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Abstract

The genomic sequences of severe acute respiratory syndrome coronavirus 2 (SARS‐
CoV‐2) worldwide are publicly available and are derived from studies due to the in-

crease in the number of cases. The importance of study of mutations is related to the

possible virulence and diagnosis of SARS‐CoV‐2. To identify circulating mutations pre-

sent in SARS‐CoV‐2 genomic sequences in Mexico, Belize, and Guatemala to find out if

the same strain spread to the south, and analyze the specificity of the primers used for

diagnosis in these samples. Twenty three complete SARS‐CoV‐2 genomic sequences,

available in the GISAID database fromMay 8 to September 11, 2020 were analyzed and

aligned versus the genomic sequence reported in Wuhan, China (NC_045512.2), using

Clustal Omega. Open reading frames were translated using the ExPASy Translate Tool

and UCSF Chimera (v.1.12) for amino acid substitutions analysis. Finally, the sequences

were aligned versus primers used in the diagnosis of COVID‐19. One hundred and

eighty seven distinct variants were identified, of which 102 are missense, 66 synon-

ymous and 19 noncoding. P4715L and P5828L substitutions in replicase polyprotein

were found, as well as D614G in spike protein and L84S in ORF8 in Mexico, Belize, and

Guatemala. The primers design by CDC of United States showed a positive E value. The

genomic sequences of SARS‐CoV‐2 in Mexico, Belize, and Guatemala present similar

mutations related to a virulent strain of greater infectivity, which could mean a greater

capacity for inclusion in the host genome and be related to an increased spread of the

virus in these countries, furthermore, its diagnosis would be affected.
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1 | INTRODUCTION

The first cases of severe acute respiratory syndrome coronavirus 2

(SARS‐CoV‐2) were reported in December 2019 in Wuhan city,

Hubei province, China1,2; thus initiating the coronavirus pandemic

(COVID‐19).3 According to the information released from scientists

around the world and the GISAID consortium, until September 15,

2020, SARS‐CoV‐2 has caused 29,445,572 cases worlwide and

931,454 deaths.4 According to predictions,5 the total number of

deaths will increase to 2,778,330 by January 1, 2021.

To identify how the virus spread, cross‐sectional studies with

phylogenetic analysis and markers that identified mutations were

implemented.6 It is known from epidemiological reports that the first

cases started in Mexico from the East, particularly from the United

States, Spain, France, Germany, Singapore, and especially from

Bergamo, Italy.7,8 In addition, we think that the dispersion went from

Mexico to Belize and Guatemala, and therefore, there could be the

same molecular characteristics, for this reason we included these

three countries in our study.

SARS‐CoV‐2 is closely related to the SARS‐CoV and the Middle

East respiratory syndrome coronavirus.9 Its structure contains a

single‐stranded RNA (ssRNA) genome with a length of 29,903 bp.

It comprised of a 5ʹ‐untranslated region (5ʹ‐UTR), a conserved repli-

case domain (ORF1ab) cleaved into 16 nonstructural proteins (NSPs)

that participate in virus transcription and genome replication, four

structural proteins (S, E, M, and N), several accessory proteins

(ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10), and a highly

conserved 3ʹ‐UTR1,10,11 (Table 1) among other coronaviruses.12,13

The ORF1ab gene encodes for replicase polyprotein 1ab (pp1ab),

which is constituted of NSPs (NSP1, NSP2…NSP16). Of these, NSP12

corresponds to RNA‐dependent RNA polymerase (RdRp) and is

formed by 932 amino acids (4392–5324 residues). The spike (S)

protein has been described as responsible for the interaction with

the human receptor angiotensin‐converting enzyme 2 (hACE2)14; it is

constituted of two domains, the S1 domain, responsible for binding,

and the S2 domain that mediates the fusion of the viral and cellular

membrane.15 Moreover, S1 has variations but S2 is highly

conserved.16

Nonsynonymous substitution changes the protein sequences,

these have been reported in SARS‐CoV‐2 in the functional do-

mains of ORF3a.17 Issa et al.17 reported that these substitutions

are related to virulence, infectivity, ion channel formation, and

virus release. ORF3a mutations have been found in other countries

such as India.18

We analyze and identify the characteristics of circulating SARS‐
CoV‐2 mutations present in genomic sequences in Mexico, Belize,

and Guatemala, to find out if they have the same molecular char-

acteristics, we also evaluate how these mutations affect the primer

design for reverse transcription‐polymerase chain reaction (RT‐PCR)
from the Center for Disease Control and Prevention of the United

States (CDC US), CDC China, Charité (Germany), Hong Kong

University, and the National Institute of Infectious Diseases (Japan).

The results indicated the presence of similar mutations in ORF1ab, S

(S1, S2 or S2'), ORF 3a, ORF7a, ORF8, and N, as well as in the

noncoding (5ʹ‐UTR and 3ʹ‐UTR) and intergenic regions (between

ORF3a and E gene) in strains from Mexico, Belize, and Guatemala.

Also, we found that primers from the Center for Disease Control and

Prevention (CDC US) could present low specificity.

2 | METHODS

We analyzed 457 SARS‐CoV‐2 genomic sequences from Mexico, Belize,

and Guatemala available in the GISAID database (https://www.gisaid.

org/) from May 8 until September 11, 2020. Of these, we only selected

the complete sequences with approximately 29.800–29.900 base pairs

(bp); 23 fromMexico (EPI_ISL_426362, EPI_ISL_424667, EPI_ISL_455456,

EPI_ISL_426364, EPI_ISL_426363, EPI_ISL_424670, EPI_ISL_424673,

EPI_ISL_516613, EPI_ISL_516620, EPI_ISL_454555, EPI_ISL_412972,

EPI_ISL_452139, EPI_ISL_424672, EPI_ISL_516625, EPI_ISL_424626,

EPI_ISL_455434, EPI_ISL_516609, EPI_ISL_496369, EPI_ISL_493348,

EPI_ISL_493336, EPI_ISL_516611, EPI_ISL_455438, and EPI_ISL_496374),

four from Belize (EPI_ISL_509713, EPI_ISL_509714, EPI_ISL_509712,

and EPI_ISL_509711), and 10 from Guatemala (EPI_ISL_509710,

EPI_ISL_509700, EPI_ISL_509699, EPI_ISL_509696, EPI_ISL_509695,

EPI_ISL_509702, EPI_ISL_509703, EPI_ISL_509697, EPI_ISL_509698, and

EPI_ISL_509701).

Genomic alignments were performed using Clustal Omega (https://

www.ebi.ac.uk/Tools/msa/clustalo/) versus the SARS‐CoV‐2 genomic

sequence reported from Wuhan, China (NCBI accession number

NC_045512.2) as reference. Open reading frames (ORFs) containing the

identified variants were translated using the ExPASy Translate Tool

(https://web.expasy.org/translate/) using standard code. Variants and

their amino acids were used to create a table of variants (Table 2).

The amino acids corresponding to mutations D614G in the spike

protein, P4715L in RdRp, and L84S in ORF8 protein were replaced by

Visual Molecular Dynamics (VMD) v.1.9.1 (https://www.ks.uiuc.edu/)

and visualized with Chimera v. 1.1.12 (https://www.cgl.ucsf.edu/

chimera/), taking as templates structures from Protein the Data Bank

(PDB) proposed by Zhang et al.19 For the spike protein, we used

6VSB.pdb, which corresponds to the trimeric protein in open con-

formation that includes the S1 and S2 subdomains20 while for the

RdRp, we took chain A of 6M71.pdb reported by Gao et al.21

As of September 09, 2020, the crystallographic structure of the

ORF8 protein has not been reported, thus we take the one proposed

by the Iterative Threading Assembly Refinement (I‐TASSER) server22

(QHD43422.pdb). Also, in Mexico, the Berlin test with four oligo-

nucleotides for the RdRp gene (GTGARATGGTCATGTGTGGCGG,

FAM‐CAGGTGGAACCTCATCAGGAGATGC‐BBQ, FAM‐CCAGGT
GGWACRTCATCMGGTGATGC‐BBQ, CARATGTTAAASACACTATT

AGCATA), three for the E gene (ACAGGTACGTTAATAGTTAATAGC

GT, FAM‐ACACTAGCCATCCTTACTGCGCTTCG‐BBQ, ATATTGCAG

CAGTACGCACACA) and three for the N gene (CACATTGGCACCC

GCAATC, FAM‐ACTTCCTCAAGGAACAACATTGCCA‐BBQ, GAGA

ACGAGAAGAGGCTTG)23 are the reference in the Institute of Epi-

demiological Diagnosis and Reference “Dr. Manuel Martínez Báez”
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TABLE 2 Nucleotide variants and amino acid substitutions in SARS‐CoV‐2 genomes in Mexico

ID Mexico
Nucleotide
change

Synonymous/
nonsynonymous

Position
genome

Amino acid
substitution

Position
protein Gene Product

EPI_ISL426362 C>T Synonymous 8782 S 2839 ORF1ab NSP4

T>A Nonsynonymous 9477 F>Y 3071 ORF1ab NSP4

C>T Synonymous 14805 Y 4847 ORF1ab NSP10

C>T Synonymous 23280 I 573 S S1

G>T Nonsynonymous 25979 G>V 196 ORF3a 3A protein

C>T Synonymous 28657 D 128 N N

C>T Nonsynonymous 28863 S>L 197 N N

T>C Nonsynonymous 28144 L>S 84 ORF8 ORF8b protein

T>C ‐ 26232 ‐ ‐ Intergenic ‐

EPI_ISL_424667 C>T Synonymous 8782 S 2839 ORF1ab NSP4

C>T Synonymous 17470 L 17470 ORF1ab Helicase

C>T Synonymous 26088 I 232 ORF3a 3a Protein

T>C Nonsynonymous 28144 L>S 84 ORF8 ORF8b protein

EPI_ISL_455456 C>T Synonymous 26088 I 232 ORF3a 3a Protein

T>C Nonsynonymous 28144 L>S 84 ORF8 ORF8b protein

C>T Synonymous 8782 S 2839 ORF1ab NSP4

EPI_ISL_426364 C>T Synonymous 8782 S 2839 ORF1ab NSP4

C>T Nonsynonymous 17747 P>L 5828 ORF1ab Helicase

A>G Nonsynonymous 17858 Y>C 5865 ORF1ab Helicase

C>T Synonymous 18060 L 5932 ORF1ab 3ʹ–5ʹ Exonuclease

C>T Nonsynonymous 21707 H>Y 49 S S1

C>T Synonymous 23422 V 620 S S1

A>T Synonymous 24694 G 1044 S S2'

T>C Nonsynonymous 28144 L>S 84 ORF8 ORF8b protein

EPI_ISL_426363 C>T Nonsynonymous 21707 H>Y 49 S S1

T>C Nonsynonymous 28144 L>S 84 ORF8 ORF8b protein

C>T Synonymous 23422 V 620 S S1

A>T Synonymous 24694 G 1044 S S2'

C>T Synonymous 8782 S 2839 ORF1ab NSP4

C>T Nonsynonymous 17747 P>L 5828 ORF1ab Helicase

A>G Nonsynonymous 17858 Y>C 5865 ORF1ab Helicase

C>T Synonymous 18060 L 5932 ORF1ab 3ʹ–5ʹ Exonuclease

EPI_ISL_424670 T>C Nonsynonymous 28144 L>S 84 ORF8 ORF8B protein

C>T Synonymous 26088 I 232 ORF3a 3A protein

C>T Synonymous 8782 S 2839 ORF1ab NSP4

EPI_ISL_424673 C>T Nonsynonymous 936 T>I 224 ORF1ab NSP2

C>T Synonymous 8782 S 2839 ORF1ab NSP4

G>T Nonsynonymous 11083 L>F 3606 ORF1ab NSP6

C>T Nonsynonymous 17747 P>L 5828 ORF1ab Helicase

A>G Nonsynonymous 17858 Y>C 5865 ORF1ab Helicase

C>T Synonymous 18060 L 5932 ORF1ab 3ʹ–5ʹ Exonuclease

A>T Synonymous 24694 G 1044 S S2'

T>C Nonsynonymous 28144 L>S 84 ORF8 ORF8b protein

G>T Nonsynonymous 28812 S>I 180 N N

EPI_ISL_516613 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
C>T Nonsynonymous 27964 S>L 24 ORF8 ORF8b protein

C>T Nonsynonymous 28087 A>V 65 ORF8 ORF8b protein

G>T Nonsynonymous 25563 Q>H 57 ORF3a 3a Protein

C>T Nonsynonymous 28868 P>S 199 N N
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TABLE 2 (Continued)

ID Mexico

Nucleotide

change

Synonymous/

nonsynonymous

Position

genome

Amino acid

substitution

Position

protein Gene Product

A>G Nonsynonymous 23403 D>G 614 S S1

C>T Nonsynonymous 1059 T>I 265 ORF1ab NSP2

C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Nonsynonymous 3768 T>I 1168 ORF1ab NSP3

G>T Synonymous 6421 V 2052 ORF1ab NSP3

T>A Nonsynonymous 6640 H>Q 2125 ORF1ab NSP3

C>T Nonsynonymous 8739 T>I 2825 ORF1ab NSP4

C>T Nonsynonymous 10319 L>F 3352 ORF1ab 3c‐like proteinase

C>T Synonymous 11575 F 3770 ORF1ab NSP6

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

C>T Synonymous 17503 F 5746 ORF1ab Helicase

A>G Synonymous 20263 L 6666 ORF1ab 2'‐o‐ribose
methyltransferase

G>A Nonsynonymous 21306 R>H 7014 ORF1ab 2'‐o‐ribose
methyltransferase

EPI_ISL_516620 C>T ‐ 106 ‐ ‐ 5ʹ‐UTR ‐
C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
G>T Nonsynonymous 2809 R>S 848 ORF1ab NSP3

C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Synonymous 5869 Y 1868 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

C>T Synonymous 18829 V 6188 ORF1ab 3ʹ–5ʹ Exonuclease

A>G Nonsynonymous 23403 D>G 614 S S1

C>T Nonsynonymous 26042 T>I 217 ORF3a 3a Protein

G>A Nonsynonymous 28881 R>K 203 N N

G>A Nonsynonymous 28882 R>K 203 N N

G>C Nonsynonymous 28883 G>R 204 N N

EPI_ISL_455455 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

A>G Nonsynonymous 23403 D>G 614 S S1

C>T Nonsynonymous 27046 T>M 175 M M

G>A Nonsynonymous 28881 R>K 203 N N

G>A Nonsynonymous 28882 R>K 203 N N

G>C Nonsynonymous 28883 G>R 204 N N

G>T Nonsynonymous 29224 M>I 317 N N

EPI_ISL_412972 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

A>G Nonsynonymous 23403 D>G 614 S S1

G>A Nonsynonymous 28881 R>K 203 N N

G>A Nonsynonymous 28882 R>K 203 N N

G>C Nonsynonymous 28883 G>R 204 N N

EPI_ISL_452139 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
G>A Nonsynonymous 28881 R>K 203 N N

G>A Nonsynonymous 28882 R>K 203 N N

G>C Nonsynonymous 28883 G>R 204 N N

A>G Nonsynonymous 23403 D>G 614 S S1

C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

(Continues)
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TABLE 2 (Continued)

ID Mexico

Nucleotide

change

Synonymous/

nonsynonymous

Position

genome

Amino acid

substitution

Position

protein Gene Product

EPI_ISL_424672 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
A>G Nonsynonymous 1308 N>S 348 ORF1ab NSP2

C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

C>T Nonsynonymous 17639 S>L 5792 ORF1ab Helicase

A>G Synonymous 20268 L 6668 ORF1ab Endornase

A>G Nonsynonymous 23403 D>G 614 S S1

G>T Nonsynonymous 27506 G>V 38 ORF7a 7A protein

C>T Nonsynonymous 28638 P>L 122 N N

A>G ‐ 29700 ‐ ‐ 3ʹ‐UTR ‐

EPI_ISL_516625 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
G>T Nonsynonymous 25996 V>L 202 ORF3a 3a protein

G>T Nonsynonymous 29477 D>Y 402 N N

A>G Nonsynonymous 23403 D>G 614 S S1

C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Synonymous 3992 A 1043 ORF1ab NSP3

C>T Nonsynonymous 6696 P>L 2144 ORF1ab NSP3

C>T Nonsynonymous 7104 T>I 2280 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

A>G Synonymous 20268 L 6668 ORF1ab Endornase

EPI_ISL_424626 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
C>T Synonymous 2940 L 893 ORF1ab NSP3

C>T Synonymous 3037 F 924 ORF1ab NSP3

T>A Nonsynonymous 6842 S>T 2193 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

A>G Nonsynonymous 23403 D>G 614 S S1

EPI_ISL_455434 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
C>T Nonsynonymous 1059 T>I 265 ORF1ab NSP2

C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

A>C Nonsynonymous 20756 S>R 6831 ORF1ab 2'‐O‐Ribose
methyltransferase

A>G Nonsynonymous 23403 D>G 614 S S1

G>T Nonsynonymous 25563 Q>H 57 ORF3a 3a protein

EPI_ISL_516609 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
G>T Nonsynonymous 25690 G>C 100 ORF3a 3a protein

C>T Nonsynonymous 28854 S>L 194 N N

A>G Nonsynonymous 23403 D>G 614 S S1

T>C Synonymous 24076 G 838 S S2'

C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Synonymous 11074 F 3603 ORF1ab NSP6

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

A>G Nonsynonymous 16052 K>E 5263 ORF1ab NSP10

A>G Synonymous 20268 L 6668 ORF1ab Endornase

EPI_ISL_496369 C>T ‐ 241 ‐ 5ʹ‐UTR ‐
C>T Nonsynonymous 28854 S>L 194 N N

A>G Nonsynonymous 23403 D>G 614 S S1

C>T Synonymous 3037 F 924 ORF1ab NSP3

A>C Nonsynonymous 8805 N>T 2847 ORF1ab NSP4

C>T Synonymous 11575 F 3770 ORF1ab NSP6
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(InDRE) of the Secretary of Health of Mexico. In addition, the In-

stitute has approved 53 molecular tests from different world com-

panies for the detection of SARS‐CoV‐2. These tests detect different

genes and use different primers with different analytical sensitivity

(limit of detection; https://www.gob.mx/cms/uploads/attachment/file/

576584/Listado_de_estuches_comerciales_utiles_para_el_diagn_stico_de_

SARS-CoV-2.pdf).

On the other hand, the governments of Belize and Guatemala ob-

tain diagnostic tests with different primers and with recommendations

from the Pan American Health Organization and the World Health

Organization (https://www.pressoffice.gov.bz/government-of-belize-to-

procure-covid-19-test-kits-from-cayman-islands/; https://www.paho.

org/es/documentos/directrices-laboratorio-para-deteccion-diagnostico-

infeccion-con-virus-covid-19). The genomic sequences were aligned

TABLE 2 (Continued)

ID Mexico

Nucleotide

change

Synonymous/

nonsynonymous

Position

genome

Amino acid

substitution

Position

protein Gene Product

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

C>T Synonymous 16888 Y 5541 ORF1ab Helicase

C>T Synonymous 19030 H 6255 ORF1ab 3ʹ–5ʹ Exonuclease

A>G Synonymous 20268 L 6668 ORF1ab ‐

EPI_ISL_493348 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
A>G Nonsynonymous 1558 I>M 431 ORF1ab NSP2

C>T Nonsynonymous 6573 S>F 2103 ORF1ab NSP3

C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab Nsp10

A>G Synonymous 20268 L 6668 ORF1ab Endornase

T>C Synonymous 22192 I 210 S S1

A>G Nonsynonymous 23403 D>G 614 S S1

EPI_ISL_493336 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
A>G Nonsynonymous 23403 D>G 614 S S1

C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Synonymous 4582 N 1439 ORF1ab NSP3

C>T Nonsynonymous 8175 A>V 2637 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

A>G Synonymous 20268 L 6668 ORF1ab Endornase

EPI_ISL_516611 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
C>T Synonymous 3037 F 924 ORF1ab NSP3

G>A Synonymous 5668 E 1801 ORF1ab NSP3

C>T Synonymous 5884 Y 1873 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

A>G Synonymous 20268 L 6668 ORF1ab Endornase

A>G Nonsynonymous 23403 D>G 614 S S1

A>T Nonsynonymous 23583 Y>F 674 S S2

C>T Nonsynonymous 28854 S>L 194 N N

EPI_ISL_455438 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
C>T Synonymous 3037 F 924 ORF1ab NSP3

A>G Nonsynonymous 23403 D>G 614 S S1

G>A Synonymous 25183 E 1207 S S2'

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

A>G Synonymous 20268 L 6668 ORF1ab Endornase

EPI_ISL_496374 C>T ‐ 241 ‐ ‐ 5ʹ‐UTR ‐
C>T Nonsynonymous 28854 S>L 194 N N

A>G Nonsynonymous 23403 D>G 614 S S1

C>T Synonymous 3037 F 924 ORF1ab NSP3

C>T Nonsynonymous 14408 P>L 4715 ORF1ab NSP10

A>G Synonymous 20268 L 6668 ORF1ab Endornase

Note: Helicase: nsp13_ZBD, nsp13_TB, and nsp_HEL1core. 3ʹ–5ʹ exonuclease: nsp14A2_ExoN and nsp14B_NMT. endoRNAse: nsp15‐A1 and nsp15B‐
NendoU. 2'‐O‐Ribose methyltransferase: nsp16_OMT. 3C‐like proteinase: nsp5A.
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with primers used in the diagnosis of COVID‐19 by the RT‐PCR using

the Sequence Manipulation Site: PCR Products tool v.2 (https://www.

bioinformatics.org/sms2/pcr_products.html) and Primer3Plus v.2.4.2

(https://primer3plus.com/cgi-bin/dev/primer3plus.cgi), including the

sequence NC_045512.2 as reference.

The expect‐value (E value) is a statistical parameter that describes

the probability of the significance of an alignment. The lower the

E‐value, the lower the alignment error; thus, the efficiency of the RT‐
PCR amplification could show a higher concentration of product per

cycle. We evaluated this and other characteristics of these tests,24

such as the variations in specificity reported in the melting curve‐based
multiplex quantitative RT‐PCR (RT‐qPCR) Assay for Human

Coronaviruses25 and secondary structures for other viruses,26 for this

reason, their specificity and E values were determinaed through the

basic local alignment search tool (BLAST; https://blast.ncbi.nlm.nih.gov/

Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=

blasthome) and the melting temperature (Tm) using Oligo Analyzer

program development by Sigma‐Aldrich Co. (http://www.

oligoevaluator.com/LoginServlet).

3 | RESULTS

A total of 187 distinct variants were found in Mexico, 54 in Guate-

mala, and 39 in Belize. Alignment of genomic sequences of the three

countries shared an approximately 99.9% identity. Of these variants,

161 correspond to transitions in Mexico, 50 to transitions in Gua-

temala and 31 to transitions in Belize (Figure 1) and the rest to

transversions. The most common variant in all cases was C>T, which

represents an average 52% of the variants that mainly correspond to

ORF1ab (Figure 1). The translation revealed 46 amino acid sub-

stitutions and 28 synonyms. The substitutions in the noncoding re-

gions included one in C106T and sixteen in C241T of 5ʹ‐UTR, one of

3ʹ‐UTR (A29700G), and also, one intergenic variant located between

ORF3a and E (T26232C) in Mexico; while in Guatemala, we identified

13 amino acid substitutions and five synonyms.

The variants were distributed in six genes, four of which pre-

sented the highest number of mutations (almost 86%). The ORF1ab

gene presented the maximum number of mutations, 15 amino acid

substitutions, and 16 synonymous, followed by the S gene, with six

substitutions and five synonymous. The third gene with the most

mutations was the N gene, which contained six nonsynonymous

amino acid substitutions and one synonym. And finally, in the ORF8

gene, six substitutions were observed. In the ORF7a gene, only one

mutation (G38V) was found; while in the ORF3a gene, one sub-

stitution (G196V) and two synonymous (I232) were localized.

Figure 1 shows the distribution of mutations in SARS‐CoV‐2 genomic

sequences, including noncoding and intergenic regions. Furthermore,

the distribution of the variants in the sequences, where the most

common variants in all sequences were C>T and A>G. The variations

observed in each genomic sequence are presented in Tables 2–4.

We also localized NSP12 which corresponds to RNA‐dependent
RNA polymerase (RdRp) and shows that the active sites are formed by

the conserved amino acids D760 and D761 (blue spheres). Likewise,

there are residues in the 5 Angstrom region (Å) that surround the active

aspartates (in magenta bars, amino acids V763, C622, N695, Y619,

E811 and F812); and residues H295, C301, C306, C310, H647, C487,

C645 and C646 (in orange sticks) correspond to the binding sites of Zn+

ions. The mutation P4715L (red spheres) corresponds to amino acid 323

in RdRp and as it can be observed, do not affect, or influence active sites

F IGURE 1 Nucleotide variations and distribution identified in the SARS‐CoV‐2 genomic sequences from Mexico, Guatemala, and Belize
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TABLE 3 Nucleotide variants and amino acid substitutions in SARS‐CoV‐2 genomes in Guatemala

Note: In red: mutations exclusive to Guatemala and in green: mutations that coincide with Mexico.
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(Figure 2A). Also, Figure 2B shows an overall view of the trimeric spike

protein. The D614G mutations found in Mexico, Belize and Guatemala

were 29 out of a total of 37 strains.

In Mexico, the genome sequences that we found had four

sequences with lineage A5 and clade S; four sequences with li-

nage A1 and clade S; three sequences with linage B1 and clade G;

six sequences with linage B1.5 with clade G; one sequence with

linage B1 and clade GH; two sequences with lineage B1.1 and

clade GR; one sequence with lineage B1.2 and clade GH; one

sequence with lineage B1 and clade GR and one sequence with

lineage B1.75 with clade G. However, in Guatemala, we found

four genome sequences with lineage B1.5 with clades O, four

genome sequences with lineage B1.5 and clades G, one genome

sequence with lineage B1 and clade H, and another with lineage

A3 with clade S. In the genome sequences from Belize, we found

two B1 lineages with H clades, and two other genomes with the

B1.1 lineage and R clade.

A 3D model of ORF8 protein was obtained using the data of that

proposed by Yang Zhang Lab, with its binding sites. ORF8 protein is

121 residues in length.22 Figure 3 illustrates the spatial distribution

of the L84S mutation along with R48, G50, L57, P56, Q72, and Y73

residues, which could be a glycerol binding site. S97 and L98 could be

a region that binds to an Hg+ ion likewise, ORF8 could be related to

pathogenesis.14,27

The in silico analysis of the primers is used in the RT‐qPCR for

detection of SARS‐CoV‐2 (Table 5). The results reported by Yan

et al.28 and Udugama et al.,29 show that most of the primers contain

23%–58% of guanine‐cytosine content (GC). These generate a few

dimers, as well as having a very weak or weak secondary structure,

and possess a melting temperature (Tm) among 48.7°C–71.7°C. Also,

TABLE 4 Nucleotide variants and amino acid substitutions in SARS‐CoV‐2 genomes in Belize

Note: In red: mutations exclusive to BELIZE and in green: mutations that coincide with MEXICO.
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we show the high sensitivity of the primers used because the E value

is close to zero, except in the set designed by CDC from the United

States where the E value is positive, indicating low sensitivity.

Primers designed by the Chinese Center for Disease Control and

Prevention (China CDC), Charité (Germany), and the National

Institute of Infectious Diseases (Japan) for the RdRp, N and S genes

give a product using Primer3Plus, and similarly, multiple alignments

(Table 5). This indicates a high sensitivity to these primers, however,

four sets of primers used by the Centers for Disease Control and

Prevention (CDC US) present low sensitivity to RdRp, S, and N

amplicons. They are misaligned with the primer forward that can

recognize 11/19 base pairs causing low sensitivity.

4 | DISCUSSION

The genomic sequences of first SARS‐CoV‐2 strain in Mexico (hCoV/

Mexico/CDMX/InDRE_01/2020) show high identity with the

sequence reported in China Wuhan‐Hu‐1 (NC_045512.2), it only

differs in seven nucleotide substitutions.8 This high sequence identity

F IGURE 2 Mutations P4715L and G614G: (A) amino acid P4715 in red spheres, correspondent to residue 323 in RdRp protein of SARS‐
CoV‐2. In blue spheres D760 and D761 active sites. In magenta sticks, V763, C622, N695, Y619, and F812 residues. These residues, lying 5 Å
surrounding DD active site. In orange sticks, H295, C301, C306, and C310 residues (Zn+ ion binding site). Structure was downloaded from PDB

(https://www.rcsb.org/) ID 6M71.pdb, and edited using UCSF Chimera, v.1.12. (B) Amino acid substitution D614G on spike (original model
downloaded from rcsb.org, code 6VSB.pdb). G614 mutation is far away from important residues for attachment (RBD in green light spheres) and
fusion (fusion peptides, red spheres, residues 788–806) with membrane. Visualization using Chimera UCSF, v.1.12

F IGURE 3 Spatial distribution of the
mutation L84S in the ORF8 protein. L84P
mutation is represented in red sticks and in

wire light sea green color, R48, G50, L57, P56,
Q72, and Y73. In yellow sticks, a probable Hg+

ion binding site
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has been attributed to the recent spread of the virus in humans,

suggesting a common lineage and source.10,35 Our results show 84%

more transitions than transversions. The effects of transition and

transversion mutations have been studied in influenza (H1N1) and

the human immunodeficiency virus virus, these studies conclude that

it is likely that transversions cause radicals changes in amino

acids29,36 that could be involved in the high genomic conservation of

the new coronavirus.

Different reports of variant analysis of SARS‐CoV‐2 genomes

show similar results to those of Mexico, Belize, and Guatemala, for

example, Koyama et al.37 reported that C>T was the most common

variant; they also identified mutations in C3037T (F924), C14408T

(P4715L) in RdRp, ORF1ab and, A23403G (D614G) in the spike, this

was reported mainly in Europe and the United States.35,38 Ad-

ditionally, D614G formed the largest phylogenic clade including

C241T, F924, and P4715L, while the second largest clade was

T28144C (L84S) present in ORF8, which was reported days after the

outbreak in travelers from Wuhan. Among the L84S clade, the L84S/

C17747T (P5828L) subclade was more frequent in the United

States.37,38 Regarding the P4715L mutation, it corresponds to amino

acid residue 323 in the RdRp; however, it does not affect or influence

the active sites (Figure 2A), according to Yang et al.,39 who predicted

active site residues in the same region. Similarly, Khailany et al.,40

reported that C>T was the most frequent mutation observed and

also found C8782T (S2839) mutations in ORF1ab and T28144C

(L84S) in ORF8 genes. We did not identify the mutation in the

C29095T (F274) N gene.39

Moreover, current evidence of the mutation of an aspartate (D)

at position 614 to glycine (G) in spike is possibly related to increased

infectivity,41 but also gives a more pathogenic strain. The G614G

mutation alters the fusion of the cell membrane and the data reveals

that it is located in a highly glycosylated region that also allows the

identification of two viral clades.39,42 The aspartate strain has been

found in cases reported on the West Coast of United States, while

the glycine strain has been reported on the East Coast.43 In Mexico,

our study revealed the presence of the D614 in samples, identified in

a smaller number of cases at the moment of sequencing.

SARS‐CoV‐2 genomes have two major lineages with sublineages

A (1, 2, 3, and 5) and B (1, 1.1, 2, 3, and 4).44 In Mexico, Taboada

et al.45 found that the lineages changed from late February to March

from A2 to B1. Considering that we selected only the complete se-

quences, we found a higher proportion of B lineages and clades G as

in Guatemala and Belize.

Lineages have been associated with certain clinical manifesta-

tions.35 Lineage A has sequences from Europe and conforms to a

human coronavirus (HCoV‐OC43 and HCoV‐HKU1), may be asso-

ciated with self‐limiting upper respiratory infections, and occasion-

ally, with lower respiratory tract infections; while lineage B may

cause severe lower respiratory tract infections with acute respiratory

distress syndrome and extrapulmonary manifestations.43

We found a mutation in the noncoding regions 5ʹ‐UTR (C241T),

this type of mutation in UTRs of SARS‐Cov‐2 has been studied re-

cently, suggesting that C241T in 5ʹ‐UTR appeared early during the

outbreak, and could be key in virus replication and RNA folding,46

affecting the steam‐loop 5b (SL5b)47,48 and the host defense.49 The

intergenic mutation A29700G located between ORF3a and E genes

might emerge through adenosine deaminase acting on RNA (ADAR)

and could be important in the antiviral response28,35,50 reducing the

stability in the RNA fold.29

Activation of the SARS‐CoV‐2 spike protein via sequential pro-

teolytic cleavage can be at two distinct sites. For many CoVs, the

spike protein is cleaved at the boundary between the S1 and S2

subunits (residues 685 and 686), which remain non covalently bound

in the prefusion conformation while for all CoVs, the spike is further

cleaved by host proteases at the so‐called S2 site located im-

mediately upstream of the fusion peptide (residues 788–806).51 Also,

RBD is constituted by residues 333–527 and belongs to a region that

attaches to hACE2, a highly conserved cryptic epitope in the

receptor‐binding domains of SARS‐CoV‐2 and SARS‐CoV.52 As we

can see, the D614G mutation is not between important regions

known, but recently has been associated with high prevalence, from

<1% in January to 69% in March. The global spread of SARS‐CoV‐2
subtype with spike protein D614G mutation is shaped by Human

Genomic Variations that regulate the expression of TMPRSS2 and

MX1 genes, although the mechanism by which such a phenomenon

occurs is not clear yet.53

The ORF8 protein has 121 residues in length and very little is

known about its function. Nevertheless, Zhang et al.22 have proposed a

3D model along with its binding sites. The L84S mutation in genomic

sequences in Mexico can indicate that the circulating strain shows a

different characteristic, like the Wuhan strain. However, the number

of analyzed samples is a limitation of guarantee. Due to several reports

of low sensitivity in the RT‐PCR test, which is not considered the gold

standard for diagnosis of COVID‐19,54,55 we analyzed a predictive

evaluation of the sensitivity of the primers used (Table 5).

The N gene has a high degree of conservation in coronaviruses,56

however, in our study, the N gene is the third with the highest

number of mutations, following the ORF1ab and S genes. The results

suggest a high sensitivity of the primers. Nevertheless, that designed

by CDC (US) for the RdRp gene, could generate low sensitivity of the

forward and reverse primer related to the few complementary bases

already reported.57 Besides this, the mutations AAC (28881–28883)

in the N gene could decrease sensitivity because they are part of the

region where the primer is attached to the template strand. As a

consequence, it is not recognized by Primer3Plus. We considered

that not all primers possess high sensitivity for diagnosing of COVID‐
19, and the mutations in the genomic sequences may decrease just

the sensitivity. Recently in China, it has been reported that non-

specific primers may amplify high concentrations of human cathepsin

C (CTSC) and messenger RNA in the tonsils. This could cause inter-

ference in diagnosing COVID‐19,58 which could explain why RT‐PCR
should not be considered the gold standard. Furthermore, the test

presents other problems, such as those related to errors in swab

tests, causing improper extraction of viral RNA.59 A comprehensive

review of the diagnosis of COVID‐19 can be found at Yan et al.22 and

Li and Ren.60
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As time passes, mutations in the genomic sequences of SARS‐
CoV‐2 could appear in the highly conserved regions and the effec-

tiveness of the diagnostic methods could be compromised. Factors,

such as correct sampling, conservation and transport of the sample,

extraction61 quality and integrity of RNA,37 calibration of the ther-

mocycler, and optimal amplification conditions, may influence the

results. Likewise, the design of primers in conserved regions is es-

sential, and experimental studies are required for a wider under-

standing. Finally, several questions related to the mutations remain, a

very important one is whether these mutations are related to the

observed case‐fatality rate. Until September 13, 2020, Mexico has a

very high case‐fatality rate of 10.6%, Belize 1.3%, and Guatemala

3.6%, in addition to a high number of people with comorbidities.62
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