An Update on Coronavirus Disease 2019 (COVID-19) and Pregnancy

Denise J. Jamieson, MD, MPH, Sonja A. Rasmussen, MD, MS

PII: S0002-9378(21)00991-1

DOI: https://doi.org/10.1016/j.ajog.2021.08.054

Reference: YMOB 14047

To appear in: American Journal of Obstetrics and Gynecology

Received Date: 23 June 2021

Revised Date: 23 August 2021

Accepted Date: 26 August 2021

Please cite this article as: Jamieson DJ, Rasmussen SA, An Update on Coronavirus Disease 2019 (COVID-19) and Pregnancy, *American Journal of Obstetrics and Gynecology* (2021), doi: https://doi.org/10.1016/j.ajog.2021.08.054.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Elsevier Inc. All rights reserved.

- 1 An Update on Coronavirus Disease 2019 (COVID-19) and Pregnancy
- 2
- 3 Denise J. JAMIESON, MD, MPH¹
- 4 Sonja A. RASMUSSEN, MD, MS^{2,3,4}
- 5
- 6
- 7 Affiliations:
- ¹Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA,
 USA
- ²Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
- ³Department of Epidemiology, University of Florida College of Public Health and Health
- 12 Professions and College of Medicine, Gainesville, Florida, USA
- ⁴Department of Obstetrics and Gynecology, University of Florida College of Medicine,
- 14 Gainesville, Florida, USA
- 15 Correspondence to:
- 16 Denise J. Jamieson, Department of Gynecology and Obstetrics, email: djamieson@emory.edu
- 17 Running Title: COVID in pregnancy
- 18 Key Words: Coronavirus Disease 2019 (COVID-19), SARS-CoV-2, pregnancy, fetus, newborn,
- 19 pneumonia, preterm birth, maternal death, fetal death, vertical transmission, perinatal infection
- 20 Manuscript Word Count: 3260 (3500 limit)
- 21 Abstract Word Count: 306 (unstructured, 350 limit)

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

23 Abstract

24	Physiologic, mechanical and immunologic alterations in pregnancy could potentially
25	affect susceptibility to and severity of COVID-19 during pregnancy. Due to lack of comparable
26	incidence data and challenges with disentangling differences in susceptibility from different
27	exposure risks, data are insufficient to determine whether pregnancy increases susceptibility to
28	SARS-CoV-2 infection. Data support pregnancy as a risk factor for severe disease associated
29	with COVID-19; some of the best evidence comes from the Centers for Disease Control and
30	Prevention's (CDC's) COVID-19 surveillance system, which reported that pregnant persons
31	were more likely to be admitted to an intensive care unit (ICU), require invasive ventilation,
32	require extracorporeal membrane oxygenation, and die compared with nonpregnant women of
33	reproductive age. Although intrauterine transmission of SARS-CoV-2 has been documented, it
34	appears to be rare, possibly related to low levels of SARS-CoV-2 viremia and decreased co-
35	expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2
36	(TMPRSS2) needed for SARS-CoV-2 entry into cells in the placenta. Evidence is accumulating
37	that SARS-CoV-2 infection during pregnancy is associated with a number of adverse pregnancy
38	outcomes including preeclampsia, preterm birth, and stillbirth, especially among pregnant
39	persons with severe COVID-19 disease. In addition to the direct impact of COVID-19 on
40	pregnancy outcomes, there is evidence that the pandemic and its effects on healthcare systems
41	have had adverse effects on pregnancy outcomes, such as increased stillbirths and maternal
42	deaths. These trends may represent widening disparities and an alarming reversal of recent
43	improvements in maternal and infant health. All three COVID-19 vaccines currently available
44	under an Emergency Use Authorization by the United States Food and Drug Administration can
45	be administered to pregnant or lactating persons, with no preference for vaccine type. Although

- 46 safety data in pregnancy are rapidly accumulating and no safety signals in pregnancy have been
- 47 detected, additional information about birth outcomes, particularly among persons vaccinated
- 48 earlier in pregnancy, are needed.
- 49
- 50

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

51	Since identification of the first cases of Coronavirus disease 2019 (COVID-19) caused by
52	infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan,
53	China, in December of 2019, the virus has spread rapidly throughout the world. Worldwide, over
54	207 million persons have been infected, with more than 4 million deaths. In the United States
55	alone, over 620,000 persons have died of COVID-19, as of August 15, 2021. ¹ In addition to the
56	devastating degree of morbidity and mortality caused by SARS-CoV-2, the virus and efforts to
57	mitigate its transmission have caused unprecedented economic and social disruption. Early on,
58	many questions arose regarding the effects of COVID-19 on pregnant persons, including whether
59	pregnancy increased susceptibility to SARS-CoV-2 infection, whether pregnant persons were
60	more likely to have severe disease, and whether SARS-CoV-2 infection increased the risk for
61	adverse pregnancy and neonatal outcomes. Here we review the latest information on SARS-
62	CoV-2 infection during pregnancy, including what is known about COVID-19 vaccines during
63	pregnancy and lactation.

64 Susceptibility, Severity and Clinical Course

Although physiologic, mechanical and immunologic alterations in pregnancy could 65 potentially affect susceptibility to COVID-19 during pregnancy, limited data are available to 66 address this issue. Many studies have reported the prevalence of SARS-CoV-2 infection among 67 pregnant persons presenting to labor and delivery with estimates ranging from 3-20%.^{2,3} 68 69 However, it is difficult to compare these rates to other populations since universal screening is 70 not commonly conducted. One study compared universal pre-procedural testing among 71 asymptomatic surgical patients to obstetric patients presenting in labor. The asymptomatic 72 infection rate was 15-fold higher in obstetric patients compared with surgical patients, even after adjustment for age, race and sex.⁴ In a report from the Centers for Disease Control and 73

74 Prevention (CDC), the number of cases of laboratory-confirmed SARS-CoV-2 infection was higher than expected among pregnant persons; among women of reproductive age infected with 75 SARS-CoV-2, 9% were pregnant compared to an estimated 5% of women aged 15-44 years who 76 are pregnant at any point in time. However, there was a large amount of missing data, and the 77 investigators were unable to adjust for potentially different testing and ascertainment rates, given 78 more widespread screening of asymptomatic pregnant persons.⁵ Similarly, a study from 79 Washington state reported higher infection rates among pregnant patients (13.9 per 1000 80 deliveries) compared with adults aged 20-39 years (7.3 per 1000 persons); this study was also 81 unable to account for differential testing rates in pregnant compared to nonpregnant persons.⁶ 82 Even with better incidence data, disentangling differences in susceptibility from different 83 exposure risks is challenging; to address susceptibility, ideally incident rates of infection among 84 pregnant and nonpregnant women of the same age with similar exposures to SARS-CoV-2 85 would be compared. In summary, data are insufficient to conclude whether or not pregnancy 86 increases susceptibility to SARS-CoV-2. 87

88 Similar to what is observed in nonpregnant persons, SARS-CoV-2 infection is more 89 frequent among persons who live in socially and economically disadvantaged settings. In a report 90 from New York City, the likelihood of SARS-CoV-2 infection was higher in pregnant persons who lived in buildings with lower mean assessed values and more residential units, and in 91 92 neighborhoods with lower median household incomes, higher unemployment rates, large 93 household sizes, and greater household crowding.⁷ In a report from Atlanta, higher rates of SARS-CoV-2 infection among pregnant persons were associated with Hispanic ethnicity, lack of 94 health insurance, high neighborhood density, and paradoxically, smaller household size.⁸ 95

96	Several studies support that COVID-19 causes more severe disease during pregnancy.
97	While many early reports lacked appropriate comparison groups, later studies have compared
98	pregnant to nonpregnant women, adjusted by age and comorbidities. Some of the best data come
99	from the CDC's COVID-19 surveillance system, which included over 400,000 persons of
100	reproductive age with symptomatic COVID-19 and adjusted for age, race/ethnicity, and
101	underlying medical conditions. Compared to nonpregnant women, pregnant persons were three
102	times more likely to be admitted to an intensive care unit (ICU) (10.5 vs 3.9 per 1,000), 2.9 times
103	more likely to require invasive ventilation (2.9 vs. 1.1 per 1,000 cases), 2.4 times more likely to
104	require extracorporeal membrane oxygenation (0.7 vs. 0.3 per 1,000 cases), and 1.7 times more
105	likely to die (1.5 vs. 1.2 per 1,000 cases).9 (Figure 1) Additional studies from the United States
106	and Europe report similar results. For example, a study from four European hospitals compared
107	pregnant and nonpregnant women matched by propensity score for age, body mass index, and
108	comorbidities and found an increased risk of severe disease during pregnancy including an
109	increased risk of ICU admission (primary outcome) as well as increased risks of hospital
110	admission, need for oxygen therapy, and need for endotracheal intubation (secondary
111	outcomes). ¹⁰ A study from Washington state found an increased risk of hospitalization and an
112	elevated case-fatality rate among pregnant persons compared with nonpregnant persons of
113	similar age. ¹¹ Increased risk for disease severity in pregnancy may be due to mechanical changes
114	such as decreased lung volume as the fetus grows, immunologic changes, and an increased risk
115	for thromboembolic disease. ⁹

116 Risk factors for severe disease have been shown to be similar among pregnant and 117 nonpregnant persons. Data from the United Kingdom's Obstetric Surveillance System found that 118 black race, older age (\geq 35 years), and overweight/obesity were risk factors for hospitalization

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

among pregnant persons.¹² Similarly, data from the Surveillance for Emergency Threats to 119 Mothers and Babies Network (SET-NET) in the United States found that older age and 120 underlying medical conditions such as obesity, chronic lung disease, chronic hypertension, and 121 pregestational diabetes mellitus were associated with more severe COVID-19 in pregnancy.¹³ A 122 report from the National Institute of Child Health and Human Development Maternal-Fetal 123 124 Medicine Units Network found that older maternal age, higher body mass index, and pre-existing comorbidities defined as asthma, chronic obstructive pulmonary disease, chronic hypertension, 125 or pregestational diabetes mellitus, were associated with more severe COVID-19 disease during 126 pregnancy.¹⁴ Similar to nonpregnant persons, certain chronic medical conditions may lead to 127 increased COVID-19 disease severity in a variety of ways such as weakening the immune 128 system, increasing inflammation, or reducing the ability to withstand infection. Regarding 129 clinical course, a prospective registry of pregnant patients with symptomatic COVID-19 found 130 that 25% of pregnant patients reported persistent symptoms 8 or more weeks from symptom 131 onset.¹⁵ Whether pregnancy confers an increased risk for a prolonged course of disease requires 132 additional study. 133

134 Transmission of SARS-CoV-2 to the Fetus and Neonate

When a new virus emerges, a critical question is whether the virus can cross the placenta and cause direct adverse effects on the fetus, as has been seen with several other pathogens (e.g., Zika, cytomegalovirus, rubella). Transmission of pathogens can occur during pregnancy and before onset of labor (intrauterine); during labor and delivery (intrapartum); or following birth, either through breastfeeding or through contact with the mother or others (postpartum). Several systems have been developed to categorize perinatal SARS-CoV-2 transmission and they share some common features including requiring evidence of maternal infection, fetal exposure, and

142	persistence of infection in the fetus or neonate. ¹⁶⁻¹⁸ Although a few cases of intrauterine SARS-
143	CoV-2 transmission have been carefully documented, ¹⁹ transmission appears to be rare. ¹⁸ Several
144	factors may help explain why transmission appears to be rare. For intrauterine transmission of a
145	viral pathogen to occur, the pathogen needs to reach and cross the placenta, ²⁰ and SARS-CoV-2
146	infection is not associated with high levels of viremia. ²¹ In addition, the placenta may not co-
147	express high levels of the primary factors that facilitate SARS-CoV-2 entry into cells,
148	angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) ²¹⁻²³
149	although data regarding expression of these factors is not entirely consistent. ^{24,25}
150	Most SARS-CoV-2 infections identified among infants after birth are due to exposure to
151	infected caregivers. However, data on the safety of a SARS-CoV-2-infected mother
152	breastfeeding are reassuring. Replication-competent SARS-CoV-2 has not been detected in
153	breastmilk, ²⁶ although breastmilk samples are occasionally PCR-positive. ²⁷ An observational
154	cohort of 116 SARS-CoV-2-infected mothers who reported consistent use of surgical masks,
155	hand hygiene, and breast cleansing all safely breastfed without SARS-CoV-2 transmission. ²⁸ In
156	addition, a systematic review found no increase in late postnatal transmission (defined as
157	occurring after 72 hours of life) associated with breastfeeding; however, an increased risk of late
158	postnatal transmission was observed when infants were not separated from their infected mothers
159	after birth. ²⁹ This possible increased risk must be weighed against the known benefits of mother-
160	infant bonding and minimal risk of severe infant illness. Most guidelines support rooming in of
161	the newborn with an infected mother, particularly when the mother is afebrile and
162	asymptomatic. ^{30,31}

163 **Pregnancy Outcomes**

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

164	Although it appears that SARS-CoV-2 rarely is transmitted transplacentally to the fetus,
165	evidence is accumulating that SARS-CoV-2 infection during pregnancy is associated with a
166	number of adverse pregnancy outcomes. A systematic review and meta-analysis of relatively
167	high-quality studies with appropriate comparison groups found an increased risk of
168	preeclampsia, preterm birth, and stillbirth among pregnant persons with SARS-CoV-2 infection
169	compared with those without SARS-CoV-2 infection. ³² Among pregnant persons with COVID-
170	19, severe disease was associated with preeclampsia, preterm birth, gestational diabetes, and low
171	birth weight compared to those with mild disease. ³² Two studies published after the meta-
172	analysis found similar findings. A multi-national cohort study found pregnant persons with
173	COVID-19 were at increased risk for preeclampsia/eclampsia and preterm birth compared to
174	pregnancies without COVID-19.33 In an observational study of 1219 pregnant patients testing
175	positive for SARS-CoV-2, those with severe disease were at increased of cesarean delivery,
176	hypertensive disorders of pregnancy, and preterm birth compared to asymptomatic patients. ¹⁴
177	In addition to the direct impact of COVID-19 on pregnancy outcomes, there is evidence
178	that the pandemic and its effects on healthcare systems have had adverse effects on pregnancy
179	outcomes, even among those not infected with SARS-CoV-2. In a global systematic review,
180	increases in stillbirths and maternal deaths, declines in maternal mental health (as measured by
181	mean Edinburgh Postnatal Depression Scale scores), and an increased rate of ruptured ectopic
182	pregnancies representing a delay in appropriate care were observed during the pandemic
183	compared to before the pandemic. ³⁴ This deterioration in several maternal health measures,
184	which was more pronounced in low-resource compared to high-resource settings, may represent
185	widening disparities and an alarming reversal of recent improvements in maternal and infant
186	health. ³⁵ Paradoxically, an overall decline in preterm birth rates was seen during pandemic
-	

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

187 lockdown periods in some³⁶⁻⁴⁰ but not all^{41,42} high-resource settings, largely due to reductions in 188 extreme prematurity. Although these trends could represent a shift in deliveries from liveborn 189 premature infants to stillborn infants, alternatively, these may represent true improvements in 190 birth outcomes in some settings. Since our efforts over many decades to prevent preterm birth 191 have been largely unsuccessful, these findings are intriguing and could potentially hold clues to 192 long-standing challenges to preventing preterm births.

Management of COVID-19 Infection in Pregnancy

194 In general, the clinical management of pregnant person with COVID-19 is similar to nonpregnant persons, and effective treatments should not be withheld based on pregnancy status.⁴³ 195 196 For example, antiviral therapy with remdesivir should not withheld if otherwise indicated even with limited albeit reassuring safety data.⁴⁴ Several types of monoclonal antibodies have been 197 authorized for treatment of symptomatic COVID-19 patients who are at high risk for progressing 198 to severe COVID-19 and/or hospitalization. Since pregnancy is included as a risk for clinical 199 progression, pregnant patients are eligible to receive outpatient monoclonal antibodies under 200 Emergency Use Authorization. Dexamethasone is recommended for patients with COVID-19 201 202 who are mechanically ventilated or require supplemental oxygen including pregnant women. 203 Prophylactic anticoagulation is recommended for hospitalized patients with COVID and this 204 includes pregnant patients. Although other therapeutic options for COVID-19 are being evaluated, many clinical trials for novel therapeutic agents exclude pregnant persons.^{44,45} 205 206 Although clinical algorithms for treating COVID are similar in pregnant and nonpregnant 207 persons, there are some important differences. Oxygen saturation (SpO2) in pregnancy should

208 be maintained at 95% or greater on room air so the threshold for admitting pregnant patients may

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

209 be lower than for nonpregnant patients. In addition, scoring systems to assess clinical deterioration and need for admission to an intensive care unit have not been well validated in 210 pregnant persons. Therefore, algorithms specifically tailored for pregnancy may be helpful. 211 Prone positioning has been shown to be of benefit for some COVID patients such as those who 212 are mechanically ventilated; the prone position is safe in pregnancy and can safely be achieved 213 with some possible modification such as positioning in the left lateral decubitus position.⁴⁵ 214 In general, COVID is not an indication for delivery and should not alter the timing nor mode of 215 delivery. However, in some cases where delivery is not medically indicated, delivery may be 216

delayed until the mother tests negative for COVID to decrease the likelihood of transmission to
 the neonate.⁴³

Clinical guidelines for the management of pregnant patients with COVID have been developed
by the NIH and the Society for Maternal and Fetal Medicine (SMFM) are regularly updated and
provide an excellent source for up-to-date information. ^{44,45}

222 COVID-19 Vaccination in Pregnant and Lactating Persons

Three COVID-19 vaccines are currently available: two mRNA vaccines (Pfizer-223 224 BioNTech and Moderna) and one adenoviral vector vaccine (Johnson & Johnson-Janssen) (Table). CDC specifies that any of the currently authorized vaccines can be administered to 225 pregnant or lactating persons, with no preference for vaccine type.⁴⁶ The American College of 226 Obstetricians and Gynecologists (ACOG), the Society for Maternal and Fetal Medicine (SMFM) 227 and CDC strongly recommend that pregnant and lactating persons be vaccinated. ACOG further 228 229 specifies pregnant persons should be encouraged to talk to their obstetric healthcare provider about their vaccination plan and discuss any questions they have; however, this should not be a 230

231 requirement for vaccination because it could serve as a barrier. Pregnant patients who decline vaccination should be reoffered the vaccine and reminded about the importance of continuing 232 other prevention measures such as wearing a mask and physical distancing.⁴³ ACOG guidance 233 also does not state a preference for vaccine type nor for timing of vaccination during 234 pregnancy.⁴³ In the United Kingdom, the Royal College of Obstetricians & Gynaecologists 235 236 recommends an mRNA vaccine for pregnant persons because there are more safety data available for the mRNA vaccine compared to the adenoviral vaccines.⁴⁷. This may have 237 implications for countries where only adenoviral vaccines are available. CDC recently reported 238 239 that among nearly 136,000 pregnant persons who had not completed COVID-19 vaccination before pregnancy, only 16% received >1 dose of vaccine and 11% had completed vaccination 240 during pregnancy. COVID-19 vaccination during pregnancy was lowest among persons of Black 241 and Hispanic race-ethnicity and among younger women (aged 18-24 years of age). Pregnant 242 persons were less likely to be vaccinated than nonpregnant women of reproductive age.⁴⁸ 243

244 Although safety data in pregnancy were fairly limited when these vaccines were first available in the United States, data are rapidly accumulating. Nearly 150,000 pregnant persons 245 246 have signed up for v-safe, CDC's smart phone-based tool that uses text messaging and web-247 based surveys to collect information from those who have received a COVID-19 vaccine, and more than 5,000 pregnant persons have enrolled in the v-safe pregnancy registry, which follows 248 pregnant persons and their infants until 3 months after pregnancy completion.⁴⁹ In a preliminary 249 250 analysis of pregnant persons who received an mRNA vaccine, which included 35,691 pregnant persons who registered for v-safe and 3,958 pregnant persons who enrolled in the registry 251 (including 827 with a completed pregnancy), no concerning safety signals were seen. Although 252 there were some small differences, pregnant persons and non-pregnant women had similar 253

254	reactogenicity profiles. Compared with nonpregnant women, pregnant persons had slightly
255	higher rates of injection-site pain and slightly lower rates of headache, myalgia, chills, and fever.
256	Among the 827 pregnant persons who had a completed pregnancy reported in the v-safe
257	pregnancy registry, the rates of adverse pregnancy and neonatal outcomes including pregnancy
258	loss, preterm birth, small for gestational age, and congenital anomalies were similar to published
259	background rates; no neonatal deaths were reported. ⁵⁰ Data from the Vaccine Adverse Event
260	Reporting System (VAERS), a passive surveillance system administered by the CDC and FDA
261	that collects information about adverse events that occur after administration of a vaccine that
262	may or may not be associated with vaccine administration, are also reassuring. In the first two
263	months of vaccine administration, 221 adverse pregnancy events were reported to VAERS
264	including 46 spontaneous abortions, similar to what was observed with the 2009 H1N1
265	inactivated influenza vaccine. ⁵⁰ However, VAERS data are difficult to interpret, given that the
266	total number of COVID-19 vaccine doses given during pregnancy is unknown. Healthcare
267	providers should report any clinically significant adverse event to VAERS, regardless of whether
268	the vaccine is known to be associated with the event. ⁵¹

269 Safety data about the Johnson & Johnson-Janssen (adenoviral vector) COVID-19 vaccine 270 are more limited since it was authorized for use later, and far fewer vaccines have been administered. At the time of authorization, data from animal studies and on four pregnant 271 272 persons who received the COVID-19 vaccine during clinical trials were reassuring, and over 273 1500 pregnant persons had received an Ebola vaccine using the same adenoviral vector without adverse effects. In materials submitted to the FDA, Johnson & Johnson-Janssen concluded that 274 the vaccine had an "acceptable safety and reactogenicity profile without significant safety issues" 275 and that the available pregnancy data were "not suggestive of pregnancy-related safety 276

concerns".⁵² The FDA concluded that data were currently insufficient to make conclusions about
the safety of the vaccine in pregnancy.⁵³ Although no safety signals in pregnancy have been
detected, safety data about all three currently available vaccines during pregnancy are limited.
Additional information about birth outcomes, particularly among persons vaccinated earlier in
pregnancy, are needed.

Following the issuance of the Johnson & Johnson-Janssen EUA by FDA, six cases of 282 cerebral venous sinus thrombosis with thrombocytopenia were reported among Johnson & 283 Johnson-Janssen vaccine recipients. Similar cases of thrombosis with thrombocytopenia 284 syndrome (TTS) were reported after vaccination with the Oxford AstraZeneca adenoviral 285 vaccine that is available in multiple countries outside of the U.S.⁵⁴ After a 10-day pause in use 286 287 of the vaccine in the U.S. so that all cases of TTS associated with vaccine use could be carefully reviewed, an additional nine cases were identified, with most cases in women aged 18-49 years, 288 for a rate of 7.0 cases per million Johnson & Johnson-Janssen COVID-19 vaccine doses given to 289 290 women in this age group. After careful review of the risks and benefits of COVID-19 291 vaccination, the CDC and FDA reaffirmed use in all persons >18 years and issued a warning that rare clotting events might occur after vaccination, particularly among women aged 18-49 years.⁵⁵ 292 293 Clinicians should ensure that women younger than 50 years old are aware of the risk for this rare adverse event and that other COVID-19 vaccines for which this risk has not been seen are 294 295 available. Although the overall risk of thrombosis is increased during pregnancy and postpartum, 296 the mechanism of TTS is distinct from the pregnancy-associated thrombosis and therefore there is no specific concern for pregnant persons distinct from those who are not pregnant.⁴³ However, 297 the United Kingdom preferentially recommends mRNA vaccines rather than adenoviral vaccines 298 299 based on these safety concerns.⁴⁷

300	In terms of vaccine effectiveness, studies indicate that administration of the mRNA
301	vaccines results in a robust maternal humoral response. Although the antibody response to
302	vaccination among pregnant persons has not been rigorously compared to the response among
303	nonpregnant persons, there is no reason to expect differences. Furthermore, maternal IgG
304	antibodies efficiently cross the placenta resulting in relatively high titers in the fetus. ⁵⁶⁻⁶⁰
305	However, the degree to which these fetal antibody titers correlate with infant protection from
306	SARS-CoV-2 infection is unknown.

Regarding vaccinating lactating persons, there are no known or theoretical risks of
vaccination.. In general, there are no restrictions to vaccination of lactating persons and even live
viral vaccines such as measles-mumps-rubella (MMR) vaccines, which are contraindicated
during pregnancy, are routinely given to unvaccinated persons postpartum. High titers of
vaccine-induced antibodies against SARS-CoV-2 have been found in breastmilk.^{57,58} However,
whether this correlates with protection of the breastfed infant is unknown.

Several myths and misconceptions have arisen about COVID-19 vaccines, and clinicians 313 need to be prepared to respond to questions regarding these patient concerns. Women should be 314 reassured that there is no evidence that COVID-19 vaccines affect fertility and that even in 315 COVID-19 vaccine clinical trials, from which pregnant persons were excluded, several 316 pregnancies occurred.⁶¹ Patients should also be aware that these vaccines cannot cause COVID-317 318 19, since none of them contain live virus, that COVID-19 vaccines do not interact with or alter genetic material, and that vaccines do not contain any controversial substances (e.g., fetal cells or 319 tracking devices). CDC recommends that clinicians listen and respond to patient concerns 320 regarding COVID-19 vaccines with empathy.⁶² As with other vaccines, discussion with a 321 clinician is important; in a recent Kaiser Family Foundation poll, nearly 80% of respondents 322

- 323 reported that they would be most likely to turn to their healthcare provider when deciding
- 324 whether to get a COVID-19 vaccine.⁶³

325 Conclusions

326	Since reports of the first cases of COVID-19 in late 2019, much has been learned about
327	the effects of SARS-CoV-2 infection during pregnancy; however, many questions remain.
328	Pregnancy increases the risk of severe disease associated with COVID-19, but whether pregnant
329	persons are more susceptible to infection is unknown. Intrauterine transmission of SARS-CoV-2
330	appears to be rare, possibly related to low levels of SARS-CoV-2 viremia and decreased co-
331	expression of ACE2 and TMPRSS2 needed for SARS-CoV-2 entry into cells in the placenta.
332	Adverse pregnancy and neonatal outcomes are more common among persons infected with
333	SARS-CoV-2 during pregnancy, especially among those with severe disease. Although pregnant
334	and lactating persons were excluded from the initial clinical trials that led to authorization of
335	three COVID-19 vaccines in the United States, no concerns have arisen about safety, despite
336	large numbers of pregnant and lactating persons vaccinated. Despite reports of rare clotting
337	events in vaccinated persons, there is not a particular concern for those with a prothrombotic
338	state, including pregnancy. In addition, available data suggest that vaccination during pregnancy
339	is associated with transmission of SARS-CoV02 antibodies to the fetus. Vaccination of lactating
340	persons is associated with high levels of SARS-CoV-2 antibodies in the breast milk; however,
341	the level of protection to the infant provided by transplacental antibodies and those found in
342	breastmilk is unknown. Data on vaccine coverage suggests that pregnant persons are less likely
343	to receive a COVID-19 vaccine, despite their increased risk for severe disease and risk for
344	adverse pregnancy and neonatal outcomes if infected.

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

345	Most experts believe that SARS-CoV-2 is likely to become endemic. ⁶⁴ Thus, continued
346	collection of data on the effects of SARS-CoV-2 infection during pregnancy as well as the
347	effects of COVID-19 vaccines is needed. In addition, given the increasing connectedness of the
348	world's population, climate change, and increasing encroachment of human populations on
349	wildlife habitats, emergence of another infection with global effects is likely. ⁶⁵ Therefore, it is
350	essential that we can maximize the lessons learned from the COVID-19 pandemic so these can
351	be applied to improve our planning for and response to emerging infections in the future.
352	

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

353 **References**

- 1. Johns Hopkins University. https://coronavirus.jhu.edu/map.html.
- 25 2. LaCourse SM, Kachikis A, Blain M, et al. Low Prevalence of Severe Acute Respiratory
- 356 Syndrome Coronavirus 2 Among Pregnant and Postpartum Patients With Universal

357 Screening in Seattle, Washington. *Clin Infect Dis.* 2021;72(5):869-872.

- Vintzileos WS, Muscat J, Hoffmann E, et al. Screening all pregnant women admitted to
 labor and delivery for the virus responsible for coronavirus disease 2019. *Am J Obstet*
- *Gynecol.* 2020;223(2):284-286.
- 4. Kelly JC, Raghuraman N, Carter EB, Palanisamy A, Stout MJ. Preprocedural
- asymptomatic coronavirus disease 2019 cases in obstetrical and surgical units. Am J

363 *Obstet Gynecol.* 2021;224(1):114-116.

- 5. Ellington S, Strid P, Tong VT, et al. Characteristics of Women of Reproductive Age with
- 365 Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status United States,

366 January 22-June 7, 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(25):769-775.

- 367 6. Lokken EM, Taylor GG, Huebner EM, et al. Higher severe acute respiratory syndrome
- 368 coronavirus 2 infection rate in pregnant patients. *Am J Obstet Gynecol*. 2021;225:75.e71-
- 369 75.e16.
- 370 7. Emeruwa UN, Ona S, Shaman JL, et al. Associations Between Built Environment,
- 371 Neighborhood Socioeconomic Status, and SARS-CoV-2 Infection Among Pregnant
- Women in New York City. *JAMA*. 2020;324(4):390-392.
- 373 8. Joseph NT, Stanhope KK, Badell ML, Horton JP, Boulet SL, Jamieson DJ.
- 374 Sociodemographic Predictors of SARS-CoV-2 Infection in Obstetric Patients, Georgia,
- 375 USA. *Emerg Infect Dis.* 2020;26(11):2787-2789.

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

376	9.	Zambrano LD, Ellington S, Strid P, et al. Update: Characteristics of Symptomatic
377		Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by
378		Pregnancy Status - United States, January 22-October 3, 2020. MMWR Morb Mortal
379		Wkly Rep. 2020;69(44):1641-1647.
380	10.	Badr DA, Mattern J, Carlin A, et al. Are clinical outcomes worse for pregnant women at
381		>/=20 weeks' gestation infected with coronavirus disease 2019? A multicenter case-
382		control study with propensity score matching. Am J Obstet Gynecol. 2020;223(5):764-
383		768.
384	11.	Lokken EM, Huebner EM, Taylor GG, et al. Disease severity, pregnancy outcomes, and
385		maternal deaths among pregnant patients with severe acute respiratory syndrome
386		coronavirus 2 infection in Washington State. Am J Obstet Gynecol. 2021.
387	12.	Knight M, Bunch K, Vousden N, et al. Characteristics and outcomes of pregnant women
388		admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population
389		based cohort study. BMJ. 2020;369:m2107.
390	13.	Galang RR, Newton SM, Woodworth KR, et al. Risk factors for illness severity among
391		pregnant women with confirmed SARS-CoV-2 infection - Surveillance for Emerging
392		Threats to Mothers and Babies Network, 22 state, local, and territorial health
393		departments, March 29, 2020 - March 5, 2021. Clin Infect Dis. 2021.
394	14.	Metz TD, Clifton RG, Hughes BL, et al. Disease Severity and Perinatal Outcomes of
395		Pregnant Patients With Coronavirus Disease 2019 (COVID-19). Obstet Gynecol.
396		2021;137(4):571-580.

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

397	15.	Afshar Y, Gaw SL, Flaherman VJ, et al. Clinical Presentation of Coronavirus Disease
398		2019 (COVID-19) in Pregnant and Recently Pregnant People. Obstet Gynecol.
399		2020;136(6):1117-1125.
400	16.	Blumberg DA, Underwood MA, Hedriana HL, Lakshminrusimha S. Vertical
401		Transmission of SARS-CoV-2: What is the Optimal Definition? Am J Perinatol.
402		2020;37(8):769-772.
403	17.	Shah PS, Diambomba Y, Acharya G, Morris SK, Bitnun A. Classification system and
404		case definition for SARS-CoV-2 infection in pregnant women, fetuses, and neonates.
405		Acta Obstet Gynecol Scand. 2020;99(5):565-568.
406	18.	World Health Organization. Definition and categorization of the timing of mother-to-
407		child transmission of SARS-CoV-2. 2021.
408	19.	Vivanti AJ, Vauloup-Fellous C, Prevot S, et al. Transplacental transmission of SARS-
409		CoV-2 infection. Nat Commun. 2020;11(1):3572.
410	20.	Mofenson LM, Idele P, Anthony D, et al. The Evolving Epidemiologic and Clinical
411		Picture of SARS-CoV-2 and COVID-19 Disease in Children and Young People.
412		https://wwwunicef-ircorg/publications/pdf/Working%20Paper_2020-
413		07_Epidemiology%20of%20SARS%20CoV%202-
414		COVID%2019%20and%20Children_Adolescents_January_updatepdf
415	21.	Edlow AG, Li JZ, Collier AY, et al. Assessment of Maternal and Neonatal SARS-CoV-2
416		Viral Load, Transplacental Antibody Transfer, and Placental Pathology in Pregnancies
417		During the COVID-19 Pandemic. JAMA Netw Open. 2020;3(12):e2030455.
418	22.	Ouyang Y, Bagalkot T, Fitzgerald W, et al. Term Human Placental Trophoblasts Express
419		SARS-CoV-2 Entry Factors ACE2, TMPRSS2, and Furin. mSphere. 2021;6(2).

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

420	23.	Pique-Regi R, Romero R, Tarca AL, et al. Does the human placenta express the canonical
421		cell entry mediators for SARS-CoV-2? Elife. 2020;9.

- 422 24. Gengler C, Dubruc E, Favre G, Greub G, de Leval L, Baud D. SARS-CoV-2 ACE-
- 423 receptor detection in the placenta throughout pregnancy. *Clin Microbiol Infect.*
- 424 2021;27(3):489-490.
- 425 25. Weatherbee BAT, Glover DM, Zernicka-Goetz M. Expression of SARS-CoV-2 receptor
- 426 ACE2 and the protease TMPRSS2 suggests susceptibility of the human embryo in the
- 427 first trimester. *Open Biol.* 2020;10(8):200162.
- 428 26. Chambers C, Krogstad P, Bertrand K, et al. Evaluation for SARS-CoV-2 in Breast Milk
- 429 From 18 Infected Women. *JAMA*. 2020;324(13):1347-1348.
- 430 27. Gross R, Conzelmann C, Muller JA, et al. Detection of SARS-CoV-2 in human
 431 breastmilk. *Lancet*. 2020;395(10239):1757-1758.
- 432 28. Salvatore CM, Han JY, Acker KP, et al. Neonatal management and outcomes during the
- 433 COVID-19 pandemic: an observation cohort study. *Lancet Child Adolesc Health.*
- 434 2020;4(10):721-727.
- 435 29. Raschetti R, Vivanti AJ, Vauloup-Fellous C, Loi B, Benachi A, De Luca D. Synthesis
- and systematic review of reported neonatal SARS-CoV-2 infections. *Nat Commun.*
- 437 2020;11(1):5164.
- 438 30. American College of Obstetricians and Gynecologists. COVID-19 FAQs for
- 439 Obstetrician-Gynecologists, Obstetrics. https://www.acog.org/clinical-
- 440 information/physician-faqs/covid-19-faqs-for-ob-gyns-obstetrics. Published 2020.
- 441 Accessed.

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

442	31.	Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-
	U 1.	

443 ncov/hcp/caring-for-newborns.html#mother-neonatal-contact. 2021.

444 32. Wei SQ, Bilodeau-Bertrand M, Liu S, Auger N. The impact of COVID-19 on pregnancy

445 outcomes: a systematic review and meta-analysis. *CMAJ*. 2021;193(16):E540-E548.

- 446 33. Villar J, Ariff S, Gunier RB, et al. Maternal and Neonatal Morbidity and Mortality
- Among Pregnant Women With and Without COVID-19 Infection: The INTERCOVID
 Multinational Cohort Study. *JAMA Pediatr.* 2021.
- 449 34. Chmielewska B, Barratt I, Townsend R, et al. Effects of the COVID-19 pandemic on
- 450 maternal and perinatal outcomes: a systematic review and meta-analysis. *Lancet Glob*

451 *Health*. 2021;9(6):e759-e772.

- 452 35. Graham WJ, Afolabi B, Benova L, et al. Protecting hard-won gains for mothers and
 453 newborns in low-income and middle-income countries in the face of COVID-19: call for
 454 a service safety net. *BMJ Glob Health*. 2020;5(6).
- 455 36. Been JV, Burgos Ochoa L, Bertens LCM, Schoenmakers S, Steegers EAP, Reiss IKM.
- 456 Impact of COVID-19 mitigation measures on the incidence of preterm birth: a national

457 quasi-experimental study. *Lancet Public Health.* 2020;5(11):e604-e611.

458 37. Harvey EM, McNeer E, McDonald MF, et al. Association of Preterm Birth Rate With

459 COVID-19 Statewide Stay-at-Home Orders in Tennessee. *JAMA Pediatr*.

- 460 2021;175(6):635-637.
- 461 38. Hedermann G, Hedley PL, Baekvad-Hansen M, et al. Danish premature birth rates during
- the COVID-19 lockdown. Arch Dis Child Fetal Neonatal Ed. 2021;106(1):93-95.

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

463	39.	Maeda Y, Nakamura M, Ninomiya H, Ogawa K, Sago H, Miyawaki A. Trends in
464		intensive neonatal care during the COVID-19 outbreak in Japan. Arch Dis Child Fetal
465		Neonatal Ed. 2021;106(3):327-329.
466	40.	Philip RK, Purtill H, Reidy E, et al. Unprecedented reduction in births of very low
467		birthweight (VLBW) and extremely low birthweight (ELBW) infants during the COVID-
468		19 lockdown in Ireland: a 'natural experiment' allowing analysis of data from the prior
469		two decades. BMJ Glob Health. 2020;5(9).
470	41.	Handley SC, Mullin AM, Elovitz MA, et al. Changes in Preterm Birth Phenotypes and
471		Stillbirth at 2 Philadelphia Hospitals During the SARS-CoV-2 Pandemic, March-June
472		2020. JAMA. 2021;325(1):87-89.
473	42.	Pasternak B, Neovius M, Soderling J, et al. Preterm Birth and Stillbirth During the
474		COVID-19 Pandemic in Sweden: A Nationwide Cohort Study. Ann Intern Med.
475		2021;174(6):873-875.
476	43.	ACOG. https://www.acog.org/clinical/clinical-guidance/practice-
477		advisory/articles/2020/12/covid-19-vaccination-considerations-for-obstetric-gynecologic-
478		care.
479	44.	NIH. Coronavirus disease 2019 Treatment Guidelines.
480		https://www.covid19treatmentguidelines.nih.gov/. Published 2021. Accessed.
481	45.	SMFM. Management Considerations for Pregnant Patients With COVID-19.
482		https://www.smfm.org/covidclinical. Published 2021. Accessed.
483	46.	CDC. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-
484		us.html#pregnant.

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

- 485 47. RCOG. COVID-19 vaccines, pregnancy and breastfeeding.
- 486 https://www.rcog.org.uk/en/guidelines-research-services/coronavirus-covid-19-
- 487 pregnancy-and-womens-health/covid-19-vaccines-and-pregnancy/covid-19-vaccines-
- 488 pregnancy-and-breastfeeding/. Published 2021. Accessed.
- 489 48. Razzaghi H, Meghani M, Pingali C, et al. COVID-19 Vaccination Coverage Among
- 490 Pregnant Women During Pregnancy Eight Integrated Health Care Organizations, United
- 491 States, December 14, 2020-May 8, 2021. *MMWR Morb Mortal Wkly Rep.*
- 492 2021;70(24):895-899.
- 493 49. CDC. https://www.cdc.gov/coronavirus/2019-
- 494 ncov/vaccines/safety/vsafepregnancyregistry.html
- 495 50. Shimabukuro TT, Kim SY, Myers TR, et al. Preliminary Findings of mRNA Covid-19
- 496 Vaccine Safety in Pregnant Persons. *N Engl J Med.* 2021;384(24):2273-2282.
- 497 51. https://vaers.hhs.gov/index.html
- 498 52. Janssen Biotech Inc. Vaccines and Related Biological Products Advisory Committee:
- 499 Sponsor Briefing Document. *wwwfdagov*.
- 500 53. FDA. Vaccines and Related Biological Products Advosory Committee Meeting: FDA
 501 Briefing Document. *wwwfdagov*.
- 502 54. MacIntyre CR, Veness B, Berger D, Hamad N, Bari N. Thrombosis with
- 503 Thrombocytopenia Syndrome (TTS) following AstraZeneca ChAdOx1 nCoV-19
- 504 (AZD1222) COVID-19 vaccination A risk-benefit analysis for people < 60 years in
- 505 Australia. Vaccine. 2021;39(34):4784-4787.
- 506 55. MacNeil JR, Su JR, Broder KR, et al. Updated Recommendations from the Advisory
- 507 Committee on Immunization Practices for Use of the Janssen (Johnson & Johnson)

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

508		COVID-19 Vaccine After Reports of Thrombosis with Thrombocytopenia Syndrome
509		Among Vaccine Recipients - United States, April 2021. MMWR Morb Mortal Wkly Rep.
510		2021;70(17):651-656.
511	56.	Beharier O, Plitman Mayo R, Raz T, et al. Efficient maternal to neonatal transfer of
512		antibodies against SARS-CoV-2 and BNT162b2 mRNA COVID-19 vaccine. J Clin
513		Invest. 2021.
514	57.	Collier AY, McMahan K, Yu J, et al. Immunogenicity of COVID-19 mRNA Vaccines in
515		Pregnant and Lactating Women. JAMA. 2021;325(23):2370-2380.
516	58.	Gray KJ, Bordt EA, Atyeo C, et al. Coronavirus disease 2019 vaccine response in
517		pregnant and lactating women: a cohort study. Am J Obstet Gynecol. 2021.
518	59.	Prabhu M, Murphy EA, Sukhu AC, et al. Antibody Response to Coronavirus Disease
519		2019 (COVID-19) Messenger RNA Vaccination in Pregnant Women and Transplacental
520		Passage Into Cord Blood. Obstet Gynecol. 2021.
521	60.	Rottenstreich A, Zarbiv G, Oiknine-Djian E, Zigron R, Wolf DG, Porat S. Efficient
522		maternofetal transplacental transfer of anti- SARS-CoV-2 spike antibodies after antenatal
523		SARS-CoV-2 BNT162b2 mRNA vaccination. Clin Infect Dis. 2021.
524	61.	Male V. Are COVID-19 vaccines safe in pregnancy? Nat Rev Immunol. 2021;21(4):200-
525		201.
526	62.	CDC. https://www.cdc.gov/vaccines/covid-19/hcp/engaging-patients.html
527	63.	Kaiser Family Foundation. https://www.kff.org/report-section/kff-covid-19-vaccine-
528		monitor-january-2021-vaccine-hesitancy/.
529	64.	Phillips N. The coronavirus is here to stay - here's what that means. Nature.
530		2021;590(7846):382-384.

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

- 531 65. Rasmussen SA, Jamieson DJ. COVID-19 and Pregnancy is Deja Vu All Over Again.
- 532 *BJOG*. 2021.

533

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

Table: Safety Data during Pregnancy on COVID-19 Vaccines Authorized for Use in the United States

Vaccine	Technology	Number	Ages	Efficacy based	Developmental	Safety signals in	Published safety data
		of doses		on	and	general population	on pregnant persons
				randomized	reproductive	(reporting rate of	
				clinical trials	toxicity studies	adverse outcomes	
					in animals	and population	
						with highest rate)	
Pfizer-BioNtech	mRNA –	Two	>=12 years	95% against	No safety	Myocarditis – more	No evidence of
mRNA vaccine	encodes	doses, 3		symptomatic	concerns – rats	often after 2nd	obvious safety signals
(BNT162b2)	stabilized	weeks		COVID-19	given vaccine	dose – Reporting	among 3598 pregnant
	spike, lipid	apart			before mating	rate: 3.5 cases per	participants in v-safe
	nanoparticle				and in	1,000,000 second	pregnancy registry
					pregnancy – no	doses; Highest rate	who received mRNA
					effects on	population: males	vaccine, 827 with
					female mating	aged 18–29 years;	completed
					performance,	(mRNA vaccine	pregnancies (mRNA
				0	fertility,	analyzed together)	vaccines analyzed
					embryofetal or	(Rosenblum et al.,	together) –
					postnatal	2021)	(Shimabukuro et al.,
			101		survival,		2021); No evidence of
					growth,		adverse outcomes
					physical or		among 390 pregnant
					neurofunctional		persons who received
					development		the Pfizer vaccine
					(ACOG, 2020)		(Bookstein Peretz et
							al., 2021);
							No evidence of
							adverse perinatal
							outcomes among
							pregnant persons
							who received Pfizer
							(n=110), Moderna
							(n=18), or Oxford

1

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

Madama		Tura	19.0000				Astra Zeneca (n=13) (vaccines analyzed together (Blakeway et al., 2021); No evidence of increased risk of adverse perinatal outcomes among 13 pregnant persons who received mRNA vaccine; type not specified. (Gray et al 2021); No concerning trends in perinatal outcome among 65 pregnant persons who received Pfizer vaccine (Trostle et al 2021). **
Moderna mRNA-1273 vaccine	mRNA, encodes stabilized spike, lipid nanoparticle	Two doses, 28 days apart	>=18 years	94.1% against symptomatic COVID-19	No safety concerns – rats were given vaccine before mating and during pregnancy – no adverse effects on female fertility, embryofetal or postnatal survival, growth, or	Myocarditis – more often after second dose - 3.5 cases per 1,000,000 second doses – highest rate among males aged 18–29 years (mRNA vaccine analyzed together) (Rosenblum et al., 2021)	No evidence of obvious safety signals among 3598 pregnant participants in v-safe pregnancy registry who received mRNA vaccine, 827 with completed pregnancies (mRNA vaccines analyzed together) – (Shimabukuro et al., 2021); No evidence of adverse perinatal

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

	Declication		Jour		development, except for skeletal variations which are common and resolve postnatally (ACOG, 2020)		outcomes among pregnant persons who received Pfizer (n=110), Moderna (n=18), or Oxford Astra Zeneca (n=13) (vaccines analyzed together (Blakeway et al., 2021); No evidence of increased risk of adverse perinatal outcomes among 13 pregnant persons who received mRNA vaccine; type not specified. (Gray et al 2021).; No concerning trends in perinatal outcome among 20 pregnant persons who received Moderna vaccine. (Trostle et al 2021). **
Janssen Biotech, Inc. (Johnson & Johnson) Ad26.COV2.S vaccine:	Replication- incompetent human adenovirus type 26 vector- stabilized spike	One dose	>=18 years	66.1% against moderate to severe-critical COVID-19; 85.4% against severe-critical COVID-19	No safety concerns – female rabbits were given vaccine before mating and during pregnancy – no vaccine-related	Thrombosis with thrombyocytopenia syndrome (TTS) – 3 cases per 1,000,000 doses administered – highest rate in females aged 30-49 years (Rosenblum et al., 2021)	We are not aware of published data on use of Janssen vaccine during pregnancy. No adverse pregnancy- related outcomes in clinical trials that used the same vaccine platform, including

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

	adverse effects		large Ebola
	on female	Guillain-Barre	vaccination trial.
	fertility,	syndrome –7.8	+
	embryo-fetal or	cases per 1,000,000	
	postnatal	doses administered	
	development	 highest rate in 	
	up to postnatal	males aged 50-64	
	day 28 (ACOG,	years (Rosenblum	
	2020)	et al., 2021)	

References:

American College of Obstetricians and Gynecologists. COVID-19 Vaccination Considerations for Obstetric–Gynecologic Care <u>https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2020/12/covid-19-vaccination-considerations-for-obstetric-gynecologic-care December 2020</u>.

Blakeway H, Prasad S, Kalafat E, Heath PT, Ladhani SN, Le Doare K, MageeLA, O'brien P, Rezvani A, Dadelszen Pv, Khalil A, COVID-19 Vaccination During Pregnancy: Coverage and Safety, American Journal of Obstetrics and Gynecology (2021), doi: <u>https://doi.org/10.1016/j.ajog.2021.08.007</u>.

Bookstein Peretz S, Regev N, Novick L, Nachshol M, Goffer E, Ben-David A, Asraf K, Doolman R, Gal Levin E, Regev Yochay G, Yinon Y. Short-term outcome of pregnant women vaccinated with BNT162b2 mRNA COVID-19 vaccine. Ultrasound Obstet Gynecol. 2021 Jul 1. doi: 10.1002/uog.23729

Gray KJ, Bordt EA, Atyeo C, et al. COVID-19 vaccine response in pregnant and lactating women: A cohort study. Am J of Obstet Gynecol 2021.

Rosenblum HG, Hadler SC, Moulia D, et al. Use of COVID-19 Vaccines After Reports of Adverse Events Among Adult Recipients of Janssen (Johnson & Johnson) and mRNA COVID-19 Vaccines (Pfizer-BioNTech and Moderna): Update from the Advisory Committee on Immunization Practices — United States, July 2021. MMWR Morb Mortal Wkly Rep 2021;70:1094-1099. DOI: http://dx.doi.org/10.15585/mmwr.mm7032e4.

Shimabukuro TT, Kim SY, Myers TR, Moro PL, Oduyebo T, Panagiotakopoulos L, Marquez PL, Olson CK, Liu R, Chang KT, Ellington SR, Burkel VK, Smoots AN, Green CJ, Licata C, Zhang BC, Alimchandani M, Mba-Jonas A, Martin SW, Gee JM, Meaney-Delman DM; CDC v-safe COVID-19 Pregnancy Registry Team. Preliminary Findings of mRNA Covid-19 Vaccine Safety in Pregnant Persons. N Engl J Med. 2021 Jun 17;384(24):2273-2282. doi: 10.1056/NEJMoa2104983

Trostle ME, Limaye MA, Avtushka V, et al. COVID-19 vaccination in pregnancy: Early experience from a single institution. AJOG + MFM 2021.

Footnotes:

* A preprint publication (not yet peer reviewed) reporting updated data from v-safe confirms that receipt of mRNA vaccine preconception or during pregnancy is not associated with an increased risk of spontaneous abortion (Zauche LH, Wallace B, Smoots AN, et al. Receipt of mRNA COVID-19 vaccines preconception and during pregnancy and risk of self-reported spontaneous abortions, CDC v-safe COVID-19 Vaccine Pregnancy Registry 2020-21. Research Square 2021).

⁺ A preprint publication (not yet peer reviewed) reports no increased risk of a composite adverse outcome (includes maternal death, uterine rupture, ICU admission, return to operating room, postpartum hemorrhage, perineal laceration, fetal or neonatal death, neonatal encephalopathy, low Apgar, NICU admission, low birthweight, neonatal birth trauma) among pregnant persons who received Pfizer (n=127), Moderna (n=12), or Janssen (n=1) (vaccines analyzed together). (Theiler RN, Wick M, Mehta R, et al. Pregnancy and birth outcomes after SARS-CoV-2 vaccination in pregnancy. MedRxiv 2021).

Journal Pre

Table: Safety Data during Pregnancy on COVID-19 Vaccines Authorized for Use in the United States

Vaccine	Technology	Number	Ages	Efficacy based	Developmental	Safety signals in	Published safety data
		of doses		on	and	general population	on pregnant persons
				randomized	reproductive	(reporting rate of	
				clinical trials	toxicity studies	adverse outcomes	
					in animals	and population	
						with highest rate)	
Pfizer-BioNtech	mRNA –	Two	>=12 years	95% against	No safety	Myocarditis – more	No evidence of
mRNA vaccine	encodes	doses, 3		symptomatic	concerns – rats	often after 2nd	obvious safety signals
(BNT162b2)	stabilized	weeks		COVID-19	given vaccine	dose – Reporting	among 3598 pregnant
	spike, lipid	apart			before mating	rate: 3.5 cases per	participants in v-safe
	nanoparticle				and in	1,000,000 second	pregnancy registry
					pregnancy – no	doses; Highest rate	who received mRNA
					effects on	population: males	vaccine, 827 with
					female mating	aged 18–29 years;	completed
					performance,	(mRNA vaccine	pregnancies (mRNA
				0	fertility,	analyzed together)	vaccines analyzed
					embryofetal or	(Rosenblum et al.,	together) –
					postnatal	2021)	(Shimabukuro et al.,
			101		survival,		2021); No evidence of
					growth,		adverse outcomes
					physical or		among 390 pregnant
					neurofunctional		persons who received
					development		the Pfizer vaccine
					(ACOG, 2020)		(Bookstein Peretz et
							al., 2021);
							No evidence of
							adverse perinatal
							outcomes among
							pregnant persons
							who received Pfizer
							(n=110), Moderna
							(n=18), or Oxford

1

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

Madama		Tura	19.0000				Astra Zeneca (n=13) (vaccines analyzed together (Blakeway et al., 2021); No evidence of increased risk of adverse perinatal outcomes among 13 pregnant persons who received mRNA vaccine; type not specified. (Gray et al 2021); No concerning trends in perinatal outcome among 65 pregnant persons who received Pfizer vaccine (Trostle et al 2021). **
Moderna mRNA-1273 vaccine	mRNA, encodes stabilized spike, lipid nanoparticle	Two doses, 28 days apart	>=18 years	94.1% against symptomatic COVID-19	No safety concerns – rats were given vaccine before mating and during pregnancy – no adverse effects on female fertility, embryofetal or postnatal survival, growth, or	Myocarditis – more often after second dose - 3.5 cases per 1,000,000 second doses – highest rate among males aged 18–29 years (mRNA vaccine analyzed together) (Rosenblum et al., 2021)	No evidence of obvious safety signals among 3598 pregnant participants in v-safe pregnancy registry who received mRNA vaccine, 827 with completed pregnancies (mRNA vaccines analyzed together) – (Shimabukuro et al., 2021); No evidence of adverse perinatal

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

	Declication		Jour		development, except for skeletal variations which are common and resolve postnatally (ACOG, 2020)		outcomes among pregnant persons who received Pfizer (n=110), Moderna (n=18), or Oxford Astra Zeneca (n=13) (vaccines analyzed together (Blakeway et al., 2021); No evidence of increased risk of adverse perinatal outcomes among 13 pregnant persons who received mRNA vaccine; type not specified. (Gray et al 2021).; No concerning trends in perinatal outcome among 20 pregnant persons who received Moderna vaccine. (Trostle et al 2021). **
Janssen Biotech, Inc. (Johnson & Johnson) Ad26.COV2.S vaccine:	Replication- incompetent human adenovirus type 26 vector- stabilized spike	One dose	>=18 years	66.1% against moderate to severe-critical COVID-19; 85.4% against severe-critical COVID-19	No safety concerns – female rabbits were given vaccine before mating and during pregnancy – no vaccine-related	Thrombosis with thrombyocytopenia syndrome (TTS) – 3 cases per 1,000,000 doses administered – highest rate in females aged 30-49 years (Rosenblum et al., 2021)	We are not aware of published data on use of Janssen vaccine during pregnancy. No adverse pregnancy- related outcomes in clinical trials that used the same vaccine platform, including

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en septiembre 30, 2021. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2021. Elsevier Inc. Todos los derechos reservados.

	adverse effects		large Ebola
	on female	Guillain-Barre	vaccination trial.
	fertility,	syndrome –7.8	+
	embryo-fetal or	cases per 1,000,000	
	postnatal	doses administered	
	development	 highest rate in 	
	up to postnatal	males aged 50-64	
	day 28 (ACOG,	years (Rosenblum	
	2020)	et al., 2021)	

References:

American College of Obstetricians and Gynecologists. COVID-19 Vaccination Considerations for Obstetric–Gynecologic Care <u>https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2020/12/covid-19-vaccination-considerations-for-obstetric-gynecologic-care December 2020</u>.

Blakeway H, Prasad S, Kalafat E, Heath PT, Ladhani SN, Le Doare K, MageeLA, O'brien P, Rezvani A, Dadelszen Pv, Khalil A, COVID-19 Vaccination During Pregnancy: Coverage and Safety, American Journal of Obstetrics and Gynecology (2021), doi: <u>https://doi.org/10.1016/j.ajog.2021.08.007</u>.

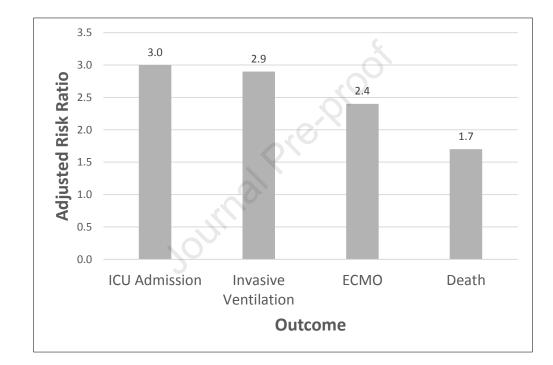
Bookstein Peretz S, Regev N, Novick L, Nachshol M, Goffer E, Ben-David A, Asraf K, Doolman R, Gal Levin E, Regev Yochay G, Yinon Y. Short-term outcome of pregnant women vaccinated with BNT162b2 mRNA COVID-19 vaccine. Ultrasound Obstet Gynecol. 2021 Jul 1. doi: 10.1002/uog.23729

Gray KJ, Bordt EA, Atyeo C, et al. COVID-19 vaccine response in pregnant and lactating women: A cohort study. Am J of Obstet Gynecol 2021.

Rosenblum HG, Hadler SC, Moulia D, et al. Use of COVID-19 Vaccines After Reports of Adverse Events Among Adult Recipients of Janssen (Johnson & Johnson) and mRNA COVID-19 Vaccines (Pfizer-BioNTech and Moderna): Update from the Advisory Committee on Immunization Practices — United States, July 2021. MMWR Morb Mortal Wkly Rep 2021;70:1094-1099. DOI: http://dx.doi.org/10.15585/mmwr.mm7032e4.

Shimabukuro TT, Kim SY, Myers TR, Moro PL, Oduyebo T, Panagiotakopoulos L, Marquez PL, Olson CK, Liu R, Chang KT, Ellington SR, Burkel VK, Smoots AN, Green CJ, Licata C, Zhang BC, Alimchandani M, Mba-Jonas A, Martin SW, Gee JM, Meaney-Delman DM; CDC v-safe COVID-19 Pregnancy Registry Team. Preliminary Findings of mRNA Covid-19 Vaccine Safety in Pregnant Persons. N Engl J Med. 2021 Jun 17;384(24):2273-2282. doi: 10.1056/NEJMoa2104983

Trostle ME, Limaye MA, Avtushka V, et al. COVID-19 vaccination in pregnancy: Early experience from a single institution. AJOG + MFM 2021.

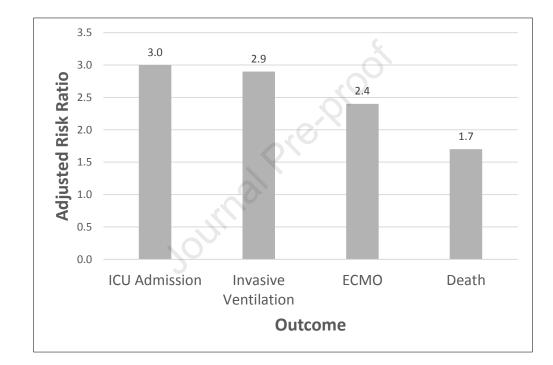

Footnotes:

* A preprint publication (not yet peer reviewed) reporting updated data from v-safe confirms that receipt of mRNA vaccine preconception or during pregnancy is not associated with an increased risk of spontaneous abortion (Zauche LH, Wallace B, Smoots AN, et al. Receipt of mRNA COVID-19 vaccines preconception and during pregnancy and risk of self-reported spontaneous abortions, CDC v-safe COVID-19 Vaccine Pregnancy Registry 2020-21. Research Square 2021).

⁺ A preprint publication (not yet peer reviewed) reports no increased risk of a composite adverse outcome (includes maternal death, uterine rupture, ICU admission, return to operating room, postpartum hemorrhage, perineal laceration, fetal or neonatal death, neonatal encephalopathy, low Apgar, NICU admission, low birthweight, neonatal birth trauma) among pregnant persons who received Pfizer (n=127), Moderna (n=12), or Janssen (n=1) (vaccines analyzed together). (Theiler RN, Wick M, Mehta R, et al. Pregnancy and birth outcomes after SARS-CoV-2 vaccination in pregnancy. MedRxiv 2021).

JournalPre

Figure. Risk of severe COVID-19 –associated outcomes among pregnant persons compared with non-pregnant women adjusted by age, race/ethnicity, and underlying medical conditions.


Abbreviations:

ICU=intensive care unit

ECMO= extracorporeal membrane oxygenation

Adapted from: Zambrano LD, Ellington S, Strid P, et al. Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status - United States, January 22-October 3, 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(44):1641-1647.

Figure. Risk of severe COVID-19 –associated outcomes among pregnant persons compared with non-pregnant women adjusted by age, race/ethnicity, and underlying medical conditions.

Abbreviations:

ICU=intensive care unit

ECMO= extracorporeal membrane oxygenation

Adapted from: Zambrano LD, Ellington S, Strid P, et al. Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status - United States, January 22-October 3, 2020. *MMWR Morb Mortal Wkly Rep.* 2020;69(44):1641-1647.