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Abstract

Young age, female sex, absence of comorbidities, and prior infection or vaccination

are known epidemiological barriers for contracting the new infection and/or

increased disease severity. Demographic trends from the recent coronavirus disease

2019 waves, which are believed to be driven by newer severe acute respiratory

syndrome coronavirus 2 (SARS‐CoV‐2) variants, indicate that the aforementioned

epidemiological barriers are being breached and a larger number of younger and

healthy individuals are developing severe disease. The new SARS‐CoV‐2 variants

have key mutations that can induce significant changes in the virus‐host interactions.

Recent studies report that, some of these mutations, singly or in a group, enhance

key mechanisms, such as binding of the receptor‐binding domain (RBD) of the viral

spike protein with the angiotensin‐converting enzyme 2 (ACE2) receptor in the host‐

cells, increase the glycosylation of spike protein at the antigenic sites, and enhance

the proteolytic cleavage of the spike protein, thus leading to improved host‐cell

entry and the replication of the virus. The putative changes in the virus–host in-

teractions imparted by the mutations in the RBD sequence can potentially be the

reason behind the breach of the observed epidemiological barriers. Susceptibility for

contracting SARS‐CoV‐2 infection and the disease outcomes are known to be in-

fluenced by host‐cell expressions of ACE2 and other proteases. The new variants

can act more efficiently, and even with the lesser availability of the viral entry‐

receptor and the associated proteases, can have more efficient host‐cell entry and

greater replication resulting in high viral loads and prolonged viral shedding, wide-

spread tissue‐injury, and severe inflammation leading to increased transmissibility

and lethality. Furthermore, the accumulating evidence shows that multiple new

variants have reduced neutralization by both, natural and vaccine‐acquired anti-

bodies, indicating that repeated and vaccine breakthrough infections may arise as

serious health concerns in the ongoing pandemic.
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1 | INTRODUCTION

Since the onset of the coronavirus disease 2019 (COVID‐19) pan-

demic a large number of variants of the causative agent, Severe

Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2), have

arisen, of which some have raised serious epidemiological concerns.

The successive COVID waves triggered by emerging variants are

presenting with varying epidemiological characteristics than the first

wave caused by wild‐type (WT) strain and the early mutants.1–4 WT

strain was known to cause greater fatality among the aged, male sex,

and those with comorbidities.5–7 In contrast, the data coming out

from the recent preclinical/clinical and epidemiological studies are

giving clear indications that multiple newer variants, more particularly

the variants of concerns (VOCs), can potentially breach the set epi-

demiological barriers and are capable of causing significant fatality

across the demographic categories.1–4 Moreover, a gain of resistance

against the natural and vaccine acquired, and multiple therapeutically

used monoclonal antibodies have been noted in multiple variants,8–11

which may make the gain of herd immunity against the SARS‐CoV‐2

infection far‐reaching goal. In this perspective, we examine the

strength of the empirical evidence available for the increased trans-

missibility, virulence, and immune escape in emerging SARS‐CoV‐2

variants and provide assessments of their potential impacts on the

epidemiological characteristics of the pandemic. Our propositions for

the definitive changes in the characteristics of the COVID‐19 pan-

demic are primarily based on the analysis of the current epidemio-

logical trends and findings from the preclinical and clinical studies,

and evidence‐based interpretations of the lineage characterizing

mutations (mainly in the spike protein regions) appearing in the

emerging SARS‐CoV‐2 variants.

1.1 | Wild‐type SARS‐CoV‐2

The SARS‐CoV‐2 is an enveloped positive‐sense single‐stranded

RNA virus (~29.9 kB in length) belonging to the genus betacor-

onaviruses (BCoVs). The BcoVs also includes SARS‐CoV‐1 and the

Middle East Respiratory Syndrome coronavirus (MERS‐CoV) which

had caused earlier acute respiratory syndrome epidemics of

SARS‐2002/2003 and MERS‐2012, respectively.12 The SARS‐CoV‐2

has a unique spherical structure with a ribonucleic acid core and

proteinaceous double‐layered envelop, the outer layer of which

contains unique spike‐like features composed of glycoproteins

(Figure 1).12,13 To infect a host cell, SARS‐CoV‐2 requires binding to

the cell‐surface receptor, angiotensin‐converting enzyme‐2 (ACE2),

through the receptor‐binding domain (RBD) present on its spike (S)

protein.13,14 As a prerequisite to binding to ACE2, it is necessary that

the viral spike protein (S) gets cleaved by a set of host proteases—an

event called “priming or activation” which is considered essential for

the fusion of the virus with the host cell‐membranes.13,14 The known

host proteases for SARS‐CoV‐2 are transmembrane serine protease 2

(TMPRSS2) and furin, are expressed in the cytoplasmic membrane,

and Cathepsin B or L (CTS‐B or L) is expressed in the endosomal

membranes of the host cells (Figure 1).14–16 ACE2 has been a host‐

cell entry receptor for a few other CoVs causing acute respiratory

illness as well, such as SARS‐CoV‐1 and HCoV‐NL‐63.13,14 The host‐

cell entry receptor ACE2 and entry associated proteases are not

limited only to the respiratory system, but are widely expressed

across the human tissue types, which is a stated reason why beyond

the respiratory system pathology COVID‐19 leads to multiorgan in-

volvement and a systemic illness.17 Notably, ACE2 is an interferon

(IFN) stimulated gene18 hinting that SARS‐CoV‐2‐receptor binding

mediated dysregulation of ACE2 expression may be a likely molecular

mechanism responsible for prominent IFNs‐dysregulation character-

istically observed in COVID‐19 patients.19

SARS‐CoV‐2 has a close genomic sequence resemblance to a bat

CoV RaTG3 (~96%) and to SARS‐CoV‐1 (~79%) indicating an evolu-

tionary linkage among these viruses.20 Of note, virus‐host interac-

tions are very similar for the WT strains of SARS‐CoV‐1 and

SARS‐CoV‐2, however, the later has gained multiple advantageous

mutations within the RBD encompassing receptor binding

interface.21,22 The recent studies examining the strength of virus

RBD:ACE2 complex have established that SARS‐CoV‐2 has a more

efficient binding to ACE2 than the SARS‐CoV‐1,21,23 thus imparting it

higher transmissibility and virulence than the later. Interestingly, the

inclusion of furin in the list of entry associated protease also seems

an evolutionary gain in SARS‐CoV‐2 as it is not present in SARS‐CoV‐

1 or other SARS‐related viruses.14 The furin cleavage site (FCS) of

SARS‐CoV‐2 is a small stretch of peptide (PRRAR) inserted at the

intersection of spike segments S1 and S2 (681–685 aa residues),

facilitating proteolytic cleavage of the viral spike protein at that

point14 (Figure 1). Noteworthy, FCS is not present in SARS‐CoV‐1

and other SARS‐related viruses (although it is present in a number of

other human coronaviruses, including MERS‐CoV, HKU1‐CoV, and

OC43‐CoV) and is considered as an evolutionary gain in SARS‐CoV‐2

towards imparting it higher virulence.14 Furin cleavage also improves

further proteolytic cleavage by another host‐proteases TMPRSS2 at

S1‐S2 intersection—an event essential for the priming of the virus

membrane for host‐cell fusion.24–26

Apart from the spike protein, multiple nonstructural proteins

(NSPs) have been linked to higher virulance and excessive im-

munological dysregulations by SARS‐CoV‐2 in comparison to SARS‐

CoV‐1 and other CoVs, and influenza viruses. Of note, SARS‐CoV‐2

manipulates the host immune cells to ensue a delayed and excessive

IFNs response, which is a key innate defense mechanism for the

protection against new viral infections (reviewed in Kumar et al.19).

2 | EMERGING SARS‐COV‐2 VARIANTS

Emerging variants are classified as a variant of interest (VOI) or global

VOC by WHO depending upon epidemiological characteristics of the

strain. A VOI status is designated if the strain has been identified to

cause community transmission/multiple COVID‐19 cases/clusters. A

VOC is designated to an emergent strain when a variant is detected

in multiple countries and either the strain causes an increase in
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transmissibility or detrimental changes in COVID‐19 epidemiology; or

increase in virulence or changes in the clinical disease presentation;

or decrease in the effectiveness of public health and social measures

or available diagnostics, vaccines, and therapeutics.27 The United

States Centers for Disease Control and Prevention (US‐CDC) ad-

ditionally, classifies Variants of High Consequence, although at pre-

sent there has been no variant under this category.28 A list of

emerging variants, along with a description of key mutations, date,

and country of origin, and current evidence for an increase in

transmissibility, lethality, or immune escape, is presented in Table 1.

The SARS‐CoV‐2 strain with D614G (B.1) was the first notice-

able variant having a significant edge over the WT strain.29 The

variant was found to be more transmissible29 and by the end of 2020

it almost replaced the WT strain globally. However, there had been

no substantial evidence suggesting that it had increased virulence.

Following B.1 multiple variants have emerged, most are its descen-

dants bearing D614G: 23330/A→G) as the key mutation. Post

dominance of B.1 over theWT strain, successive variants are showing

faster global spread and gain of dominance against the existing

strains (Figure 2).

B.1.1.7, a VOC, in a short time period has become a globally domi-

nant strain replacing the B.1. Some of the variants have been found to

have significantly higher transmissibility and virulence than the wild and

B.1 strains and have triggered subsequent waves of COVID‐19 in mul-

tiple countries, primarily B.1.1.7, B.1.351, P.1, and B.1.617.2, which have

been currently designated as the VOCs by World Health Organization

(WHO).27 The most recent of the VOCs have been B.1.617.2, which is

thought to be responsible for triggering the recent devastating second

COVID‐19 wave in India.30,31 B.1.617 lineage is of special interest being

the latest variant in the list.27 Preliminary evidence suggests higher

transmissibility and perhaps more lethality from this lineage. First de-

tected in India in October 2020, this lineage soon developed into three

sub‐lineages: B.1.617.1‐3. Key mutations are common among these three

sublineages, however, surprisingly, B.1.617.2, which was first detected in

December 2020, is spreading much faster than the others and has be-

come the dominant strain in India and in parts of UK, and also has been

reported from at least 161 countries across the globe (as of November 1,

2021).27,30 More recently, another variant with closest phylogenetic

linkage with B.1.617.2 variant is reported from Vietnam.32 The new

variant has a characteristic 144Y: 21991‐21993 deletion (also present in

B.1.1.7) in spike protein sequence, however, other key mutations are

shared with B.1.617.2. It has shown higher transmissibility in situ and

possibly fueled a recent wave of infections in the country. However,

there is no evidence whether it had increased lethality.32 Furthermore, a

F IGURE 1 Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2): host‐cell entry mechanisms. Entry of SARS‐CoV‐2 into host cell
depends on binding of receptor‐binding domain (RBD) of viral spike (S) protein to the cell surface receptor angiotensin‐converting enzyme‐2
(ACE2). For a successful binding to ACE2, “S” protein is required to be cleaved by the host proteases, TMPRSS2 and Furin. Another host
protease CTSL is involved in a pH‐dependent cleavage of the S protein inside the endosomes. The binding to ACE2 leads to endocytosis and
allows for replication of the virus inside the host cell. The newly formed virions are released after bursting of the infected cell and spread further.
Viral infection of the host‐cell subsequently leads to activation of innate host defense mechanism, recruitment of the immune cells by the
infected tissue, and synthesis and release of the cytokines
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newer mutation (K417N: 22813, G→T), which is known to be present in

B.1.351 and P.1, has appeared in B.1.617.2. The new variant has been

named B.1.617.2.1 or ‘Delta plus K417N' (a.k.a. AY.1) and it has been

currently reported from Nepal, India, UK, USA, and a few other

countries.33,34 A further sub‐lineage of Delta plus K417N with new spike

mutations as V70F (69), A222V, T299I, and A958S, and exclusion of

G504Q has been reported from these countries and has been named as

B.1.617.2.2 or AY.2.33,35 Furthermore, multiple other variants have been

adding up to the list of Delta plus lineages—AY.3‐47.33 Interestingly, the

K417N spike mutation has been reverted back in AY.3‐47.33 Of note,

WHO still considers AY strains as the sub‐lineages of VOC Delta,27 and

the studies are still awaited which would establish whether they have an

advantage over Delta variant in reference of the key epidemiological

characteristics. A study comparing genomic sequences of the Delta and

Delta plus (AY.1) variants showed that the high prevalence mutations

(more than 20%) were greater in Delta plus than in Delta (40 vs. 29).36

Theoretically, based on the genomic location of the character-

izing mutations, it can be assumed that this variant, i.e. Delta plus

(AY.1), may have an advantage against the neutralization by natural

or acquired antibodies37; however, currently, there is not much

knowledge about it. As per the latest epidemiological surveillance,

from Public Health England (PHE), UK, in the preliminary analysis of

the limited data, AY.1 was found capable of doing breakthrough in-

fections (27/36) however only very few cases (2/36) were infected

after 14 days of the second dose of vaccine. Notably, the majority of

the infected were from the younger age group (<60 year) (34/36).35

3 | KEY MUTATIONS IN EMERGING
SARS‐COV‐2 VARIANTS

Each of the emerging variants harbors the key lineage identifying

mutations within the spike as well as non‐spike protein regions

(Figures 3, 4). Many of the variants show common mutations, pri-

marily in the spike region. The shared mutations can have a founder

effect, however, some of these are shared among the strains which

are phylogenetically not very close indicating their selection against

the evolutionary adaptive pressure.

3.1 | Spike mutations

The spike mutations are enriched at the regions which bear epitopes

for the natural, vaccine acquired, and monoclonal antibodies, primarily

at the receptor‐binding domain (RBD) and N‐ terminal of spike (S)

protein (Figure 3). It appears that these mutations are imparting the

emerging variants a selection advantage over theWT strain (and early

variants), making them more suitable for the spread in a population

that has developed only partial herd immunity.37 The selective muta-

tions which are either present at (N501Y: 22991/A→T) or in the vi-

cinity of the receptor‐binding motif (RBM) (L452R:22917:T→G,

E484K: 22940/G→A, and T478K:22995/C→A) are believed to stabi-

lize binding with ACE2 by reducing binding energy and creatingT
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stronger electrostatic interactions or new hydrogen bonds.10,37–39

Interestingly, E484K and N501Y, the lineage characterizing mutations

for B.1.351 and P.1, can potentially compensate for the RBD:ACE2

complex stability reduction, putatively caused by K417N/T.37,40 It is

currently not known whether a similar advantage for the emerging

variants in B.1.617.2 lineage—AY.1‐2, which contains L452R and

T478K, and K417N as the key spike mutations at RBD:ACE2 interface.

A comparative analysis of the prevalence of key spike mutations (T95I,

G142D, R158G, L452R, T478K, and K417N) at different time points

show that these mutations have increased over time in Delta, and all

mutations had a significantly higher prevalence in the Delta plus var-

iant (AY.1). A progressive increase in the prevalence of key spike

mutations from Delta to Delta plus indicates that not only K417N but

other spike mutations too may have significant role in determining

epidemiological properties of this emerging variant.36

The epistasis interactions between the spike mutations in the

emerging variants are indicating that continued mutagenesis may

have a mechanistic role in the maintenance of the evolutionarily

achieved stability for RBD:ACE2 complex.41

Furthermore, there is concrete proof that a key mutation oc-

curring at amino acid position 681 in the spike protein of B.1.1.7 and

B.1.617 lineage variants (L—H/R: 23604/C→G) improves the in-

fectivity of these variants,42–44 which we discuss later in this article.

3.2 | Non‐spike mutations

Each of the emerging variant has multiple mutations in the non‐

spike protein regions (Figure 4). Notably, many of the non‐spike

mutations are also shared across the variants. Most common of

F IGURE 2 Phylodynamics of emerging SARS‐CoV‐2 lineages across the globe. (Data source: GISAID Initiative (www.gisaid.org, accessed on
November 1, 2021. The image is created using EpiCoV™ application using 3572 SARS‐CoV‐2 genomes sampled between December 2019 and
October 2021.). SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2

F IGURE 3 SARS‐CoV‐2 lineage specific mutations in spike protein regions. (Mutations with > 75% prevalence in at least one lineage are
shown. Data source: www.outbreak.info, accessed on August 18, 2021). SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2
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the shared mutations is P314L in the NSP12b region encoding for

RNA‐dependent RNA polymerase (RdRp).31,45 The mutation, first

appeared in B.1 strain and thereafter seems to be persisting in the

subsequently emerging variants.46 A mutation that introduces a

premature stop codon at position 27 of ORF8 protein is char-

acteristically noted in the sequence of Alpha variant (B.1.1.7).47

An inactivating mutation in ORF8 protein sequence is important

as this is an immune‐evasive protein involved in downregulation

of major histocompatibility complex class I (MHC‐I) in host

cells.48 However, currently, there is little evidence available that

whether this mutation in the viral sequence influences host in-

teractions with the Alpha variant. Differential distribution of the

multiple non‐spike mutations has been noted between Delta and

Delta plus variants. For example, nsp3:P822L (ORF1a:P1604L),

nsp4:A446V (ORF1a:A3209V), nsp6:V149S (ORF1a: V3718S),

and nsp6:T181I (ORF1a:T3750I) are present at 16% in Delta, but

at 58% in Delta plus (AY.1).36

Non‐spike mutations in the emerging variants have been yet less

studied for their biological significance, albeit, their possible con-

tributions in altered interactions with the host and the further impact

on epidemiological characteristics of the emerging variant cannot be

denied.

4 | IMPLICATIONS OF EMERGING
SARS‐COV‐2 VARIANTS

4.1 | Increased transmissibility and virulence

Increased transmissibility and virulence have been speculated for

nearly all of the VOCs based on the analysis of the structural and

functional changes imparted by the mutations.44 The predictions

have been further validated in recent animal model studies demon-

strating increased lethality for some of these variants, primarily

F IGURE 4 SARS‐CoV‐2 lineage‐specific mutations in non‐spike protein regions. (Mutations with > 75% prevalence in at least one lineage are
shown. Data source: www.outbreak.info, accessed on August 18, 2021).SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2
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B.1.1.7 and B.1.617.1.49,50 Multiple epidemiological studies have in-

dicated increased lethality of emerging variants, however, most of the

available data is for B1.1.7. Emerging evidence is substantiating that

increased transmissibility is a characteristic feature for other multiple

new variants including B.1.351, and P1 and B.1.617.2.31,51,52

The emerging variants are accumulating mutations in the spike

protein— which encompasses the binding site for the host‐cell entry‐

receptor and is also the most antigenic region of the virus, towards

which natural and acquired antibodies are targeted.44 Key mutations

in the spike protein (Table 1), primarily in the RBD are believed to

have introduced conformational changes in it leading to stronger

binding to the key host‐cell entry‐receptor ACE2.37,44 Few of the

newer mutations have particularly occurred at the receptor‐binding

motif (RBM) of the RBD that creates newer contact sites with

ACE2.37,44 Certain other mutations have also resulted in strong

electrostatic interactions or newer hydrogen bonds.37 This was ear-

lier observed for the D614G variant (B.1).37 Multiple recent in situ

and animal model studies have confirmed that emerging variants in-

deed cause higher viral load and prolong viral shedding, however,

whether these properties are attributed to the mutations linked to

RBD:ACE2 binding is still not clear.37,44,49,50,53,54 Of interest, multiple

studies have demonstrated that the WT strain of SARS‐CoV‐2 had

gained instability for RBD:ACE2 binding when it added new muta-

tions at the binding motif present in SARS‐CoV‐1, which uses the

same entry‐receptor ACE2 and had caused the first epidemic of SARS

in 2002. SARS‐CoV‐2 RBD:ACE2 binding stability was further im-

proved with the D614G mutation in WT SARS‐CoV‐2, which stabi-

lized the trimeric structure and created a more open conformation of

the RBD allowing a stronger binding with ACE2, and also enhanced

furin mediated proteolytic cleavage of the spike protein at the S1/S2

junction. It is noteworthy that the emerging variants are mostly

descendants of the B.1 lineage and carry forward the D614G mu-

tation. Emerging evidence indicate that the newer mutations are

further improving the RBD:ACE2 binding in the sub‐lineages of

B.1.38,41,43,55–57 However, whether that makes any clinical difference

is still not known.

Interestingly, increasing evidence from in situ studies sub-

stantiates the claim that the mutations in the spike protein of B.1.1.7

and B.1.617 lineage variants occurring at amino acid position 681

(P—H/R), which falls in the furin cleavage site (FCS), improve

proteolytic cleavage of the spike protein and strengthening the fusion

of the viral membrane with the host cell.24,42,50,58

Recent evidence from in situ studies has demonstrated enhanced

virus‐host membrane fusion for the B.1.617 lineage variants which

contain P681R.58,59 An improved viral–host cell fusion results in

larger syncytia formation.60 Syncytia formation—fusion of the in-

fected host‐cell with others facilitating viral spread— has been a

distinctive characteristic of SARS‐CoV‐2 when compared to

SARS‐CoV‐1—believed to impart higher transmissibility.25,60,61

Recent reports have shown that B.1.617 lineage variants form larger

syncytia, however, whether that contributes to the increased trans-

missibility and virulence remains to be established.58,59 A more effi-

cient virus‐host membrane fusion may not only impart increased

transmissibility but also may be providing the variants increased

virulence by facilitating higher tissue tropism, which, in turn, induces

a stronger immunogenic response by the host and consequently

widespread tissue injury leading to more severe disease.

A recent study traced the index cases and analyzed viral loads in

the patients within a community outbreak of B.1.617.2 in China. The

authors noted that the incubation period for developing COVID‐19 is

reduced to 4 days with B.1.617.2 variant, in comparison to average of

6 days for the WT strains. Moreover, the viral loads were observed,

on average, approximately 1000 times more for this variant.53 An-

other recent study conducted in the UK population further noted

that risk of hospitalization and emergency visits doubled with

B.1.617.2 in comparison to B.1.1.7 infection (Hazard ratio [HR], 95%

confidence interval [CI]: 2.26 [1.32–3.89]).62

Currently, the studies examining FCS mutation gain for the other

emerging variants, such as B.1.617.2, are lacking. If novel mutations

in the SARS‐CoV‐2 FCS contribute to increasing virulence, this is an

indication that further mutations may appear within/nearby this site.

Notably, B.1.617. 2 reflects to have the highest transmissibility

among the sub‐lineages of B.1.617, and it is also 50%–60% more

transmissible than B.1.1.7, for which reasons are currently very little

explained.31,52,63 The higher transmissibility of B.1.617. 2 may be

attributed to the unique set of spike mutations it bears.64 Compared

with B.1.617 (S: L452R, E484Q, D614G, del681, and del1072),

B.1.617.1 (S: T95I, G142D, E154K, L452R, E484Q, D614G, P681R,

and Q1071H), and B.1.617.3 (S: T19R, L452R, E484Q, D614G, and

P681R), B.1.617.2 has more number of spike mutations (S: T19R,

G142D, del156‐157, R158G, L452R, T478K, D614G, P681R, and

D950N) (Table 1). It has also a greater number of spike mutations at

or in vicinity of the RBM (L452R, E484K, and T478K) of spike protein,

which suggests it may have a greater advantage in binding to host

ACE2.64

Of note, the emerging variants have multiple mutations in the

non‐spike region (Figure 4). The non‐spike proteins have proven role

in determining the virulence of the SARS‐CoV‐2 wild strain, primarily

NSP1, 3, 10, 16, and ORF814; however, at present, there is very little

evidence available in the support of any of the non‐spike protein

region mutations having a distinctive influence in increasing the

virulence of the variants. Moreover, how the new mutations in the

emerging variants are affecting the host‐cell metabolism, will greatly

affect their success in gaining the entry and multiplication inside the

cells.65 This also requires to be explored in‐depth to understand the

evolving host‐virus interactions in the emerging variants.

4.2 | Increasing immune escape

Recent studies have shown that most of the emerging variants, pri-

marily VOCs, have gained a certain level of resistance against the

natural and vaccine‐acquired antibodies (Table 1).9,58,66 Resistance

has been also reported against the multiple monoclonal antibodies

currently being used in the treatment of COVID‐19.8,67,68 A sig-

nificant fall in antibody‐mediated neutralization has been observed in
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most of the variants (Table 1). The most likely mechanisms for the

gain of immune escape by variants are (i) inclusion or deletion of

amino‐acid residues at immunogenic epitopes, thus bringing con-

formational changes at the binding interface, (ii) remodeling of the

electrostatic surface potential, and (iii) gain of additional glycosylation

sites thus shielding the binding site for the neutralizing

antibodies.10,37,39,44,56,69 Gain of an extra glycosylation site at spike

region has been reported for P1 variant in a preprint study.70 In

another recent study, Liu et al analyzed the crystal structures of viral

RBD‐Fab (antigen‐binding fragment) complexes in an attempt to

elucidate the mechanism of reduced antibody potency to B.1.617

lineage variants. The authors noted that a mutation at the residue

position 452 (leucine to arginine) in the variants has led to an increase

in the RBD side‐chain interacting with the 16‐residue‐long heavy

chain (HC) complementarity determining region (CDR) 3 of the Fab,

thus interrupting antibody binding (mAb 278).71

Clinical evidence of the gain of immune escape against natural

and acquired infections has been continuously reflected in increasing

trends of re‐infections and vaccine breakthrough infections, which

supposedly are being caused by the emerging variants.31,59,72 Most

recent variants, as the emerging evidence suggests, particularly

B.1.617.2, seem to be more capable of establishing a re‐infection and

the vaccine breakthrough infections.31,73 The mutations which are

present in NTD (T19R, R158G, del156‐157) of the spike protein of

B.1.617.2 occur on the prominent monoclonal antibody recognition

site, which indicates a likely reason why this strain is more efficient in

evading antibody recognition.8 The latest variants in B.1.617.2

lineage—or Delta plus K417N or AY.1 and AY.2 (Figure 5)—are also

found to be capable of doing breakthrough infections, however, the

data is currently limited.35,73 Notably, K417 locus on SARS‐CoV‐2

RBM is a known binding site for the monoclonal antibodies in ther-

apeutic use, such as CB637 and its inclusion may have increased the

immune escape capability of the AY lineage variants.74 A reversal of

characteristic Delta plus lineage mutation K417N in later AY sub‐

lineages, AY.3‐47, is astonishing (Figure 5), although the evolutionary

reasons for regression of this mutation are not well understood yet, a

destabilizing effect of this mutation on RBD:ACE2 binding may be a

plausible explanation.74 Currently, the biological evidence is limited

which can explain the clinical significance of this reversal.33

4.3 | Clinical and epidemiological significance

Increased transmissibility of the emerging variants, primarily B.1.351,

P1, and B.1.617.2 have predicted their prevalence in the population

in comparison to theWT strain and early variants31,51,52,75 (Figure 6).

F IGURE 5 Lineage specific mutations in spike protein regions of SARS‐CoV‐2 Delta plus variants. (Mutations with > 75% prevalence in at
least one lineage are shown. Data source: www.outbreak.info, accessed on November 1, 2021). SARS‐CoV‐2, severe acute respiratory syndrome
coronavirus 2
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Accumulating spike mutations imparting greater transmissibility has

been reflected first in a gain of global dominance for B.1 strain with

D614G mutation, followed by its recent replacement by B.1.1.7

which shows greater transmissibility,63 perhaps arising because of

multiple new mutations within this strain.38 B.1.1.7 is uniquely missed

for detection by the PCR kits targeting S gene due to the char-

acteristic deletion of amino acids 69–70 in this strain.76 More recent

variants have now either taken over or outpacing the B.1.1.7 strain in

large parts of the world. The global spread of B.1.617.2 has been

surprisingly fast (Figure 6),77 thus indicating a very high level of

adaptive selection for this strain.

Rapidly spreading newer variants can potentially create new waves

of the pandemic which has been recently observed in many countries

across the globe. The most recent has been a devastating second wave in

India, which is believed to be triggered by B.1.617 lineage variants, pri-

marily B.1.617.2.30,31,78 Increased transmissibility and virulence of the

emerging variants may cause a breach of the known epidemiological

barriers, like age and sex, for contracting the infection and disease se-

verity and outcomes known for theWT strain.1,2,35,51,52,79 A large body of

the studies since the first COVID‐19 wave has established that old aged

(>60 year)7,80 and male sex81,82 are risk factors for developing severe

COVID‐19 and higher mortality following infection with WT strain. In

contrast, recent epidemiological data from the countries reporting new

waves have shown a deviation from the established pattern. An incre-

mental increase in transmissibility of the emerging variants from B.1 to

B.1.617.2 suggests that more numbers of younger age individuals, in-

cluding pediatric age group, may get involved in the pandemic as the

strains further evolve.1,2,4,35,79 Also, early indications for narrowing the

sex‐based differences in patient outcomes is an important epidemiologi-

cal concern.83,84

In a recent study, among the Indian population, using data from

the national clinical registry for COVID‐19 authors have compared

clinical profiles of the hospitalized patients during two successive

COVID‐19 waves (N = 12 059 and 6903). The authors noted that the

mean age of the patients was significantly lower in the second wave

(48.7 [18.1] year vs. 50.7 [18.0] year, p < 0.001) with more numbers

of patients in the younger age groups intervals (<20, and 20–39 year).

The proportion of men were lower in second wave (4400 [63.7%] vs.

7886 [65.4%], p = 0.02). A significantly higher proportion (2625

[48.6%] vs. 4420 [42.8%], p < 0.003) complained of severe symptoms,

such as shortness of breath, developed acute respiratory distress

syndrome (ARDS) (422 [13%] vs. 880 [7.9%], p < 0.001), and required

supplemental oxygen (1637 [50.3%] vs. 4771 [42.7%], p < 0.001) and

mechanical ventilation (260 [15.9%] vs. 530 [11.1%], p < 0.001).

Mortality also is obseved to be significantly higher (odds ratio [OR]:

1.35 [95% CI: 1.19, 1.52]) in all age groups except in < 20 year. The

observations of this study validate that the newer variants driven by

successive COVID‐19 waves have significantly altered epidemiolo-

gical characteristics.78 Notably, the first and second COVID‐19

waves in India were most likely driven by WT strains and B.1.617.2

(Delta variant), respectively.30,31 More recently, Kumar et al.,84 con-

ducted a cross‐sectional study of COVID‐19 cases in the Indian po-

pulation caused by D614G variant (B.1) (which shares close

epidemiological similarity to WT strain) and Delta variant of SARS‐

CoV‐2 (N = 9500, NDelta = 6238, NWT = 3262].84 The authors noted

that in comparison to B.1 higher proportion of young individuals (<20

year) were infected (0–9 year: 4.47% vs. 2.3%, 10–19 year: 9% vs.

7%). Further, a higher proportion of total young population (10% vs.

4%) had developed symptomatic illness and was hospitalized. The

proportions of women contracting an infection (41% vs. 36%) and

developing symptomatic illness and hospitalized (<20 year, 14% vs.

3%, 20–59 year, 75% vs. 55%) were also increased. Notably, the

mean age was significantly lower for contracting infection (men =

37.9 [±17.2] vs. 39.6 [±16.9] year, women = 36.6 [±17.6] vs. 40.1

[±17.4] year (p < 0.001]) as well as developing symptoms/hospitali-

zation (men = 39.6 [± 17.4] vs. men = 47 [±18] year, women = 35.6

[±16.9] vs. 49.5 [±20.9] year, [p < 0.001]). The total mortality was

about 1.8 times higher and the risk of death is increased irrespective

of the sex (OR: 3.034, 95% CI: 1.7–5.2, p < 0.001). Interestingly, al-

though, the proportion of mortality was still higher in men than

women, an increased number of women (32% with Delta vs. 25%

with B.1) died.84

F IGURE 6 The global spread of emerging SARS‐CoV‐2 variants. (Data source: GISAID Initiative (www.gisaid.org, accessed on Nov 1, 2021.
The image is created using EpiCoV™ application using 3572 SARS‐CoV‐2 genomes sampled between December 2019 and October 2021.).
SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2

KUMAR ET AL. | 11

http://www.gisaid.org


Moreover, increasing incidences of severe disease and poor

outcomes in individuals with no significant co‐morbidity are con-

cerning and should be considered alarming.2,35,51 Also, repeated and

vaccine breakthrough infections have been reported frequently with

the new variants.31,35

The changing epidemiological characteristics of the COVID‐19

pandemic with the emergence of more transmissible and virulent

variants give clear indications that an increasing number of younger

and healthy individuals, irrespective of sex, may develop severe

COVID‐19 as these variants dominate over the global population.

Increasing immune escape against natural, vaccine acquired and

therapeutically administered monoclonal antibodies in the emerging

variants is a grave public health concern threatening of possible fu-

ture COVID‐19 waves (Table 1).85 High transmissibility of the newer

variants, including within the earlier infected and vaccinated, can not

only have a serious impact on the treatment and vaccination strate-

gies but this can potentially fail the ongoing pandemic containment

measures and may make reaching the post‐immunization herd im-

munity improbable. Notably, most of the world's population is still

unvaccinated. Hence, there is strong plausibility that key mutations in

the newer variants may get further selected or give way to the more

adaptive mutations, as they encounter partially immunized

hosts globally. This may not only prolong the duration of the pan-

demic but also can tremendously increase the burden of globally

active cases.

5 | CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Increasing numbers of the studies have now indicated higher trans-

missibility and virulence, and gain of immune escape by the emerging

SARS‐CoV‐2 variants. There is compelling evidence to reason that

these variants can potentially breach key epidemiological barriers set

by the WT strain and the variants that emerged in the earlier days of

the pandemic. These newer developments at the population level

viral dynamics caused by the selection of adaptive mutations may

render the control measures ineffective. Immediate strong measures

need to be taken to put a brake on the spread of the more threa-

tening variants. A population‐matched local and global surveillance of

the further changes in the SARS‐CoV‐2 genome is the need of the

hour to ensure that newly emerging variants are timely identified and

contained. Further, intensive clinical and epidemiological studies will

be necessary to accurately assess the health impacts of the newer

variants, which we still know very little about. Using variant‐specific

PCR kits will help in the rapid detection of these variants, and hence

it presents an immediate necessity. Moreover, the development of

the monoclonal antibodies and vaccines targeting more conserved

regions of the spike protein, immunizing the population against cur-

rently dominating variants, giving booster doses to those who are

vaccinated, and vaccinating the unexposed and vulnerable groups on

priority, are other key necessary measures, which needs to be taken

on, in priority.
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