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A B S T R A C T   

The global spread of COVID-19 constitutes the most dangerous pandemic to emerge during the last one hundred 
years. About seventy-nine million infections and more than 1.7 million death have been reported to date, along 
with destruction of the global economy. 

With the uncertainty evolved by alarming level of genome mutations, coupled with likelihood of generating 
only a short lived immune response by the vaccine injections, the identification of antiviral drugs for direct 
therapy is the need of the hour. Strategies to inhibit virus infection and replication focus on targets such as the 
spike protein and non-structural proteins including the highly conserved RNA-dependent-RNA-polymerase, 
nucleotidyl-transferases, main protease and papain-like proteases. There is also an indirect option to target 
the host cell recognition systems such as angiotensin-converting enzyme 2 (ACE2), transmembrane protease, 
serine 2, host cell expressed CD147, and the host furin. A drug search strategy consensus in tandem with analysis 
of currently available information is extremely important for the rapid identification of anti-viral. 

An unprecedented display of cooperation among the scientific community regarding SARS-CoV-2 research has 
resulted in the accumulation of an enormous amount of literature that requires curation. Drug repurposing and 
drug combinations have drawn tremendous attention for rapid therapeutic application, while high throughput 
screening and virtual searches support de novo drug identification. Here, we examine how certain approved drugs 
targeting different viruses can play a role in combating this new virus and analyze how they demonstrate efficacy 
under clinical assessment. Suggestions on repurposing and de novo strategies are proposed to facilitate the fight 
against the COVID-19 pandemic.   

A novel coronavirus, severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) that causes COVID-19 was reported in December 2019 
[1–3]. To date, about seventy-nine million cases of infection by this 
novel coronavirus have been reported. More than 1.7 million people 
have died. This new viral disease quickly attained global spread and the 
number of infected people continues to increase rapidly by confirmed 
human-to-human transmission [4,5]. 

Coronaviruses are enveloped RNA viruses with a single-strand, 

positive-sense RNA genome of approximately 26–32 kilobases in 
size. Examples include severe acute respiratory syndrome (SARS) 
coronavirus (SARS-CoV) and Middle East respiratory syndrome 
(MERS) coronavirus (MERS-CoV) [6]. The latest reports show that 
SARS-CoV-2 is most closely related to the bat SARS-related corona-
viruses found in Chinese horseshoe bats as determined by phyloge-
netic analysis and next-generation sequencing [4]. SARS-CoV-2 
shares 88 % identity with two bat-derived SARS-like coronaviruses 
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(bat-SL-CoVZC45 and bat-SL-CoVZXC21), approximately 79 % with 
SARS-CoV and 50 % with MERS-CoV [5]. Homology modeling 
revealed that SARS-CoV-2 has a similar receptor-binding domain 
structure to that of SARS-CoV [5,7]. 

There are no specific therapies approved by the U.S. Food and Drug 
Administration (FDA) for treatment of COVID-19 [8]. However, more 
than 3000 studies are under clinical trial investigation [9]. 

Due to the considerable time required for development and global 
distribution of a vaccine, and the urgency for direct treatment of infected 
patients, the design and approval of antiviral drugs remain of critical 
importance. Moreover, recent report of dangerous spike protein muta-
tions observed in the United Kingdom alarm the need of direct treatment 
for SARS-CoV-2 [10]. As evidenced during the AZD1222 clinical trial 
[11], unexpected challenges are inevitable and multiple strategies are 
necessary to combat this pandemic. Furthermore, reports of reinfection 
warn the SARS-CoV-2 may continue to circulate among the human 
populations despite herd immunity due to natural infection or vacci-
nation [12]. 

Depending on the target, COVID-19 therapy can be divided into two 
categories: (1) inhibition of the enzymes central to viral replication and 
infection; (2) modulation of the human immune system or inhibition of 
the inflammatory processes that cause lung injury.7 Herein, we discuss 
the drugs targeting the SARS-CoV-2 virus. 

1. Therapeutic targets on SARS-CoV-2 

The SARS-CoV-2 virus has 5 major protein regions necessary for 
replication or viral assembly: ORF1ab, spike (S), envelop (E), membrane 
(M), and nucleocapsid (N) proteins [1]. ORF1ab encodes the 
non-structural protein (nsp) responsible for viral replication, including 
the papain-like protease (PLpro), 3C-like protease (3CLpro), 
RNA-dependent RNA polymerase (RdRp) and helicase (Hel). The S, E, M 
and N proteins encode the structural proteins of the virus. Rapidly 
conducted research has resulted in identification of various drug mole-
cules that may inhibit one or more of these critical proteins. The struc-
tures of such small molecules formerly and currently under formal 
investigation against coronaviruses (CoVs) are listed in Fig. 1. 

3CLpro, also called the main protease (Mpro), is a cysteine protease 
involved in precursor polyprotein maturation and cleavage to produce 
non-structural proteins [13–15]. The highly conserved active site of 
Mpro comprises 4 sites: S1, S2, S3 and S4 [16]. A combination of 
computational and experimental approaches has greatly accelerated the 
hunt for effective drug candidates that inhibit 3CLpro and drug mole-
cules targeting 3CLpro with inhibition in the lower μM range have been 
reported for SARS-CoV-2 [17,18]. Availability of the crystal structure 
with the Michael acceptor inhibitor N3 will be of further assistance to 
improve inhibitor efficiency [18]. 

Fig. 1. Chemical structures of small-molecules that have shown significant antiviral activity against SARS-CoV2.  

R. Wang et al.                                                                                                                                                                                                                                   



Biomedicine & Pharmacotherapy 137 (2021) 111232

3

Nucleotidyl-transferases (NiRAN) have been confirmed as essential 
for replication of SARS-CoV and other nidoviruses and are involved in 
nucleic acid ligation, mRNA capping, and protein-primed RNA synthesis 
[7]. The NiRAN sequence of SARS-CoV-2 shares 93.2 % identity with 
SARS-CoV [7]. The potential for developing SARS-CoV-2 NiRAN 

inhibitors merits further investigation. 
The SARS-CoV-2 viral genome encodes more than 20 proteins, 

among which are 3CLpro and PLpro (papain-like protease) that are vital 
to virus replication [19–23]. A recent sequence alignment study 
revealed that SARS-CoV-2 3CLpro clusters with SARS-CoV (96.08 % 

Table 1 
IC50 of inhibitors targeting critical CoV proteins.  

Coronavirus SARS-CoV-1 MERS-CoV SARS-CoV-2 

Protein Inhibitor IC50 Inhibitor IC50 Inhibitor IC50 

Spike Protein 

Peptide (P9) 1.5 nM [36] Peptide (P9) 1.5 nM [36] Peptide (P8) 
0.8 μM(VeroE6) 
0.09 μM(Calu3) [89]   

m336 scFv-pep 0.21 ± 0.06 nM 
[90] 

Peptide (P9) 0.3 μM(VeroE6) 
0.07 μM(Calu3) [89]   

IgG1 m336 0.03 nM [90] Peptide (P10) 
0.06 μM(VeroE6) 
0.08 μM(Calu3) [89]   

MERS-5HB 1 μM [91] EK1C4 
1.3 and 15.8 nM 
(PDB code 6LXT) 
[37] 

3CL protease 

α-ketoamide inhibitor 13b 0.90 ± 0.29 μM [21] 
α-ketoamide 
inhibitor 13b 

0.58 ± 0.22 μM 
[21] 

α-ketoamide 
inhibitor 13b 

0.67 ± 0.18 μM (PDB 
code 6Y2F, 6Y2G) 
[21] 

SARS 3CL protease inhibitors 
containing an aldehyde at the C 
terminus 

98 nM (PDB code 3ATW) [92]   
mechanism- 
based inhibitor 
(N3) 

0.67 to 21.4 μM (PDB 
code 6LU7, 7BQY) 
[18] 

Herbacetin, Rhoifolin, 
Pectolinarin 

33.17 μM,   
Boceprevir, GC- 
376 

0.03 μM (PDB code 
6WTT) [94] 27.45 μM, 

37.78 μM [93] 

Phenylisoserine SK80 43 μM [95]   UAWJ248 12 nM(PDB code 
6XBI) [96] 

40 novel unsymmetrical 
aromatic disulfides 0.516− 5.954μM [97]   MPI3 8.5 nM [98] 

Chalcones Isolated from 
Angelica Keiskei 11.4 μM [99]   

compound series 
6a-k and 7a-k 0.17− 0.82 nM [100]      

Flavonoid 34.71, 53.90 and 
51.64 μM [101] 

papain-like 
protease 

Chalcones Isolated from 
Angelica Keiskei 

1.2 μM [99] 6-Mercaptopurine 
(6 M P) 

26.9 ± 7.5 μM 
[102] 

Biltricide Binding Affinity 
8 nM-8 μM [103] 

tanshinone I 0.7 μM [104] 6-Thioguanine (6 TG) 
24.4 ± 4.3 μM 
[102]   

The isolated diarylheptanoids, 
hirsutenone 4.1 μM [105]     

Geranylated Flavonoids 
tomentin A to E 

5− 14.4 μM [106]     

No.2/No.49 0.46 μM/1.3 μM [107]     
(S)-Me inhibitor 15 h/ (R)-Me 
15g 

0.56 μM/0.32 μM (PDB code 
3MJ5) [108]     

15 g/3k/3 j/3e/5c 
0.67 μM/ 0.15 μM/ 0.49 μM / 
0.39 μM / 0.35 μM (PDB code 
4OW0, 4OVZ) [109]     

Disulfiram with 6 TG (15 μM) 14.2 ± 0. 5μM Disulfiram 22.7 ± 0.5 μM   
with NEM (4 μM) 21.8 ± 1.0 μM with 6 TG (15 μM) 14.5 ± 0.4 μM 
with βME (5 mM)  with MPA (150 μM) 21.7 ± 0.4 μM  

18.1 ± 0.7 μM 
with 6 TG (10 μM) 
and 13.7 ± 1.0 μM 

>300 μM (PDB MPA (100 μM)  

code 5Y3Q, 5Y3E) [110] 
with 6 TG (15 μM) 
and MPA (150 μM) 

4.4 ± 0.2 μM 

with βME (5 mM) >300 μM [110] 

RdRp 

Favipiravir    Favipiravir 61.9 μM (EC50) [61] 

Remdesivir (GS-5734) 0.069 ± 0.036 μM [45] 
Remdesivir (GS- 
5734) 

0.12 μM (EC50) 
[47] Remdesivir (GS- 

5734) 

0.77 μM (EC50); >
100 μM(CC50); 
SI > 129.87 [46] 

0.074 ± 0.023 μM 
(EC50) [45] 

Acyclovir fleximer analogues 
(Compound 2) 

<10 μM (EC50),     
> 100 μM [111] (CC50) 

helicase 

7-ethyl-8-mercapto-3-methyl- 
3,7-dihydro-1H-purine-2,6- 
dione 

8.66 ± 0.26 μM and 41.6 ± 2.3 
μM [112]     

2,6-Bis-arylmethyloxy-5- 
hydroxychromones 4 μM [113]     

SSYA10− 001 5.7 μM [114]     
(E)-3-(furan-2-yl)-N-(4- 
sulfamoylphenyl) acrylamide 

2.09 ± 0.30 μM and 13.2 ± 0.9 
μM [115]     

DHODH     S312 29.2 nM [116]     
S416 7.5 nM [116]  
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sequence identity) and MERS-CoV (87.00 % sequence identity) [23]. As 
determined by crystal structure, SARS-CoV-2 3CLpro also has a highly 
similar (96 % identity) ortholog in SARS-CoV [21]. SARS-CoV-2 PLpro 
shares 80 % sequence identity with that of SARS-CoV and 29 % with 
MERS-CoV [24]. 

The spike (S) protein mediates entry of the viral genome into human 
cells. The S-protein is the target of most vaccine strategies and antibody- 
based therapeutics [7,25]. The sequence of SARS-CoV-2 S-protein (1273 
a.a.s) was aligned with those from other strains of human coronaviruses. 
Sequence alignments and comparisons indicated that SARS-CoV-2 spike 
shares 77.38 % sequence identity with SARS-CoV and 31.93 % with 
MERS-CoV [7]. The mutated spike D614 G of SARS-CoV-2 is particularly 
concerning; it was not observed in early samples submitted from China 
in January 2020, but has made a gradual global appearance since March 
2020 [26,27]. The D614 G variant is associated with enhanced viral 
transmission [27]. SARS-CoV-2 VOC 202012/01, a mutant strain of 
SARS-CoV-2 reported in United Kingdom and South Africa is evolved to 
become 70 % more contagious due to it’s N501Y mutation on spike 
protein that helps it to bind more tightly to human ACE2 (Angio-
tensin-Converting Enzyme 2) [10,28,29]. A mouse adapted strain with 
the same mutation generated in laboratory setting was reported in an 
earlier study [30]. 

The U.S. National Library of Medicine approved the world’s first 
human safety trial with monoclonal antibody LY3819253 against 
COVID-19 in May 2020 [31]. The LY3819253 antibody binds to the 
S-protein of COVID-19 and was discovered by the pharma giant Eli Lilly 
[32]. A genetically engineered cocktail of mouse and human antibodies, 
REGN-COV2, that binds non-competitively to the S-protein is now under 
phase 3 clinical trial evaluation [33,34]. More recent research also 
demonstrates binding of this cocktail to the now prevalent D614 G 
variant [35]. 

Inhibition of the S-protein can primarily be achieved by inhibiting 
the receptor binding motif (RBM): such an inhibitor should have the 
ability to act as an interface inhibitor. There is no significant report of a 
small molecule that efficiently blocks the large surface involved in a 
protein–protein interface. However, peptide inhibitors such as lip-
opeptides derived from EK1 have shown inhibition of protein-mediated 

membrane fusion and pseudovirus infection with IC50s of 1.3 and 
15.8 nM [36,37]. 

APN01, a recombinant form of human ACE2 has been shown to 
effectively weaken the ability of SARS-CoV-2 to infect cells during the 
early stage of SARS-CoV-2 infection and to reduce lung injury. This 
peptide molecule is under a Phase II clinical trial evaluation that is ex-
pected to recruit 200 severely infected COVID-19 patients [38]. 

RNA-dependent RNA polymerase is the key component in SARS-CoV- 
2 virus replication [7,39,40]. It is a potential target for anti-SARS drugs 
as inhibition of this enzyme will hinder virus replication in the host [41]. 
Sequence alignments and comparisons indicate that SARS-CoV-2 RdRp 
shares a high sequence identity with SARS-CoV RdRp (98.13 %) and 
MERS-CoV RdRp (75.51 %) [7]. 

The COVID-19 pandemic has prompted a rapid effort by scientists 
and medical doctors to repurpose approved drugs for off-label use. Such 
drugs are primarily antivirals, whose existing detailed pharmacological 
and toxicological information may permit rapid clinical trials [7,42–44]. 

2. Representative repurposed drugs 

Remdesivir (GS-5734) is a good example of anti-viral drug repur-
posing. It was initially developed to treat filoviruses causing Ebola dis-
ease and has proven safe in the two most recent Ebola epidemics. 
Remdesivir was also shown to be effective against both SARS-CoV and 
MERS-CoV in animal models [42]. 

Remdesivir is a novel nucleotide analogue prodrug under evaluation 
for the treatment of SARS-CoV-2. It acts as an RdRp inhibitor against a 
wide array of RNA viruses [45–47]. Its activity has been demonstrated 
against zoonotic coronaviruses SARS-CoV and MERS-CoV with a 
demonstrated half-maximal effective concentration (EC50) value of 0.07 
μM [46–48]. Crystal structures of RdRp from different viruses in com-
plex with remdesivir have revealed key aspects of the structure–function 
of RdRps and confirmed that RdRps from coronaviruses or other viruses 
share a common architecture and mechanism for polymerase catalysis 
[49,50]. Intermolecular interaction among remdesivir, RNA and 
RNA-dependent RNA polymerase analyzed by Kato et al. [51] using 
fragment molecular orbital calculation is plotted on to the crystal 

Table 2 
Completed clinical trials registered under United States National Library of Medicine clinical trials registry addressing the safety and efficacy of remdesivir (GS- 
5734™) and favipiravir as a potential therapeutic option for COVID.  

Clinical trial 
number 

Study design Estimated 
enrollment 

Phase Conditions Intervention/ Treatment Start Date Completion 
Date 

NCT04280705 
Adaptive, Randomized, 
Double-blind, Placebo- 
controlled 

1062 
participants 3 COVID-19 

Drug: Remdesivir February 21, 
2020 May 21, 2020 Other: Placebo 

NCT04292730 
Randomized, Parallel 
Assignment, Open Label 

1113 
participants 3 COVID-19 

Drug: Remdesivir March 15, 
2020 

June 26, 
2020 Drug: Standard of Care 

NCT04492501 Non-Randomized 600 
participants 

Not 
Applicable 

COVID-19 
Procedure: Therapeutic 
Plasma exchange 

April 1, 
2020 

July 20, 2020 Cytokine Release 
Syndrome Critical 
Illness ARDS 

Biological: Convalescent 
Plasma 
Drug: Tocilizumab 
Drug: Remdesivir 
Biological: Mesenchymal 
stem cell therapy 

NCT04292899 
Randomized, Parallel 
Assignment, Open Label 

4891 
participants 3 COVID-19 

Drug: Remdesivir March 6, 
2020 

June 30, 
2020 Drug: Standard of Care 

NCT04349241 
Randomized, Parallel 
Assignment, Open Label 

100 
participants 3 COVID-19 

Drug: Favipiravir April 18, 
2020 

June 20, 
2020 Drug: Standard of care 

therapy 

NCT04376814 
Non-Randomized, Parallel 
Assignment, Open Label 

40 participants 
Not 
Applicable 

COVID-19 
Drug: Favipiravir March 29, 

2020 
May 25, 2020 Drug: Hydroxychloroquine 

Drug: Lopinavir / Ritonavir 

NCT04645433 
Observational Cohort, 
Retrospective 

100 
participants 

Not 
Applicable COVID-19 

Favipiravir therapy March 15, 
2020 May 15, 2020 Lopinavir-ritonavir therapy 

NCT04542694 
Randomized, 200 

participants 3 COVID-19 
Drug: Favipiravir May 21, 

2020 
August 10, 
2020 Parallel Assignment, Open 

Label 
Drug: Standard of care  

R. Wang et al.                                                                                                                                                                                                                                   



Biomedicine & Pharmacotherapy 137 (2021) 111232

5

structure of the RdRp: RNA: remdesivir complex shown in Fig. 1. An 
understanding of such detailed interactions will accelerate the hunt for 
better drug candidates. As there are no RdRp homologs in humans, their 
inhibition is not expected to cause undesirable side effects during ther-
apy [52]. Remdesivir showed an EC50 of 0.77 μM for SARS-CoV-2. This 
was approximately 10 times weaker than for SARS-CoV and MERS-CoV, 
but still demonstrated significant affinity to inhibit SARS-CoV-2 RdRp. 
The half-cytotoxic concentration (CC50) was higher than 100 μM and the 
selective index (SI) was greater than 129.87. This RdRp inhibitor of 
SARS-CoV-2 warrants urgent investigation (Table 1). 

Remdesivir has shown significant inhibition of human and zoonotic 
coronaviruses in vitro and in a murine model of SARS-CoV [45]. 
Remdesivir use has been documented in the treatment of MERS-CoV 
infections in vivo [47]. In in vitro tests, remdesivir is recognized as 
highly effective against SARS-CoV-2 infection [3,46]. The first case of 
COVID-19 in the United States was treated with intravenous remdesivir 
initiated on the evening of day 7 of the illness promoting a successful 
outcome [53]. 

To date, remdesivir has been administered to hundreds of patients 
with severe SARS-CoV-2 infections in the United States, Europe, and 
Japan [54]. The clinical trial “A Multicenter, Adaptive, Randomized 
Blinded Controlled Trial of the Safety and Efficacy of Investigational 
Therapeutics for the Treatment of COVID-19 in Hospitalized Adults” 
showed that it had a significant effect on 1062 patients with advanced 
COVID-19 (Table 2). Preliminary results indicate that patients who 
received remdesivir treatment had a 31 % faster time to recovery 
compared with the placebo control group and a lower rate of respiratory 
tract infection [55]. Preliminary results were obtained from 538 patients 
assigned to remdesivir and 521 patients who received the placebo. The 
remdesivir group had a median recovery time of 11 days, compared with 
15 days for the placebo group [56]. The Kaplan–Meier estimates of 
mortality by 14 days were 7.1 % (remdesivir group) and 11.9 % (placebo 
group) [56]. Serious adverse events were reported for 114 of the 541 
patients in the remdesivir group and 141 of the 521 patients in the 
placebo group [56]. The final report of this trial was published in 
November 2020 and results showed that remdesivir was superior to 
placebo in shortening the time to recovery and lowering respiratory 
tract infection in COVID-19 patients [57]. 

Clinical trial data for remdesivir in patients under 18 years of age is 
expected to be available by February 2021. 

Favipiravir is another well-known RdRp inhibitor originally devel-
oped against influenza and approved in Japan in 2014. It has also un-
dergone study for drug repurposing [58]. Favipiravir has a half maximal 
inhibitory concentration (IC50) value of 0.314 μM for influenza, and 67 
μM for Ebola [59,60]. More recently, an EC50 of 61.9 μM, CC50 >

400 μM, and SI > 6.46 were demonstrated for SARS-CoV-2 [61]. The low 
inhibitory efficacy of favipiravir for other viruses may be indicative of 
the larger RdRp structural difference between influenza and other vi-
ruses. For example, the marked difference between favipiravir IC50 for 
influenza and SARS-CoV-2 is in agreement with their different virus 
families, and the considerable genomic differences between these two 
viral RdRps [62]. The clinical trials ChiCTR2000029600 and 
ChiCTR200030254 evaluated the safety and efficacy of favipiravir for 
the treatment of COVID-19 [58,63]. The results from both trials support 
the potential of favipiravir repurposing for the treatment of this disease. 
Results from the ChiCTR2000029600 trial showed that the 35 patients 
who received favipiravir demonstrated a significantly shorter viral 
clearance time compared with the 45 patients of the control group 
(median 4 days vs. 11 days, respectively) 31. X-ray examinations 
confirmed a higher rate of improvement in chest imaging for the 
favipiravir-treated group (91.43 % vs. 62 %)31. 

An additional two favipiravir clinical trials registered under the 
United States National Library of Medicine clinical trials registry have 
been completed (Table 2). Several favipiravir phase III clinical trials are 
ongoing with results expected in December 2020 [64]. 

Both remdesivir and favipiravir have assisted in reducing the 

mortality rate associated with COVID-19. However, as evident from 
their EC50 values, optimization of these molecules to specifically bind to 
the RdRp of SARS-CoV-2 will significantly improve their potential as 
inhibitors of this virus. It should be remembered that neither molecule 
was initially developed to target SARS-CoV-2. 

3. Drug targeting the host system 

The interaction between the S-protein and human ACE2 is the major 
entry route of SARS-CoV-2 to human lungs. Furthermore, protein 
priming of the S-protein by the transmembrane protease, serine 2 
(TMPRSS2) is a crucial factor in virus entry [65]. A recent mass 
spectroscopy-based measurement of protein–protein interaction studies 
has revealed 332 interactions between SARS-CoV-2 and human proteins 
[66]. Furthermore, sixty-nine existing drugs known to target host pro-
teins that interact with SARS-CoV-2 were identified. Interface inhibitors 
for several of the interacting host proteins are underway. 
Angiotensin-converting enzyme 2 is the host cell receptor responsible 
for cellular entry of SARS-CoV-2. As such it is the prime target for most 
host-based drug target studies. On the other hand, results from a recent 
study have proposed that induction of the downstream pathway of 
ACE2, by activating the ACE2/Ang1-7/MAS axis will prevent the lung 
and cardiovascular damage initiated by SARS-CoV-2 [67]. Dr. Josef M 
Penninger’s team reported the first course of treatment with hrsACE2 
(human recombinant soluble ACE2 [APN01; Apeiron Biologics, Vienna, 
Austria]) in a patient with severe COVID-19. The virus was shown to 
rapidly disappear from the patient’s serum after intravenous infusion 
with hrsACE2 [68]. 

Cleavage of the S1 protein is achieved by acid-dependent proteolysis 
by one or several host proteases including TMPRSS2. A clinically 
approved TMPRSS2 inhibitor, Nafamostat mesylate has been proposed 
as a treatment option [65,69] and is ready for clinical trial evaluation 
(ClinicalTrials.gov Identifier: NCT04435015). Despite in vitro studies 
showing an EC50 of 10 nM it is unclear whether a sufficient ligand 
concentration can be attained in the lungs to block viral spread. How-
ever, administration of Nafamostat mesylate with favipiravir has shown 
a promising clinical outcome [70]. Inhibition of TMPRSS2 by the serine 
protease inhibitor Camostat has been demonstrated in an in vitro model 
of SARS-CoV [71]. Camostat significantly reduced SARS-CoV-2 infection 
of Calu-3 lung cells [65], and has entered into a Phase II clinical trial 
(MUHC_CAMOSTAT MESILATE (Control #240313)). 

A novel route of entry for SARS-CoV-2 into the host via spike protein 
CD147 has been reported [72]. Host-cell-expressed CD147 could bind 
the spike protein of SARS-CoV-2 and facilitate host cell invasion. 
Meplazumab, a humanized anti-CD147 antibody has efficiently 
improved the recovery of patients with SARS-CoV-2 pneumonia. Though 
a small scale clinical trial has been reported, large scale recruitment is 
necessary to validate the final outcome [73]. 

The furin-based polybasic cleavage site in the spike protein of SARS- 
CoV-2 is essential for infection of human lung cells [74]. While many 
furin inhibitors have been reported from in vitro and in vivo studies, most 
also inhibit other proprotein convertases recognising the same or similar 
polybasic cleavage sites. Although the host system provides additional 
routes for drug targeting, increased toxicity is of concern. However, 
treatment with a more recent drug, RLF-100, that binds to the suscep-
tible type 2 cells in the lungs that are directly attacked by the corona-
virus, leads to rapid recovery from respiratory failure and inhibition of 
coronavirus replication in human lung cells [75]. 

It is evident that multiple therapeutic strategies are necessary to 
mitigate the mortality rate and prepare for the potential emergence of 
drug resistance by the virus. A recent report identified twenty-one 
clinically-approved drug molecules, including remdesivir, which were 
confirmed to possess dose/activity relationships, with thirteen of these 
compounds demonstrating EC50 values < 500 nM in vitro [43]. These 
include drugs targeting the virus in addition to the host biological 
system. 
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4. Other treatment options for COVID-19 

4.1. Natural killer cells 

The FDA recently cleared an investigational new drug application for 
the use of Celularity’s drug candidate CYNK-001 in adults with COVID- 
19. CYNK-001 is an infusion of natural killer (NK) cells, a type of white 
blood cell that may kill cells infected by the virus and address the 
resulting inflammation caused by the immune system [76,77]. This trial 
will include approximately one hundred patients with COVID-19 
infection that has resulted in pneumonia and has an estimated pri-
mary completion on January 3, 2022. 

4.2. Treatments combined with traditional oriental medicine 

Traditional Oriental medicine, also known as Traditional Chinese 
medicine (TCM), has been proven to have a compelling beneficial effect 
in the treatment of SARS [78]. The fatality rate of SARS in Beijing was 
dramatically reduced from more than 52 % before May 5, to 4%–1% 
after May 20, 2003, using TCM as a supplement to conventional therapy 
[79]. 

Based on the fact that natural compounds have been biologically 
confirmed against SARS-CoV or MERS-CoV, rational screening of ori-
ental herbal medicines can help in the selection of suitable drugs to 
directly inhibit SARS-CoV-2 [80]. Thirteen natural compounds in use in 
TCM have shown potential with anti-SARS-CoV-2 activity [81]. 
Confirmed COVID-19 cases (60107) have been treated by TCM since 
early this year67. In 102 COVID-19 patients with mild symptoms treated 
with TCM, the clinical cure rate was increased by 33 %; common to 
severe cases were reduced by 27.4 % and patients’ lymphocytes were 
increased by 70 % [82]. Qing-fei-pai-du decoction showed over a 90 % 
effective cure rate against COVID-19 among 701 patients [82,83]. 

In traditional TCM treatments are formulated on symptom-based 
diagnoses [2]. From existing reports, COVID-19 patients mainly pre-
sented with fever, fatigue, dry cough, upper airway congestion, sputum 
production, dyspnoea, myalgia/arthralgia, diarrhoea, thick greasy fur 
on tongue and slippery pulse [2,53,84,85]. The huo-xiang-zheng-qi 
capsule was used for patients presenting with fatigue and gastrointes-
tinal disorder [2,78]. Jin-hua-qing-gan granules, lian-hua-qing-wen 
capsules, or shu-feng-jie-du capsules were recommended for patients 
with fatigue and fever [2,78,86]. 

TCM medicine not only inhibits the virus, but may also block 
infection, regulate the immune response, cut off the inflammatory 
storm, and promote repair of the body [78,79,81,87]. Clinical results 

showed that TCM plays a significant role in the treatment of COVID-19. 

5. Conclusion 

Despite rigorous effort and impressive collaborations, no drugs have 
yet been shown to exert a remarkable inhibitory effect against SARS- 
CoV-2. Many drugs such as oseltamivir, paramivir, neuraminidase, 
zanamivir, baloxavir marboxil, hydroxychloroquine, lopinavir etc., 
which were initially believed to have positive effects, have now been 
discontinued from most clinical use. Effective drugs against COVID-19 
are in increasing demand as an alternative strategy to contain the 
pandemic during vaccine development. Moreover, dangerous mutations 
on SARS-CoV-2 genome is an alarm to search for alternative approaches 
for inhibiting the spread of this virus. The efficacies of particular drugs 
against various viruses shown in Table 1 correlate well with the simi-
larity of their corresponding targets. Despite eight months of diligent 
repurposing trials, a significant therapy against SARS-CoV-2 has not 
been achieved. Furthermore, many of the ongoing repurposing efforts 
suffer from the lack of central coordination and a high probability of 
redundancy for molecules under test by different laboratories. Thus, we 
propose the implementation of novel strategies such as optimizing 
moderately inhibitory drug molecules such as remdesivir and favipiravir 
to promote binding to the specific binding pocket of SARS-CoV-2. 
Moreover, modifying chemical structures to improve absorption, dis-
tribution, metabolism, and excretion (ADME) may modulate the toxicity 
of exceptionally performing in vitro inhibitors such as Ivermectin to 
provide another feasible approach [88]. The structural and intermo-
lecular interaction information shown in Fig. 1 will aid the scientific 
community in efficiently modifying a particular molecule and improving 
its IC50 and ADME. In conclusion, in addition to repurposing drug ef-
forts, optimization of lead molecules is an immediate approach that we 
propose to the scientific community (Fig. 2). 
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