown Malaysia

Plasmodium youngi20 Symphalangus syndactylus, H lar Unknown Unknown Malaysia

Plasmodium brasilianum21 Alouatta belzebul, Alouatta caraya, Alouatta guariba, 
Alouatta palliata, Alouatta seniculus straminea, Ateles 
fusciceps, Ateles geoffroyi, Ateles paniscus paniscus, Ateles 
paniscus chamek, Aotus nigriceps, Brachyteles arachnoides, 
Cacajao calvus, Callithrix geoffroyi, Plecturocebus brunneus, 
Plecturocebus cupreus, Plecturocebus moloch, Plecturocebus 
ornatus, Cheracebus torquatus, Cebus albifrons, Sapajus 
apella, Cebus capucinus, Chiropotes albinasus, Chiropotes 
chiropotes, Chiropotes satanas, Lagothrix lagothricha, 
Lagotrix poeppigii, Leontopithecus chrysomelas, 
Leontopithecus rosalia, Mico humeralifer, Pithecia irrorata, 
Pithecia monachus, Pithecia pithecia, Saguinus geoffroyi, 
Saguinus bicolor, Saguinus martinsi, Saguinus midas, Saimiri 
boliviensis, Saimiri sciureus, and Saimiri ustus

Anopheles cruzii in slopes 
and Anopheles aquasalis on 
the plains of Atlantic forest; 
the vector species is 
unknown in the Amazon 
and central America, but 
local Kerteszia species 
(eg, Anopheles lepidotus and 
An neivai) might play a role 
as vectors

Natural infection in humans in the 
Yanomami Indigenous Reserve, 
Roraima State, Brazil;22

experimental infection in humans 
was shown involving naturally 
infected Ateles geoffroyi from 
Panama as simian reservoir, caged 
colony of Anopheles freeborni as 
anopheline vectors and nine 
human volunteers as human 
hosts23

Brazil, Colombia, Costa Rica, 
France, Panama, Peru, 
and Venezuela

Plasmodium simium24 Alouatta fusca, A guariba, Alouatta clamitans, B arachnoides An cruzii Natural infection in man was 
shown in the 1960’s;25 after 
50 years, it has been discovered 
that most, if not all, 
autochthonous cases of malaria in 
Atlantic forest are due to P simium, 
and not Plasmodium vivax26

Brazil

Table 1: Simian malaria species identified in non-human primates in southeast Asia and South America
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from previous exposure to other malaria species and the 
range of genetic diversity in pathogens also influence 
whether a parasite can replicate within specific hosts.19 
Additionally, the likelihood of transmission is determined 
by the probability of exposure to a parasite. Transmission 
of parasites between non-human primates and humans 
requires shared mosquito vectors to transmit parasites, 
and spatial and temporal overlap between human, vector, 
and non-human primate populations.42 The proximity 
between these different populations depends on 
environmental and ecological factors, such as land cover, 
urbanisation, and behaviour and movement patterns of 
both humans and non-human primates.43 Increased 
contact between humans, vectors, and wildlife can 
facilitate not only spillover of malaria from non-human 
primates to humans but also spillback of human malarias 
into wild primate populations, creating new reservoirs 
for malaria parasites.44

Although isolated human cases of zoonotic malaria 
were reported throughout the 20th century, the first 
evidence of zoonotic malaria as a major public health 
issue occurred when a large cluster of human P knowlesi 
cases were reported in Malaysian Borneo in 2004.45 Since 
then, P knowlesi has been identified in humans across 
southeast Asia.46,47 Increased applications of improved 
molecular diagnostics have identified multiple natural 
human infections with other simian malaria parasites 
including P simium, P brasilianum, P cynomolgi, 
Plasmodium coatenyi, and P inui (figure; table 1). Con
cerningly, many of these cases occurred in settings 
nearing elimination of transmission of the five main 
species of human malaria. For example, outbreaks of 
P simium were reported in the Atlantic Forest (Brazil), an 
area where human malaria was eliminated 50 years ago.48 
Similarly, following an extensive malaria elimination 
programme, no local transmission of human malaria 
parasites has been reported in Malaysia since 2018, but 
thousands of clinical cases of P knowlesi are reported 
every year.47 In 2022, WHO defined malaria elimination 
certification as requiring the elimination of the main 

human malaria parasite species with negligible risk to 
humans from other Plasmodium species.49,50 This resulted 
in Malaysia becoming the first country not to be certified 
for malaria elimination due to zoonotic simian malaria 
species and prompts major questions about the feasibility 
of malaria elimination in other countries reporting 
zoonotic malaria cases.

Simian malaria poses new challenges to malaria 
surveillance and control. Standard malaria interventions, 
such as insecticide-treated bednets and improved testing 
and treatment programmes, are less effective when there 
is a wildlife reservoir. Although wider environmental 
changes threaten to create new opportunities for cross-
species malaria transmission, there remain critical 
knowledge gaps on the distributions of non-human 
primates, the types of parasites they harbour, and their 
susceptibility to human malaria parasites. The complexity 
of sylvatic and human transmission cycles necessitates 
new molecular and epidemiological tools to understand 
parasite flow and detect changing risks. Whereas simian 
malaria poses global threats, the highest human burdens 
of zoonotic malaria cases currently reported are P knowlesi 
in Malaysian Borneo, and P simium and P brasilianum in 
the Brazilian Atlantic Forest. Innovative One Health 
control measures are urgently needed to manage simian 
malaria risks to achieve global malaria elimination goals.

Emergence of P knowlesi and other simian 
malarias in southeast Asia 
The rapid rise of P knowlesi cases in Malaysia exemplifies 
how spillover of malaria from wildlife reservoirs can 
undermine malaria elimination. Across the Asia-Pacific 
region, human malaria cases have declined due to 
effective preventive measures and control activities.51 
Malaysia was recognised by WHO as a country likely to 
achieve malaria elimination by 2020 and reported no 
indigenous human malaria cases since 2018.47,52 Since the 
initial identification of large numbers of human 
P knowlesi cases in Malaysian Borneo, molecular 
diagnostics have identified increasing numbers of 

Figure: Environmental suitability of Plasmodium knowlesi, Plasmodium simium, and Plasmodium brasilianum
The maps reflect models of the probability of a specific simian malaria parasite being reported in a location ranging from green (highly likely) to white (highly 
unlikely). Additional details on models and datasets are available in the appendix pp 1–2.

Plasmodium knowlesi Plasmodium simium
Plasmodium 
brasilianum

See Online for appendix
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P knowlesi cases in Malaysia, especially in indigenous 
populations in peninsular Malaysia and Malaysian 
Borneo.45,47,53,54 Human P knowlesi cases have been 
identified across Asia, with increases in both the 
incidence and total numbers of infections reported, with 
over 30 000 human P knowlesi cases diagnosed since 2004 
(table 2).46,101,102

Southeast Asia harbours a wide diversity of non-human 
primates, including 57 species of monkeys, 18 gibbon 
species and three ape species.103 The predominant 
natural reservoirs of P knowlesi, long-tailed macaques 
(M fascicularis) and southern pig-tailed macaques 
(M nemestrina), are highly sympatric and widely 

distributed across southeast Asia.104–106 P knowlesi was also 
reported in other less common non-human primate 
species, including banded leaf monkey (Presbytis 
melalophos), stump-tailed macaque (Macaca arctoides), 
and dusky leaf monkey (Semnopithecus obscurus or 
Trachypithecus obscurus).107–109 P knowlesi prevalence in non-
human primates is highly heterogeneous, with mean 
infection rates ranging from 0% to 81% in endemic 
regions.110 Genetic evidence suggests P knowlesi evolved 
from an ancestral parasite population that predates 
human settlement in southeast Asia, with separate 
parasite subpopulations linked with long-tailed and pig-
tailed macaque populations.105,111 There are multiple 
Plasmodium species commonly identified within non-
human primate populations in this region.112 In addition 
to P knowlesi, cases of P cynomolgi and P inui naturally 
transmitted to humans have been recorded.53,113 
Subsequently, increased surveillance efforts detected 
P cynomolgi and P inui infections in other settings in 
southeast Asia.114–121 High throughput sequencing has 
further identified other simian malaria parasites in 
humans, including P coatneyi, P fieldi, and P simiovale 
(table 2).53,120

Increased incidence of human P knowlesi cases is 
strongly associated with deforestation and other land 
cover changes.122 Investigations of the initial cluster of 
P knowlesi cases reported in Sarawak, Malaysian Borneo, 
found the main vector in the area, Anopheles latens, 
preferred biting humans in farms and forest edges.123 
Similarly, in Sabah, Malaysia, the incriminated vector of 
P knowlesi, Anopheles balabacensis is mainly abundant 
near villages, plantations and forest fringes.124–126 In 
Viet Nam, Anopheles dirus preferentially fed on humans 
and macaques in forests and forest fringes.127,128 Mixed 
infections have been reported in mosquito vectors, 
including co-infections of P knowlesi and human 
malarias, and co-infections with multiple species of 
simian malaria are widely reported in non-human 
primates.129–132 Human movement and residence near 
forest edges is associated with increased exposure to 
infectious mosquito bites.133–135 Expansion of these 
habitats might lead to increased and sustained 
transmission.

Zoonotic malaria cases have been predominantly 
reported in adult men, many with occupational activities 
in forest or plantation areas.42,134 The clinical spectrum of 
human P knowlesi malaria ranges from asymptomatic to 
severe and fatal disease.136–142 In contrast to falciparum 
and vivax malaria where severe disease and death are 
predominantly seen in children, less than 10% of 
P knowlesi infections are reported in children, with no 
severe or fatal cases of P knowlesi malaria.143–145 However, 
6–9% of symptomatic adults progress to develop severe 
disease, mainly manifesting as acute kidney injury, 
jaundice, and hyperparasitaemia.143,146,147 Higher para
sitaemia and older age are risk factors for severe 
P knowlesi malaria whereas female gender, age above 

Year Cumulative number of cases

Brunei

Plasmodium knowlesi 2007–17 7355

Cambodia

P knowlesi 2007–20 856–58

Plasmodium cynomolgi 2013–16 1358

China (Yunnan province)

P knowlesi 2008–12 259

India

P knowlesi 2004–18 6060,61

Indonesia

P knowlesi 2008–19 54761–74*

Laos

P knowlesi 2010–16 1075,76

Malaysia

P knowlesi 2008–21 29 37077–79†

P cynomolgi 2011–17 1880,81–83

Plasmodium inui 2011–20 583,84

Plasmodium coatneyi 2011–14 383

Plasmodium simiovale 2011–14 283

P inui-like 2011–14 383

Myanmar

P knowlesi 2008–13 4985–87

Philippines

P knowlesi 2006–18 888–91

Singapore

P knowlesi 2007–08 692–93

Thailand

P knowlesi 2016–22 32794‡

P cynomolgi 1996–2021 3395–97

P inui 1996–2016 1997

P fieldi 1996–2016 397

Viet Nam

P knowlesi 2004–2010 3876,98–100

*Duplicate reports of the same case were combined and counted as a single record 
accordingly. †Consisted of only case data reported by the Ministry of Health 
Malaysia. ‡Consisted of only case data reported by the Ministry of Public Health, 
Thailand.

Table 2: Cumulative cases of natural zoonotic malaria infection in 
humans by countries in Asia
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45 years and the presence of comorbidities are risk 
factors for fatal knowlesi malaria.143,148,149 Analysis of 
human knowlesi cases in Peninsular and Bornean 
Malaysia from 2013 to 2017 showed average case fatality 
rates of 1·20% (24 deaths of 3665 people with malaria), 
and 0·15% (22 deaths of 12 835 people with malaria) 
respectively.150 Accurate diagnosis and timely 
administration of intravenous treatment are crucial in 
preventing fatal outcomes.140,149

Complexity and diversity of zoonotic malaria 
transmission in South America 
Human and platyrrhine simian Plasmodium transmission 
outside the Amazon region mainly occurs in forest 
remnants across Serra do Mar (Atlantic Forest, Brazil). 
Malaria occurs either as isolated cases or sporadic 
outbreaks, with fewer than 100 human cases of suspected 
simian malaria reported annually in Brazil.48,151 Complex 
cycles involving humans, platyrrhines, and Anopheles 
(Kerteszia) maintain endemic dispersions of P vivax, 
P malariae, P brasilianum, and P simium.48,152,153 Anopheles 
cruzii, Anopheles bellator, and Anopheles homunculus are 
important vectors where bromeliad phytotelmata are 
abundant.154–156 Forest loss decreases the abundance of the 
dominant vector An cruzii, while forest fragmentation 
increases its human biting rate, leading to increased 
exposure of the local human population to the risk of 
Plasmodium infection.157

Platyrrhine are human plasmodia reservoirs of 
zoonotic malaria in Brazil, and elsewhere in South 
America and central America.158–160 Despite evidence of 
elevated concentrations of antibodies to malaria detected 
in multiple platyrrhine species, only the howler monkey, 
Alouatta clamitans, is incriminated as the primary 
reservoir of zoonotic malaria species in Serra do 
Mar.158,161,162 From surveys of six non-human primate 
species in this region, only howler monkeys were 
infected with Plasmodium, with the highest P simium 
prevalence (71%) reported in Serra do Mar.158 Most 
zoonotic malaria cases are reported in Serra do Mar; 
however, platyrrhine can harbor P vivax and P falciparum 
in the Amazon rainforest.162–164 DNA of P malariae or 
P brasilianum, and P vivax or P simium were identified by 
PCR in simian blood samples, whereas P falciparum was 
detected in fecal samples of Alouatta seniculus in 
Colombia, and Leontocebus lagonotus in Ecuador.160,165 In 
contrast to P knowlesi, genetic evidence suggests P simium 
and P brasilianum originated in humans, with spillback 
to wild non-human primates.166

P brasilianum is an important simian malaria parasite 
that can infect humans in central and South America.167 
It infects all families of New World monkeys found in the 
Serra do Mar and the Amazon rainforest (Brazil), as well 
as Colombia, Costa Rica, French Guiana, Panama, Peru, 
and Venezuela.168,169 The genetic similarities shared with 
P malariae limits true estimates of P brasilianum 
prevalence in simians and humans in South America.170,171 

Closely related to P vivax, the first human infection by 
P simium was reported in the 1960s.35 Since then, zoonotic 
malaria cases, likely misidentified as P vivax by 
microscopy, are reported annually; these are not always 
confirmed by molecular methods but the absence of 
circulating P vivax and existing molecular work suggests 
most or all cases are zoonotic.48,172 Co-infections of P vivax 
or P simium, and P malariae or P brasilianum in humans 
add complexity to the transmission scenario and hamper 
identification and enumeration of Plasmodium species.153 
A P falciparum-like parasite that was found in Serra do 
Mar and asymptomatic co-infected humans further com
plicate the surveillance of zoonotic malaria.153,173 Novel 
approaches are needed to detect low parasite density and 
identify species accurately to improve surveillance and 
understanding of zoonotic malaria potential.

Key challenges in the diagnosis and detection of 
simian malarias
A critical barrier to understanding changing simian 
malaria risks globally is the identification of specific 
parasites; all zoonotic simian malaria parasites appear 
microscopically similar to human malaria parasites and 
require molecular confirmation.32,48,174,175 Initial PCR 
methods used for P knowlesi targeted the small subunit 
rRNA gene; however, primers cross-reacted with 
P vivax.176 Nested PCR and real-time PCR approaches 
targeting the 18S RNA, plasmepsin and cytochrome b 
genes of Plasmodium parasites improve sensitivity, but 
also increase diagnostic costs.177–179 Alternative, lower cost, 
potentially field-deployable isothermal nucleic acid 
amplification methods, such as loop-mediated isothermal 
amplification and recombinase polymerase amplification, 
have been developed.180,181 Commercially available kits are 
sufficiently sensitive and specific for clinical detection of 
Plasmodium, but fail to discriminate Plasmodium 
species.182,183 Additionally, no reliable rapid immuno
chromatographic tests for zoonotic malaria parasites are 
available. For P knowlesi, multiple studies showed 
commercially available rapid diagnostic tests based on 
parasite lactate dehydrogenase and aldolase are not 
sensitive and specific enough.184–186 All evidence to date 
suggests that simian malarias respond to standard 
antimalarial drugs and a less specific diagnostic could 
guide treatment; however, there is a real need for species-
specific diagnostics for surveillance. 

Development of non-invasive methods is also critical to 
identify malaria parasites in non-human primates in the 
field. Simian blood collection requires a complex protocol 
with animal trapping and sedation, which can cause 
injuries or death, and induce behaviour change that 
ultimately hampers surveillance activities. Promising 
outcomes were shown with non-invasive methods and 
diagnostics from simian faeces samples in southeast 
Asia.187 This approach had an important contribution in 
unravelling evolutionary relationships in phylogenetic 
studies on the subgenus Laverania in Africa.2 
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Notwithstanding, novel field and laboratory protocols 
should be considered for surveillance and screening of 
zoonotic malaria in distinct simian populations, 
including endangered forest-specialist and generalist 
species.188 Novel protocols for screening of simian and 
human malarias among non-human primates are 
needed to assess risks of spillover and spillback.173

Molecular epidemiology to track zoonotic 
malaria emergence
Molecular epidemiological approaches to understand 
host genetic variants and the pathogen genotypes is likely 
to prove instrumental in improving understanding of  
transmission, infection prevalence, and prevention. 
Genetic polymorphisms of P knowlesi infections in 
humans showed transmission from different local 
parasite reservoir hosts rather than a single clonal 
outbreak.45 Multiple genome analysis also revealed 
population subdivisions of P knowlesi based on the 
geographical region and macaque host species.111 
Additionally, high parasite diversity and positive natural 
selection was identified in different loci across P knowlesi 
subpopulations.189 In contrast, P simium might have 
evolved as a lineage of P vivax that switched from 
humans to platyrrhine simians, as supported by 
phylogenetic analysis showing P simium as a 
monophyletic lineage within the P vivax South American 
clade.166,190 Differences in the genes coding Duffy-binding 
and reticulocyte-binding proteins of P simium and P vivax 
could explain recent events of zoonotic malaria in 
Brazil.166

Analysis of P knowlesi isolates from clinical cases has 
not detected drug resistance mutations, suggesting 
limited selective pressure and onward transmission from 
humans.111,191 Although there is currently no evidence of 
circulating simian malaria parasites in wild non-human 
primates with drug resistance, documented malaria 
transmission from humans to non-human primates 
highlights the potential for wild non-human primates to 
become a reservoir of drug-resistant malaria.44 Genetic 
analysis aligned with measurement of species-specific 
immune responses could also inform how multiclonal 
and multispecies infection persist and impact onward 
transmission.

Simian malaria risks in changing environments
The interactions between humans and non-human 
primates are strongly associated with environmental 
change, with human malaria risks in both Brazil and 
Malaysia closely linked with forest fragmentation.122,192,193 
Deforestation can break up forest habitats into smaller 
patches and create new ecotones, edge habitats with 
increased contact from previously separated popu
lations.194,195 Forest edges are associated with higher 
densities of the main P knowlesi vectors and human 
movement into these habitats, resulting in increased 
P knowlesi exposure risks.43,131,196 Changes in vegetation 

and resulting microclimates can create new breeding 
sites for mosquito vectors and increase or decrease the 
suitability for different vector species.125,156 Land use also 
interacts with wider climate changes and interannual 
variability in rainfall to impact vector and wildlife 
ecology.43 Similarly, the availability of food sources, 
roosting locations, and predators in changing landscapes 
alters wild non-human primate distribution, behaviour, 
and contact with people.43,197–199 Infection rates of these 
non-human primates vary substantially by geographic 
region and habitat type.110,200 Changing host availability 
can also influence vector biting patterns; in Brazil, 
canopy-dwelling vectors increasingly bite humans within 
these edge habitats.152,157,201 Highly plastic vector species 
biting both humans and non-human primates in 
disturbed habitats are one of the key drivers of simian 
malaria risks globally. Current epicentres of zoonotic 
malaria outbreaks have some of the highest rates of 
environmental change globally; there remain key 
questions on how future environmental changes could 
drive new simian malaria risks.

Mathematical modelling as a tool to understand 
simian malaria transmission
In the absence of key data from varied ecologies, a 
mathematical modelling approach permits simulations 
and hypothesis testing.202 Varying rates of anthro
pophilicity of mosquito vectors identified evolutionary 
conditions, which would drive non-zoonotic P knowlesi 
transmission.202 Further model developments account 
for variation in the transmission dynamics into distinct 
landscape sites (forest, farm, and villages) and the effect 
of malaria control and interventions (rapid treatment or 
insecticide-treated nets), showing the need for control 
measures targeted for different environments.203 
Spatially explicit models support empirical observations 
that P knowlesi infections in humans are more likely to 
occur in the habitat edges of ecotones, particularly in 
the interfaces of houses and secondary forest, where 
pathogen–vector–people interaction intensifies trans
mission dynamics.43 Model simulations showed that 
sustained human-to-human transmission can occur 
when macaques have frequent dispersal through 
anthropogenic–forest habitats and conventional malaria 
control measures are partly effective; however, 
modelling suggests non-zoonotic P knowlesi 
transmission remains highly unlikely.203 Subsequently, 
model-based inference methods surveillance data of 
over 25 000 cases were used to estimate individual case 
reproductive numbers, assessing the likelihood of two 
human cases being within the same transmission 
chain.204,205 Outputs suggest increases in P knowlesi are 
largely driven by zoonotic spillover, with no evidence for 
sustained non-zoonotic transmission; these approaches 
can be applied to monitor future changes in 
transmission patterns if the parasite becomes 
increasingly adapted to humans.102
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Models have examined effects of biodiversity on the 
likelihood of the emergence of P vivax in an isolated 
island in the Brazilian Atlantic coast.206 The density of 
non-transmitting animal hosts to this parasite and 
abundance of competing non-vector mosquitoes were 
identified as mechanisms likely to explain the absence of 
malaria on that island.206 The model was extended when 
P simium was implicated to include simians as 
reservoirs,48,152 with results showing that an increase in 
human infections is possible only if non-human primates 
are present.152 This finding provides further evidence that 
P simium transmission to humans is more likely in the 
forest edges, where biodiversity effects are lower, vector 
and non-human primates are present, and vector 
canopy–ground displacement is greater.152,206 By contrast 
to P knowlesi, there is evidence of non-zoonotic 
transmission of P simium and P brasilianum, and models 
have been used to identify where sustained transmission 
could occur.152 Modelling of zoonotic malaria in Malaysia 
and in the Atlantic Forest can advance the knowledge of 
complex transmission scenarios and evaluate novel 
methods of surveillance, control, and prevention.

Need for innovative control strategies for 
zoonotic simian malaria
Understanding zoonotic and non-zoonotic malaria 
transmission patterns has critical implications for design 
of control measures. Control of simian malaria vectors 
poses many challenges as these vectors are exophilic, 
exophagic, and crepuscular feeders. Studies in both 
Malaysian Borneo and Myanmar evaluated outdoor 
residual spray as a possible solution to control P knowlesi 
vectors.207–209 Despite some promising results, the 
effectiveness of outdoor residual spray is still debatable 
as environmental factors can diminish its efficacy rapidly 
and the effects on non-target beneficial insects can be 
detrimental. Attractive targeted sugar baits were used in 
Mali to reduce mosquito biting and were associated with 
a 30% reduction in prevalence of human malaria cases.210 
This method seems to have less impact on the non-target 
insects, which are important for the ecosystem.211 Field 
trials are needed before mass deployment of this 
innovative control method in the specific forest fringe 
environments associated with simian malaria.

Personal protective equipment, such as insecticide-
treated clothing and topical repellent, has been advocated, 
but might not be financially feasible for rural 
populations.212 Wristbands and anklets impregnated with 
DEET (N,N-diethyl-meta-toluamide) could be an 
alternative solution.213 Past studies showed effectiveness 
and reduced human malaria cases.214 Alternatively, 
chemoprophylaxis can be targeted to high-risk popu
lations. In Cambodia, a randomised controlled trial 
showed antimalarial chemoprophylaxis with artemether-
lumefantrine substantially reduced the risk of human 
malaria among forest workers and that this benefit 
should extend to simian malarias.215

However, the presence of a large, untreated wildlife 
reservoir remains the major hurdle in control strategies 
against the zoonotic simian malaria. Treatment of 
reservoirs with antimalarials, endectocides, or both, 
could be used to control zoonotic malaria.216 The 
mosquito vectors are killed when it feeds on the host 
blood containing the endectocides (such as ivermectin), 
eventually interrupting the transmission chain.217 
However, further investigations are warranted especially 
on the feasibility of large-scale drug administration to 
wild non-human primates, despite successful examples 
of oral-baited treatment of wildlife reservoirs.218 
Additional studies are required to assess possible 
evolution of drug resistance, logistical feasibility, and 
viability under deployed field-conditions and effectiveness 
of ivermectin as an endectocides on wild non-human 
primates.

In reality, due to the complex dynamics of zoonotic 
malaria transmission and the different expertise 
required, integrated control strategies that incorporate 
multisectoral collaboration (ie, health, forestry, con
servation, and education) at both national and inter
national levels will be necessary. Specific attention should 
be given to the role of environmental factors, such as 

Search strategy and selection criteria

We developed a list of key priorities for simian malaria 
surveillance and control based on expert consultations with 
researchers, policy makers, and practitioners working on 
zoonotic malaria. Case studies on simian malaria in Malaysia 
and Brazil were separately developed by researchers based in 
these locations. We identified previous systematic reviews on 
simian malaria, including reviews conducted by study 
authors. Relevant papers were manually identified from these 
reviews. We additionally searched PubMed and Web of 
Science for articles published up to Jan 31, 2023, with the 
terms: “malaria”, “zoonotic malaria”, “simian malaria”, AND 
“Plasmodium” in combination with “non-human primate”, 
“vectors”, “Anopheles”, “humans”, “theoretical models”, 
“molecular”, “treatment”, “control”, “surveillance”, 
OR “diagnosis”, AND “global”, OR “specific country”, OR 
“region names”. We reviewed articles, relevant referenced 
articles, peer-reviewed literature, and policy documents 
identified by experts in the field. No language restrictions 
were applied. For the purposes of this Review, we included 
articles on simian malaria with evidence of transmission or 
infections in both humans and non-human primates. From 
the assembled reference database, we individually reviewed 
all references for relevance to the priorities identified. 
Updating previous systematic reviews with more recent 
literature, we additionally assembled a spatially referenced 
database of published locations of human cases of 
Plasmodium knowlesi, Plasmodium simium, 
or Plasmodium brasilianum to model the distribution of case 
occurrence (appendix pp 1–2).
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forest conservation and monitoring of the anthropogenic 
changes to land use in reducing the incidence of zoonotic 
malaria including improving public awareness of risk.

Simian malaria: a critical threat to malaria 
elimination
With no currently available effective interventions, 
zoonotic simian malaria is a major barrier to malaria 
elimination, particularly in southeast Asia and South 
America. Spillover of simian malaria is primarily 
reported in locations undergoing rapid deforestation 
with highly sympatric wild non-human primate 
populations and vectors biting both humans and non-
human primates at forest fringes. These spillover events 
have the potential to lead to future chains of non-zoonotic 
transmission depending on the species of parasite and 
vector adaptation to humans.40 This transmission is 
particularly a threat when human malaria species have 
been transmitted back into wild non-human primate 
populations; in these cases, wild non-human primate 
populations can become the last reservoir of malaria in 
otherwise malaria-free regions as has been seen in the 
Brazilian Atlantic Forest.48 There is a critical need to 
improve diagnostics and surveillance approaches to 
address these simian malaria threats. Cross-sectoral 
cooperation and integrated One Health solutions are 
essential to identify sustainable land management 
methods and interventions to support human and 
wildlife health. Without developing novel control 
strategies for zoonotic malaria, global malaria elimination 
goals cannot be achieved.
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