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A B S T R A C T   

Background: To predict tuberculosis (TB) treatment outcomes at an early stage, prevent poor outcomes of drug- 
resistant tuberculosis (DR-TB) and interrupt transmission. 
Methods: An internal cohort for model development consists of 204 bacteriologically-confirmed TB patients who 
completed anti-tuberculosis treatment, with one pretreatment and two follow-up CT images (612 scans). Three 
radiomics feature-based models (RM) with multiple classifiers of Bagging, Random forest and Gradient boosting 
and two deep-learning-based models (i.e., supervised deep-learning model, SDLM; weakly supervised deep- 
learning model, WSDLM) are developed independently. Prediction scores of RM and deep-learning models 
with respectively highest performance are fused to create new fusion models under different fusion strategies. An 
additional independent validation was conducted on the external cohort comprising 80 patients (160 scans). 
Results: For RM scheme, 16 optimal radiomics features are finally selected using longitudinal scans. The AUCs of 
RM for Bagging, Random forest and Gradient boosting were 0.789, 0.773 and 0.764 in the internal cohort and 
0.840, 0.834 and 0.816 in the external cohort, respectively. For deep learning-based scheme, AUCs of SDLM and 
WSDLM were 0.767 and 0.661 in the internal cohort, and 0.823 and 0.651 in the external. The fusion model 
yields AUCs from 0.767 to 0.802 in the internal cohort, and from 0.831 to 0.857 in the external cohort. 
Conclusions: Fusion of radiomics features and deep-learning model may have the potential to predict early failure 
outcome of DR-TB, which may be combined to help prevent poor TB treatment outcomes.   

1. Introduction 

Tuberculosis (TB) is one of the deadliest infectious diseases, and 
WHO reported that the COVID-19 pandemic has a damaging impact on 
access to TB diagnosis and treatment. TB treatment and control actions 
are urgently needed [1]. The treatment therapy for TB varies depending 
on each patient’s type and individualized level, and drug resistance is 
associated with poorer outcomes or treatment failures [2]. Drug- 
resistant TB (DR-TB) is recognized as being resistant to the two most 
effective first-line drugs of isoniazid and rifampicin; thus the treatment 
success rate of DR-TB is lower than drug-sensitive TB but with a much 
higher cost [3,4]. DR-TB is one of the major obstacles in the global fight 

against tuberculosis because it may complicate therapy and raises the 
probability of poor results. The early prediction of drug-resistant 
tuberculosis (TB) has the potential to significantly impact TB control 
efforts and improve patient outcomes,for example, timely treatment 
initiation, targeted interventions, improved treatment outcomes, 
reduced transmission, efficient resource allocation, and surveillance, 
monitoring [5]. It is especially of great importance in poor, resource 
limited areas. It has been reported that clinical risk factors of the number 
of earlier treatments and the score of sputum smears tests would help 
predict DR-TB [6]. However, additional clinical information and path-
ological evaluations are not always available, especially in resource- 
limited rural areas. Demographics and clinical parameters such as age, 
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gender and regimen of the drug play an essential part in predicting the 
TB treatment outcome [7,8] but not taking into account phenotypic 
changes of TB. It has been reported that methods of genome sequencing 
and nucleic acid amplification are also used to detect DR-TB [9,10]. 
However, they are both too costly to be applied in primary medical 
settings with limited resources. 

CT imaging plays a vital role in monitoring the patients treatment 
process [11–14], and recently radiomics and deep learning (DL) tech-
nique have been demonstrated as potential tools to automatically detect 
TB using static CT images over an individual timepoint [15,16]. How-
ever, few of them applied both radiomics and DL to create a fusion 
model to predict TB treatment outcomes. Furthermore, to the best of our 
knowledge, we are also the first study to evaluate whether longitudinal 
CT-based radiomics features and DL network could predict DR-TB. In the 
study, to predict the TB treatment outcomes of success and DR-TB, we 
first developed three radiomics models (RM) by using multiple classi-
fiers, and two DL-based models (i.e., supervised deep learning model, 
SDLM; weakly supervised deep learning model, WSDLM) using longi-
tudinal CT scans. Then, we have fused the radiomics feature based 
model and DL model with the highest performance to build a new AI 
scheme to predict treatment outcomes between DR-TB and success. In 
order to evaluate the performance of different schemes, all the estab-
lished models are independently validated on an external cohort. 

2. Methods 

2.1. Patient cohorts 

This study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013), and it was approved by the local hospital 
Institutional Review Board with a waiver of informed consent of patients 
for the retrospective research. TB Patients who are bacteriologically 
confirmed and have already completed treatment were collected from 
two local hospitals in China, named Internal cohort and External cohort. 
According to the inclusion and exclusion criteria, a total of 284 eligible 
patients were finally included from the original 5255 patients (Fig. 1). 
Internal cohort, comprising 204 patients from Site A, was collected be-
tween Jan 1, 2018 and June 30, 2021 with training, validation and 
testing at a ratio of 7:1:2. External cohort was subsequently collected 
between June 1, 2019 and June 30, 2021 form Site B, consisting of 80 
patients. 

The criteria for exclusion were determined as (i) TB patients 
confirmed by Acid-fast bacilli culture positivity with presentence of M. 
tuberculosis; (ii) TB patients completed the anti-tuberculosis treatment 
in the local hospitals, and all the clinical, laboratory and imaging in-
formation was acquired; (iii) Each patient had three times CT scans, one 
is the pretreatment CT scan, and the other two were follow-up CT scans 
taken at the end of the second month and the sixth month (end of 
treatment); (iv) Three types of treatment outcomes were included: 
cured, treatment completed and DR-TB. The complete exclusion flow 
chart is provided in Fig. 1. 

In this study, 284 eligible patients received a standard 6-month 
2HRZ/4HR regimen, using a 2-month intensive phase of daily isoni-
azid (INH), rifampicin (RMP), and pyrazinamide (PZA), followed by a 4- 
month continuation phase of daily INH and RMP. At the end of the 
second month of the regimen, patients underwent a CT scan and sputum 
culture examination. If sputum culture remained positive, drug sus-
ceptibility testing was conducted. If the patient was found to be drug- 
sensitive, the regimen remained unchanged, but an additional sputum 
examination was performed at the end of the third month. If the patient 
was drug-resistant, the regimen was extended to 12–18 months, and 
second-line anti-TB drugs were prescribed after the 12-to-18-month 
regimen. At the end of the original treatment regimen, which is the 
end of the sixth month, all patients underwent a CT scan. The 6-month 
treatment outcomes were classified according to the guideline of WHO 
[17], including (i) Cured, TB patients who completed the 6-month 
regimen with bacteriological confirmation of the initial diagnosis of 
TB and who have negative bacteriological results (smear-or-culture- 
negative) on at least two occasions, one of which should be at the end of 
treatment; (ii) Treatment completed, TB patients who completed the 6- 
month regimen without evidence of failure but with no record to show 
that sputum smear or culture results on at least two occasions; (iii) DR- 
TB, TB patients who were initially diagnosed with drug-susceptible TB 
but later developed drug resistance during the course of treatment 
(commonly referred to as acquired drug resistance), including 
multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB 
(XDR-TB); (iv) Treatment success, the sum of cured and treatment 
completed. The internal cohort contained 160 success patients and 44 
DR-TB patients, and the external cohort contained 65 success patients 
and 15 DR-TB patients. 

Fig. 1. Flowchart for study dataset. A total of 5255 patients from the multicenter were initially involved in the investigation, and 284 patients were finally included 
of which 204 patients were used as the internal dataset, and 80 patients were for the external validation. 
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2.2. CT image acquisition and image preprocessing 

CT scans were acquired according to standardized protocols at each 
hospital, and all identification information of the patients was removed 
before the imaging preprocessing. CT scans in the internal cohort were 
performed using United Imaging 16-row 32-slice helical CT scan (tube 
voltage: 120 kV, tube current: 100 mA, pitch: 1.5, slice thickness: 7.0 
mm, field of view: 450 mm) and PHILIPS Brilliance 32-row helical CT 
scan (tube voltage: 120 kV, tube current: 100 mA, pitch: 1.5, slice 
thickness: 5.0 mm, field of view: 450 mm). CT scans in the external 
cohort were performed using Siemens 64-row 128-slice helical CT scan 
(SOMATOM Definition AS, tube voltage: 100 kV, tube current: 100 mA, 
pitch: 1.3, slice thickness: 5.0 mm, field of view (FOV): 430 mm). 

Two radiologists (more than 10 years of experience in reading CT 
images) outlined TB lesions on each slice of CT scans to produce a Dice 
coefficient value individually. If two Dice coefficient values were all 
greater than or at least equal to 0.95, they would be averaged as the 
ground truth of the image. Otherwise, a senior radiologist (more than 20 
years of experience in reading CT images) would review and outline the 
images again to make the final determination. Image augmentation, 
including image flipping, translation, rotation and deformation was 
performed on the internal cohort to improve the model performance 
using established methods [18]. 

2.3. Development of RM 

As shown in Fig. 2, a variety of filtering processes, including 
squaring, square root, logarithm, exponential, gradient, wavelet trans-
form operations, etc., were performed on the CT scans with manual 
lesion contours. Then a total of 107 features were obtained, including 18 
first order features, 14 shape features and 75 texture features. We 
extracted those radiomics features and normalized them to [0, 1]. To 
reduce the dimensionality of extracted features, we applied LASSO 
method to select the most predictive features to develop RM. Finally, 16 
selected features were used to train classifiers of Bagging, Random forest 
(RF) and Gradient boosting (Gboost) to develop multiple RMs. 

2.4. Development of SDLM and WSDLM 

As shown in Fig. 2, a 3D-dimensional central neural network was 
used to develop SDLM and WSDLM. For the SDLM, the input to this 

network was the region of interest (ROI) of TB, and the 3D Resnet was 
used to extract features. Then the Gated Recurrent Unit (GRU), which 
consisted of 2-layer recurrent neural network units and one fully layer 
was applied to make the predictions, during which ROI features 
extracted at a different time of the treatment period needed to input to 
GRU in sequence. The WSDLM was developed in Python with the 
Pytorch backend (Python 3.8, Pytorch 1.10.1). Each slice of the CT 
image was reduced to 320 from 512, then combined into 3D images. The 
input into the 3D Resnet in WSDLM scheme was all time series CT scans 
of a patient without manual lesion contours instead of the ROIs in SDLM 
scheme, to extract features and obtain the feature maps. To capture the 
interval feature changes, feature maps of the next time were aligned to 
the previous one to make subtractions from each other. Finally, multi- 
scale average pooling was performed to obtain the fusion features, and 
global average pooling and fully connected layers were applied to make 
classifications of success and DR-TB cases. Therefore, the WSDLM pre-
dicts by automated feature map alignment and subtraction of longitu-
dinal scans, which differs from the SDLM with manual delineations for 
DL model training. 

2.5. Model fusion 

After training and building the three RMs and two DL models, we 
compared the performance of the trained models and selected one RM 
and one DL model with the highest AUC values respectively as the 
optimal one. The range of prediction scores generated from radiomics 
feature-based scheme and deep learning-based scheme is distributed in 
different scales either on internal or external testing; therefore data pre- 
processing procedure of normalization is necessary before model fusion 
to bring all the attributes on the same scale. The original optimal 
operating points for all the cases are set to be equal to 0.5, and the 
prediction scores are accordingly normalized to the same standard scale 
[0,1]. Finally, the RM using Bagging and SDLM were fused by weighting 
their prediction scores. For the weighting average strategy, we 
constantly increased the weighting factor of the SDLM prediction score 
from 0 to 1 with an interval of 0.1. The weighting factor of RM corre-
spondingly decreased from 1 to 0 to compute the fusion prediction score. 

2.6. Model performance evaluation 

Statistical analysis was performed using Python 3.8 and SPSS 20. The 

Fig. 2. Illustration of different models’ architecture. Multiple TB treatment outcome prediction models of three RMs (i.e., multiple classifiers of Bagging, Random 
forest and Gradient boosting) and two DL models (i.e., SDLM, WSDLM)) were developed separately using longitudinal CT scans, and the RM with the highest AUC 
value as the optimal one was combined with the optimal DL model to create a fusion model. The performance of the fusion model was tested on both internal and 
external cohorts. TB, tuberculosis; RM, radiomics model; DL, deep learning. 
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performance of the proposed models to predict treatment outcomes on 
the internal and external cohort were assessed by the receiver operating 
characteristic curve (ROC) and area under the curve (AUC). Besides, the 
accuracy, sensitivity, specificity, and F1 score were also calculated and 
compared. 

3. Results 

3.1. Clinical characteristics 

The main characteristics of patients in the internal and external co-
horts are shown in Table 1. The two cohorts were inherently different. 
The internal cohort was used to train and test the RM and DL models, 
and the external cohort was used to independently test the model per-
formance. 204 patients from the internal cohort were 55.9 % males, and 
the median age was 67 years, with an age range of 14–93 years. The 
external cohort included 80 patients with 58.8 % males (median age of 
65.5 years; age range 18–87 years) (Fig. S1). It is not statistically sig-
nificant in the patient age (P = 0.388), gender (P = 0.334) for both two 
cohorts, neither for the outcome distribution of success and DR-TB (P =
0.598), but there is a significant difference in the groups of cured, 
treatment completed and transferred to drug-resistant (P = 0.002). 

3.2. Radiomics feature selection 

There were 107 radiomics features extracted from the initial feature 
pool, and not all features contribute to the positive performance of 
treatment outcome prediction, and some features might add noise to it. 
The LASSO model is introduced in this study to estimate what variables 
are important in the prediction. The parameter λ for the LASSO model 
was set to 0.01 based on the cross-validation. The 16 most important 
predictive biomarkers were finally identified for model construction. 
The normalized importance of the 16 features is shown in Fig. 3. There 
were 3 shape features, 9 Gy level co-occurrence matrix texture features 
(GLCM), a gray level run length matrix texture feature (GLRLM), 2 Gy 
level size zone matrix texture features (GLSZM), and a neighborhood 
gray-tone difference matrix (NGTDM). 

3.3. Comparison of multiple RMs and DL models 

After radiomics feature extraction and selection, they were used for 
different RMs training, and the comparisons of Bagging, RF and Gboost 
in the AUCs were presented in Fig. 4a, b. For the internal cohort, 
Bagging, RF and Gboost obtained AUCs of 0.789, 0.773 and 0.764, 
respectively. While in the external cohort, the AUCs were 0.840, 0.834 
and 0.816. We observed that about 70 % DR-TB and over 80 % success 
patients could be predicted correctly (Fig. 4c, d). In both internal and 

external cohorts, the prediction performance of Bagging outperformed 
RF and Gboost, with Gboost as the poorest one. Therefore, Bagging was 
selected as the optimal RM to be involved in creating the new fusion 
model. As shown in Fig. 5, the SDLM obtained AUCs of 0.767 and 0.823 
in the internal and external cohorts, which outperformed the WSDLM 
with AUCs of 0.661 and 0.651, respectively (Fig. 5a, b). The SDLM 
identified 70 % DR-TB and over 80 % success patients in the external 
cohort, but only 60 % DR-TB and success patients were predicted in the 
internal cohort (Fig. 5c, d). However, it is consistent with the perfor-
mance of RM. Finally, SDLM was selected as the optimal DL model and 
incorporated with Bagging to create the new fusion model. 

3.4. Performance evaluation of Bagging, SDLM and fusion model 

The accuracy, sensitivity, specificity and F1 score are shown in 
Table 2. For the Bagging, the accuracy, sensitivity, specificity and F1 
score were 0.805 vs. 0.800, 0.667 vs. 0.733, 0.862 vs. 0.815 and 0.667 
vs. 0.579 in the internal and external cohort, respectively. While for the 
WSDLM, the accuracy, sensitivity, specificity and F1 score were 0.585, 
0.583, 0.586 and 0.452 in the internal cohort, which was confirmed in 
the external cohort of 0.875, 0.733, 0.908 and 0.688. Results indicated 
that the optimal RM of Bagging outperformed the SDLM on both internal 
and external cohorts. Table 3 lists the AUC values and the corresponding 
95 % confidence interval (CI) of the fusion models proposed in this 
study. Testing on internal and external cohorts, the RM-based scheme of 
Bagging and the DL-based scheme of SDLM yielded AUC values of 0.789 
vs. 0.767 and 0.840 vs. 0.823, respectively. The new scheme perfor-
mance changed with the different fusion strategies when we applied the 
fusion method. The new final fusion model under different fusion stra-
tegies yielded AUCs from 0.767 to 802 in the internal cohort, and from 
0.831 to 0.857 in the external cohort (Table 3). Using the maximum 
fusion strategy, the fusion model could achieve the highest AUC values 
of 0.802 (95 % CI, 0.648 to 0.910) in the internal cohort and 0.857 (95 % 
CI, 0.761 to 0.926) in the external cohort (Fig. 6). In addition, the ac-
curacy, sensitivity, specificity and F1 score of fusion scheme with 
optimal performance (i.e., internal AUC = 0.802; external AUC = 0.857) 
were 0.878, 0.667, 0.966 and 0.762 in the internal cohort, and 0.850, 
0.733, 0.877 and 0.647 in the external cohort (Table 4). 

4. Discussion 

In this study, we developed three radiomics models (i.e., Bagging, RF 
and Gboost), two deep learning models (SDLM and WSDLM), and a 
fusion scheme with the different fusion strategies to predict TB treat-
ment outcomes using longitudinal CT images in both internal and 
external cohorts. 

Table 1 
Patient demographics and outcomes of 2 different cohorts.  

Demographics Internal 
Cohort (n =
204) 

External 
Cohort (n =
80) 

T/χ2 P 
Value 

Age (yr, mean ± sd.) 61.24 ± 18.42 59.14 ± 18.29 0.865 0.388 
Sex (n male) 221 (52.5 %) 100 (56.8 %) 0.934 0.334 
Outcomes     
Success (n (%)) 160 (78.4 %) 65 (81.2 %) 0.277 0.598a 

-Cured (n (%)) 88 (41.1 %) 52 (65.0 %) 12.755 0.002b 

-Treatment completed (n 
(%)) 

72 (35.3 %) 13 (16.2 %) NA NA 

Transferred to drug- 
resistant treatment (n 
(%)) 

44 (21.6 %) 15(18.8 %) NA NA 

a Comparison of outcomes of success and transferred to drug-resistant. 
b Comparison of outcomes of cured, treatment completed and transferred to drug- 
resistant. 
Abbreviations: NA, not applicable.  

Fig. 3. The 16 most predictive features were selected and used for RM devel-
opment. RM, radiomics model. 
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Clinical and demographic features were often used to predict treat-
ment outcomes, and the number of previous treatments, lack of a job and 
alcohol consumption were reported to be potential risk factors for the 
occurrence of DR-TB with an AUC of 0.74 [19]. However, such clinical 
and demographic information does not consider the phenotypic 
changes. More importantly, different factors were reported to have the 
strongest predictive performance, making it hard to obtain a general 
factor for practical application in clinical settings [20,21,7]. 

Radiomics is an effective tool to detect TB from CT images as it can 
offer internal features such as texture features, wavelet features and 
histogram features except for common features of shape and volume, 
which would help reflect more detailed information for TB lesions. In the 
study, 3 shape features and 13 texture features are the most predictive 
biomarkers to differentiate DR-TB. The shape feature describes the ge-
ometry of the ROI, which quantifies the shape of the ROI to reflect its 
degree of sphericity, and the texture feature represents the intensity 
level of the spatial distribution of voxels. Image texture is a spatial 
change that can be perceived or measured at the intensity level and is 
often considered a gray scale. The results showed that the DR-TB group 
differs from the success group in textures, which is consistent with the 
findings that texture features are relevant to DR-TB [16]). Previous 
studies have reported that radiomics model could distinguish TB from 
lung cancer using CT scans [22–24], but very few focused on DR-TB 
classification; a recent study reported a good performance was ach-
ieved to detect DR-TB from drug-sensitive TB with an AUC of 0.844 and 
0.829 in the training cohort and testing cohort, respectively [16]. The 
proposed radiomics feature based scheme in our study obtained a 
comparable performance with AUC values of 0.789 and 0.840 in internal 
and external cohorts. In our research, the final follow-up CT scans at the 
end of treatment were not involved in the testing to investigate the 
potential for prediction at an early stage, making it challenging for the 

radiomics tool to identify DR-TB. 
Various DL-based approaches to automated screening and detection 

of tuberculosis from radiological images achieved promising results 
[15,25,26]. In the current study, we applied different supervised and 
weakly supervised network methods to develop the DL models, aiming 
to investigate and compare the model trained by using ROI information 
as input in SDLM and using whole CT images without manual lesion 
contours in WSDLM. Results showed that the SDLM with ROI informa-
tion involved had better performance, which may be because the 
manual input of lesions annotation was necessary for DL model training 
to enhance signal-to-noise ratio with higher quality [26–28]. As re-
ported, classification or prediction of DR-TB from CT images is consid-
ered a challenging task by the deep learning network [29]. The best 
accuracy rate for the classification of DR-TB was 0.516 in the Tubercu-
losis Competition of ImageCLEF 2017 [29], and thereafter improved ac-
curacy of 0.6–0.7 was reported [30,31]. The fusion model in the current 
study performed well in predicting success and DR-TB cases with AUC of 
0.802 and 0.857 on internal and external datasets, which showed it has 
the potential to make TB treatment outcome predictions. 

Unlike previously reported TB detection models focused on learning 
imaging features at a single timepoint [25,26,32], the current research 
involves longitudinal CT scans to track radiographic changes over time 
(Fig. 7). In the study, the models were significantly predictive of TB 
outcomes using early follow-up CT scans, which allows for assessing 
patient outcomes at an early stage of the treatment. This may be because 
longitudinal CT scans can provide more lesion characteristics than the 
static images obtained at a single timepoint and allow for extracting 
those subtle interval changes to make an accurate prediction. To the best 
of our knowledge, few studies have applied longitudinal CT images to 
develop a TB treatment outcome prediction model. 

There are several limitations in the study. First, although an 

Fig. 4. Performance of the radiomics feature-based models in predicting TB treatment outcome. (a) ROC curves of three different radiomics models in the internal 
cohort; (b) ROC curves of three different radiomics models in the external cohort; (c) Normalized confusion matrix of the bagging model in the internal cohort; (d) 
Normalized confusion matrix of the bagging model in the external cohort. TB, tuberculosis; ROC, receiver operating characteristic. 
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independent testing was conducted, it only involved one external 
dataset. To objectively test the prediction model’s generalizability and 
reliability, it is recommended to have it be validated on multi-center 
independent datasets. For the next step of our study, multiple external 
datasets will be involved and compared to test the prediction model. 
Second, although the fusion scheme performance has been improved, it 
may not be the optimal way to combine the radiomics feature method 
and the DL method. Thus, we should investigate and develop new fusion 
methods to fuse the different types of features in the next step. 

5. Conclusions 

This is the first study to propose and independently validate radio-
mics feature-based scheme and DL-based scheme to predict TB treat-
ment outcomes using longitudinal CT scans. To further improve the 

prediction performance, we fused the prediction scores generated indi-
vidually by the two schemes to build the new fusion model. Results 
showed that the fusion scheme yielded higher AUC values in dis-
tinguishing between DR-TB and success, which is clinically beneficial for 
patients at the early stage of the treatment. 
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Fig. 5. Performance of the deep learning models in predicting TB treatment outcome. (a) ROC curves of two different deep learning models in the internal cohort. (b) 
ROC curves of two different deep learning models in the external cohort. (c) Normalized confusion matrix of the SDLM model in the internal cohort. (d) Normalized 
confusion matrix of the SDLM model in the external cohort. TB, tuberculosis; ROC, receiver operating characteristic; SDLM, supervised deep learning model. 

Table 2 
Performance of the Bagging and SDLM to predict success and failure cases in internal and external cohorts.  

Testing Dataset AUC P Value Accuracy 
(95 % CI) 

Sensitivity 
(95 % CI) 

Specificity 
(95 % CI) 

F1 Score 
(95 % CI) 

Internal Cohort       
Bagging 0.789 

(0.633–0.900)  
0.002 0.805 

(0.657–0.900) 
0.667 
(0.388–0.865) 

0.862 
(0.688–0.951) 

0.667 
(0.466–0.822) 

SDLM 0.767 
(0.609–0.885)  

0.005 0.585 
(0.434–0.723) 

0.583 
(0.319–0.807) 

0.586 
(0.407–0.745) 

0.452 
(0.292–0.622) 

External Cohort       
Bagging 0.840 

(0.633–0.900)  
<0.001 0.800 

(0.699–0.874) 
0.733 
(0.476–0.895) 

0.815 
(0.703–0.893) 

0.579 
(0.422–0.722) 

SDLM 0.823 
(0.609–0.885)  

<0.001 0.875 
(0.783–0.933) 

0.733 
(0.476–0.895) 

0.908 
(0.810–0.960) 

0.688 
(0.513–0.822) 

Abbreviations: AUC, area under the curve; SDLM, supervised deep learning model.  
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Table 3 
Performance of fusion models under different fusion strategies.  

Method Internal cohort External cohort  

AUC 95 % CI AUC 95 % CI 

Bagging  0.789 0.633–0.900  0.840 0.741–0.912 
SDLM  0.767 0.609–0.885  0.823 0.721–0.899 
Minimum  0.767 0.609–0.885  0.831 0.730–0.905 
Maximum  0.802 0.648–0.910  0.857 0.761–0.926 
0.1 × Bagging + 0.9 × SDLM  0.767 0.609–0.885  0.831 0.730–0.905 
0.2 × Bagging + 0.8 × SDLM  0.796 0.641–0.906  0.835 0.735–0.909 
0.3 × Bagging + 0.7 × SDLM  0.802 0.648–0.910  0.843 0.745–0.915 
0.4 × Bagging + 0.6 × SDLM  0.790 0.635–0.901  0.850 0.753–0.920 
0.5 × Bagging + 0.5 × SDLM  0.799 0.644–0.908  0.851 0.754–0.921 
0.6 × Bagging + 0.4 × SDLM  0.793 0.638–0.903  0.856 0.760–0.925 
0.7 × Bagging + 0.3 × SDLM  0.793 0.638–0.903  0.855 0.759–0.924 
0.8 × Bagging + 0.2 × SDLM  0.790 0.635–0.901  0.857 0.761–0.926 
0.9 × Bagging + 0.1 × SDLM  0.790 0.635–0.901  0.857 0.761–0.926 
Abbreviations: AUC, area under the curve; SDLM, supervised deep learning model.  

Fig. 6. Performance of the fusion model in predicting TB treatment outcomes of DR-TB cases and success cases. (a) ROC curves of the model in the internal cohort. 
(b) ROC curves of the model in the external cohort. (c) Normalized confusion matrix of the model in the internal cohort. (d) Normalized confusion matrix of the 
model in the external cohort. TB, tuberculosis; DT-TB, drug-resistant tuberculosis; ROC, receiver operating characteristic. 

Table 4 
Performance of the optimal fusion model to predict success and failure cases on internal and external cohorts.  

Testing Dataset AUC 
(95 % CI) 

P value Accuracy 
(95 % CI) 

Sensitivity 
(95 % CI) 

Specificity 
(95 % CI) 

F1 Score 
(95 % CI) 

Internal Cohort 0.802 
(0.648–0.910)  

0.002 0.878 
(0.740–0.951) 

0.667 
(0.388–0.865) 

0.966 
(0.814–0.999) 

0.762 
(0.545–0.898) 

External Cohort 0.857 
(0.761–0.926)  

<0.001 0.850 
(0.754–0.914) 

0.733 
(0.476–0.895) 

0.877 
(0.773–0.939) 

0.647 
(0.479–0.786) 

Abbreviations: AUC, area under the curve.  
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