

W Rrain-based correlates of antidepressant response to ketamine: a comprehensive systematic review of neuroimaging studies

Gustavo C Medeiros, Malcolm Matheson, Isabella Demo, Matthew J Reid, Sharaya Matheson, Claire Twose, Gwenn S Smith, Todd D Gould, Carlos A Zarate Jr, Frederick S Barrett, Fernando S Goes

Lancet Psychiatry 2023; 10: 790-800

Published Online August 22, 2023 https://doi.org/10.1016/ 52215-0366(23)00183-9

Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA (G C Medeiros MD, I Demo BS, Prof G S Smith PhD. E S Barrett PhD. E S Goes MD. M Matheson MD, M J Reid PhD); Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA (CTwose MLIS); Department of Psychiatry (G C Medeiros, Prof T D Gould MD). Department of Pharmacology (Prof T D Gould), and Department of Anatomy and Neurobiology (ProfT D Gould), University of Maryland School of Medicine, Baltimore, MD, USA: Veterans Affairs Maryland Health Care System, Baltimore, MD, USA (ProfT D Gould); **Experimental Therapeutics and** Pathophysiology Branch, Intramural Research Program, NIMH-NIH, Bethesda, MD, USA (C A Zarate |r MD); Department of Neuroscience, Department of Psychological and Brain Sciences, and Center for Psychedelic and Consciousness

Correspondence to: Dr Fernando S Goes, Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA faoes1@ihmi.ed

Research, Johns Hopkins

Baltimore, MD, USA

University School of Medicine,

(FS Barrett); Baltimore, MD,

USA (S Matheson LMFT)

Ketamine is an effective antidepressant, but there is substantial variability in patient response and the precise mechanism of action is unclear. Neuroimaging can provide predictive and mechanistic insights, but findings are limited by small sample sizes. This systematic review covers neuroimaging studies investigating baseline (pretreatment) and longitudinal (post-treatment) biomarkers of responses to ketamine. All modalities were included. We performed searches of five electronic databases (from inception to April 26, 2022). 69 studies were included (with 1751 participants). There was substantial methodological heterogeneity and no well replicated biomarker. However, we found convergence across some significant results, particularly in longitudinal biomarkers. Response to ketamine was associated with post-treatment increases in gamma power in frontoparietal regions in electrophysiological studies, post-treatment increases in functional connectivity within the prefrontal cortex, and post-treatment increases in the functional activation of the striatum. Although a well replicated neuroimaging biomarker of ketamine response was not identified, there are biomarkers that warrant further investigation.

Introduction

Major depressive disorder and bipolar depression are associated with substantial disability and significantly reduced quality of life. Conventional treatments for these disorders (such as selective serotonin reuptake inhibitors, and serotonin and norepinephrine inhibitors) are moderately effective but have substantial limitations including low rates of remission (particularly in people with treatment-resistant depression), a similar mechanism of action (modulation of monoamines), and a delayed onset of action requiring weeks to achieve significant therapeutic effects.^{2,3} The discovery of rapid antidepressant effects from (R,S)-ketamine (ketamine) and its (S)-ketamine enantiomer (esketamine) can potentially overcome some of the limitations of conventional treatments as ketamine and esketamine have been shown to be effective even in individuals with treatment-resistant depression with an onset of action within hours.2,3

Nevertheless, there is substantial individual variability in the response to ketamine or esketamine, with most studies reporting response rates between 35% and 60%.24 Currently, there are no established clinical or biological predictors of response to ketamine or esketamine and, as a result, clinical use of these rapid-acting agents still relies on a trial-and-error approach. Previous studies have investigated clinical variables and biomarkers associated with response to ketamine or esketamine but mostly with small sample sizes and methodological heterogeneity that have led to mixed and inconclusive results. For example, there is conflicting evidence whether clinical variables such as a history of alcohol use disorder (personal history, family history, or both),5-8 higher BMI,57,9-11 and the absence of a history of suicide attempt or psychiatric hospitalisation^{5,8,10,12,13} are linked to better response to ketamine or esketamine. Similarly, blood-based biomarkers have not yet proven useful in predicting the treatment response to ketamine or esketamine.4 A systematic review and meta-analysis found that the most consistent association in blood-based biomarkers was longitudinal treatment-associated increases in blood brainderived neurotrophic factor (BDNF) and response to ketamine or esketamine,4 albeit with a modest effect size (Cohen's d=0.26, 95% CI 0.03-0.48)⁴ that, by itself, is unlikely to be clinically actionable.

The current limited ability to predict response to ketamine or esketamine with clinical variables and bloodbased biomarkers provides further impetus to examine the usefulness of other predictive modalities that might more directly reflect illness-related dysfunction in the brain. Several neuroimaging modalities can be applied to study the structure and function of the CNS, each with intrinsic strengths, limitations, and a different specificity or sensitivity for investigating specific aspects of the CNS (table 1).14 Structural neuroimaging, such as structural MRI (sMRI) and diffusion tensor imaging (DTI), obtains anatomical data with high spatial resolution, whereas functional MRI (fMRI) can measure brain activity as well as functional connectivity within and between brain regions. Molecular imaging, defined as "the use of neuroimaging techniques to detect and characterize molecular processes other than water", 15 include approaches such as PET and magnetic resonance spectroscopy (MRS), which enable the examination of specific molecules within the CNS and can provide unique neurochemical information but have limited spatial and temporal resolution. Finally, electrophysiological modalities, such as magnetoencephalography (MEG) and electroencephalography (EEG), measure the brain's electrical activity with high temporal resolution; however, these modalities have limited spatial resolution. A summary of the available studies on structural and functional neuroimaging correlates of

	Mechanism or measurement	Advantages	Disadvantages	
Structural neuroimaging: modalities specialised in visualisation and analysis of static anatomical data				
Structural MRI	Produces a strong magnetic field that aligns the body's natural protons and then detects their magnetic properties; measures the amount of water in different tissues to produce anatomical images	High spatial resolution (millimetres), widely available, and does not expose patients to ionising radiation	Potential physiological and motion artifacts, contraindications (eg, metallic devices or denta devices and pacemakers), and potentially uncomfortable	
Diffusion tensor imaging	Uses MRI techniques to detect the pattern of water diffusion, which is quantified by measures such as fractional anisotropy, radial diffusivity, and apparent diffusion coefficient	Comprehensive assessment of white matter organisation, high spatial resolution (millimetres), and does not expose patients to ionising radiation	Potential physiological and motion artifacts, contraindications (eg, metallic devices or denta devices and pacemakers), and potentially uncomfortable	
fMRI: modalities that use MRI to e	estimate, at rest or during tasks, functional connectivity a	nd activity of brain regions		
Resting-state or task-based fMRI	Detects changes in blood oxygenation (through measurement of deoxyhaemoglobin concentration) to estimate changes in neuronal activity	High spatial resolution (millimetres), widely available, and does not expose patients to ionising radiation	Potential physiological and motion artifacts, contraindications (eg, metallic devices or denta devices and pacemakers), and potentially uncomfortable	
Arterial spin labelling	Uses fMRI techniques to label arterial blood water protons, a freely diffusible intrinsic tracer; primarily used to measure cerebral blood flow	Comprehensive assessment of cerebral blood flow, reliable and reproducible, no exposure to ionising radiation or other exogenous contrasts	Poor standardisation of arterial spin labelling techniques across studies, low signal-to-noise ratio, and contraindications (eg, metallic or dental devices and pacemakers)	
Electrophysiological modalities: modalities that non-invasively examine neural electrical activity				
MEG	Detects magnetic fields generated by the electrical currents to study the brain electrical activity; one of the advantages of MEG over EEG is that MEG provides the tridimensional location of the electrical activity	High temporal resolution (milliseconds), not affected by signal distortion from the scalp and cerebrospinal fluid, no need to place electrodes on the scalp	Low spatial resolution (centimetres), high cost and low availability, and contraindications (eg, metallic or dental devices and pacemakers)	
EEG	Detects the electrical activity of the brain through non- invasive electrodes placed on the scalp; the currents measured are divided into bands, which are believed to represent different functional components	High temporal resolution (milliseconds), low cost and widely available, and portable	Low spatial resolution (centimetres), does not accurately assess deep brain structures, and lengthy preparation time	
Molecular modalities: modalities	that detect and analyse specific molecules (other than wa	ter)		
Magnetic resonance spectroscopy	Detects radio frequency electromagnetic signals produced by the atomic nuclei within the molecules; different molecules can be examined and, as a result, tissue metabolites are identified and quantified in vivo	High sensitivity to specific molecules, provides metabolic data, and does not expose patients to ionising radiation	Low spatial resolution (centimetres), low temporal resolution (minutes), and contraindications (eg, metallic or dental device and pacemakers	
PET	Detects radiation issued by a radioactive substance (radiotracer) to visualise and measure intracellular biochemical change	High sensitivity to specific molecules, provides metabolic data, and measures variations in the course of the scan	Low temporal resolution (minutes), low spatial resolution, and ionising radiation exposure (injection of radioactive tracer)	
EG=electroencephalography. fMRI=fu	ntional MRI. MEG=magnetoencephalography.			
Table 1: Overview of the main chara	acteristics of structural and functional neuroimaging mod	alities		

response to ketamine or esketamine could not only allow a better prediction of response to these rapid-acting antidepressants, but also be particularly insightful about neurobiological therapeutic mechanisms of ketamine or esketamine.

Previous reviews partly summarised the available studies examining neural correlates of response to ketamine or esketamine. 16-19 However, some omitted certain neuroimaging modalities, such as electrophysiological studies,^{17,19} structural neuroimaging,^{18,19} or molecular neuroimaging,18,19 and they have generally not addressed the convergence or replicability of the findings in independent samples. 16,18,19 As a result, there has not, to our knowledge, been a comprehensive systematic review, which is crucial given the frequently small and heterogeneous studies, often with overlapping samples.

Hence, in this report we have performed a systematic review of all neuroimaging data focused on ketamine or esketamine and response to treatment. In synthesising the data, we have focused on: (1) whether baseline (pre-treatment) neuroimaging biomarkers are associated with antidepressant response to ketamine or esketamine in individuals with major depressive disorder or bipolar depression; and (2) whether longitudinal (posttreatment) neuroimaging biomarkers are associated with antidepressant response to ketamine or esketamine in individuals with major depressive disorder or bipolar depression.

Methods

Search strategy and selection criteria

Searches were conducted in five electronic databases: MEDLINE (PubMed), Embase, PsycINFO, The Cochrane Library, and Web of Science. Searches (conducted by CT) were initially performed on April 8, 2020, and were updated on April 26, 2022. The search terms used are detailed in appendix 1 (p 11). Manual searches (conducted See Online for appendix 1 by GCM and MM) and studies obtained through personal communication complemented the electronic searches. Manual searching included the screening of review

articles, grey literature, included papers, and manuscripts that cited the included papers. This systematic review included studies that (1) examined adults who were aged 18 years or older, (2) included patients who were in a major depressive episode (ie, had active depressive symptoms) in major depressive disorder or bipolar disorder, (3) were published in English (there were no restrictions on dates), (4) reported on clinical trials (open label and randomised controlled) that administered at least one dose of intravenous ketamine, intranasal ketamine, intravenous esketamine, intranasal esketamine, or a combination of these treatments, (5) measured the depressive symptoms using a standardised depression instrument or scale, (6) investigated participants with any structural or functional neuroimaging modality, and (7) measured the association between change in depressive symptoms after ketamine or esketamine treatment, and pre-treatment or post-treatment neuroimaging findings or both (ie, manuscripts that measured pre-treatment or post-treatment neuroimaging findings but did not examine their relationship with changes in depressive symptoms were not included).

See Online for appendix 2

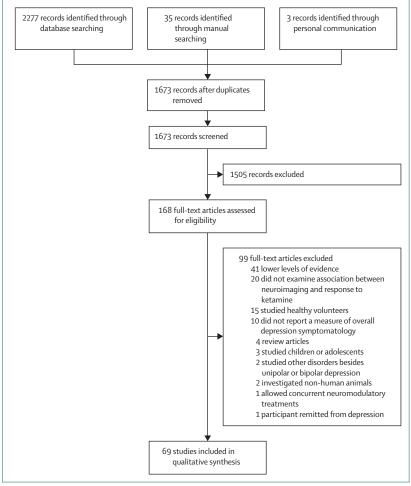


Figure: Flow diagram of systematic searches for studies assessing neuroimaging biomarkers of antidepressant response to ketamine or esketamine

We excluded studies that (1) investigated non-human animals, (2) were based solely on conference abstracts, case reports, or case series and editorials,20 (3) assessed healthy volunteers or individuals with depressive symptoms due to other disorders besides major depressive disorder and bipolar disorder, (4) examined the association of pre-treatment and post-treatment neuroimaging findings with only a specific depressive symptom (eg, suicidality or anhedonia) and not an overall depression scale, (5) included concurrent neuromodulatory treatments including vagal nerve stimulation, electroconvulsive therapy, and repetitive transcranial magnetic stimulation (psychotherapy and concurrent medications were not exclusion criteria), (6) examined individuals with serious or unstable medical comorbidities, and (7) studied individuals in surgical or perioperative settings.

Manuscript selection

The manuscript selection process consisted of an initial screening of titles and abstracts to choose the articles warranting a full-text review, followed by a selection of the manuscripts that were ultimately included in this systematic review. The manuscript selection team consisted of four investigators (GCM, MM, SM, and FSG) and, in each of the two selection phases, a manuscript was independently reviewed by two investigators. Disagreements between the two independent reviewers were resolved by consensus discussion. If two or more manuscripts reported on the same results on the same dataset, we only included the most comprehensive report in this systematic review.

Data extraction and data report

The list of variables extracted for each manuscript and the database used are available in the appendices (appendix 1 pp 1–2; appendix 2 tab 1).

To answer our research questions, the main findings focused on the association between neuroimaging findings (baseline or longitudinal) and change in depressive symptoms in individuals who were treated with ketamine or esketamine. Improvement of depressive symptoms included continuous measures of improvement in depression scores (such as percentage and absolute changes in depression scores), categorical measures of improvement (such as response and remission), or both. The data extraction team consisted of three investigators (GCM, MM, and ID) and the data for each individual study were independently extracted by two investigators.

Results

Our search identified 2315 articles by database searching (2277 articles), manual searching (35 articles; appendix 1 p 1), and personal communication (three articles). After the screening of titles and abstracts, 168 were considered to be potentially eligible for inclusion in this systematic review and, therefore, underwent full-text review (figure).

	Studies (n=69)
Number of neuroimaging modalities used	
One	64 (93%)
Two or more	5 (7%)
Neuroimaging modality used	
Structural modalities	10 (15%)
Structural MRI	7 (10%)
Diffusion tensor imaging	3 (4%)
fMRI	29 (42%)
Resting-state fMRI	19 (28%)
Task-based fMRI	7 (10%)
Arterial spin labelling	3 (4%)
Electrophysiological modalities	20 (29%)
Resting-state MEG	4 (6%)
Task-based MEG	8 (12%)
Resting-state (awake) EEG	4 (6%)
Task-based EEG	2 (3%)
Sleep EEG	2 (3%)
Molecular modalities	15 (22%)
Magnetic resonance spectroscopy	8 (12%)
PET	7 (10%)
Medication used	
Only ketamine	67 (97%)
Both ketamine and esketamine	2 (3%)
Number of infusions	
Single	59 (86%)
Multiple (two or more)	10 (14%)
Number of participants	22 (16–32)
Age of participants (years; n=66 studies)	41.5 (36.1-45.0)
Percentage of women (n=66 studies)	56% (41-25-61-00)
Percentage of men (n=66 studies)	44% (39.00-58.75)
Primary diagnosis included	
Only major depressive disorder	64 (93%)
Only bipolar depression	3 (4%)
Combination of individuals with major depressive disorder and bipolar depression	2 (3%)
(Table 2	2 continues in next column)

69 manuscripts were ultimately included, yielding a combined sample of 1751 participants. Most of the included studies used only one neuroimaging modality (64 [93%] of 69 studies) and investigated only individuals with major depressive disorder (64 [93%]). All 69 studies treated individuals with intravenous racemic ketamine and two (3%) of these studies had a subsample of participants who were treated with intravenous esketamine.21,22 Since the two studies that included individuals treated with esketamine did not conduct separate analyses for participants who received only esketamine, this systematic review mostly consists of evidence on neuroimaging correlates of antidepressant response to racemic ketamine.

Ten (15%) studies investigated structural neuroimaging (sMRI and DTI), 29 (42%) studies reported on fMRI (resting-state fMRI, task-based fMRI, and arterial spin

	Studies (n=69)
(Continued from previous column)	
Association studied	
Only longitudinal neuroimaging findings	36 (52%)
Both baseline and longitudinal neuroimaging findings	23 (33%)
Only baseline neuroimaging findings	10 (15%)
Reported statistically significant associations*	
Yes	55 (80%)
No	14 (20%)
Clinical trial design	
Randomised controlled trial	35 (51%)
Open-label trial	32 (46%)
Combination of different designs	2 (3%)
Primary depression outcome measure	
Montgomery-Asberg Depression Rating Scale	49 (71%)
Hamilton Depression Rating Scale	14 (20%)
More than one measure	4 (6%)
Beck Depression Inventory	2 (3%)
Allowed concurrent antidepressants	
Yes	27 (39%)
No	42 (61%)
Number of previous antidepressant trials in which participants were required to have not met inclusion criteria	2 (1–2)
Current prevalence of any anxiety disorder in individual studies (n=15 studies)	70% (55–75)
Data are n (%) or median (IQR). EEG=electroencephalog ARI. MEG=magnetoencephalography. *Associations be etamine or esketamine (analysed categorically or conti or longitudinal neuroimaging findings in the total samp ignificant associations in subsamples were not included	tween response to nuously), and baseline ble (ie, statistically
Table 2: Main characteristics of studies using neuro	oimaging to examin

labelling, which measures cerebral blood flow and is hypothesised to be correlated with brain activation), 20 (29%) studies examined electrophysiological modalities (MEG and EEG), and 15 (22%) studies used molecular modalities (PET and MRS). 33 (48%) articles reported on baseline (pre-treatment) neuroimaging findings and 59 (86%) articles reported on longitudinal (post-treatment) neuroimaging findings. 55 (80%) articles reported statistically significant associations between neuroimaging findings and response to ketamine. The main brain regions involved in statistically significant findings were the prefrontal cortex (16 studies), 21,23-37 the anterior cingulate cortex (12 studies), 21,28,34,38-46 and the striatum (nine studies). 23,27,29,37,47-51 Table 2 describes the main characteristics of the included studies.

Structural neuroimaging (sMRI and DTI)

Ten studies examined structural neuroimaging biomarkers of response to ketamine (appendix 1 p 12). Seven studies used sMRI^{40,44,47,52-55} and three studies used DTI.41,56,57 Eight of the ten studies reported statistically significant associations between neuroimaging findings and response to ketamine.

Nine studies reported on baseline (pre-treatment) structural neuroimaging biomarkers of response to ketamine, 40,41,44,52-57 six using sMRI and three using DTI. There was convergence in two types of findings. In sMRI studies, there was convergence between two studies that found an association between smaller baseline hippocampal volume and greater improvement of depressive symptoms. 44,52 In DTI studies, there was convergence in the results of two studies that found an association between greater baseline fractional anisotropy in the cingulum 56,57 and greater improvement of depressive symptoms (appendix 1 pp 2–4).

Six studies reported on longitudinal (post-treatment) structural biomarkers of response to ketamine, five using sMRI and one using DTI. 40,44,47,53,55.57 Three studies reported statistically significant findings, 47,55.57 two of them (using two independent samples) involving the hippocampus. 47,55 However, there was no significant convergence between positive findings (appendix 1 p 4).

fMRI (resting-state fMRI, task-based MRI, and arterial spin labelling)

29 studies examined the correlates of response to ketamine using fMRI (appendix 1 pp 13–15), ^{21–25,27,29,35,37,38,41,44,68,50,58–72} of which 19 studies used blood-oxygenation-level dependent (BOLD) resting-state fMRI, ^{21,23–25,27,35,38,41,44,50,58–66} seven studies used task-based BOLD fMRI, ^{37,48,67–71} and three studies used arterial spin labelling during resting state. ^{22,29/2} 20 studies investigated functional connectivity and 11 studies examined measures of fMRI brain activation. The tasks used varied substantially, with two studies using the same task (No Go/Go task) and each of the other five studies using a distinct task (appendix 1 p 14). ^{70,71} 22 (76%) of the 29 studies using fMRI-based modalities reported statistically significant associations between neuroimaging findings and response to ketamine.

14 studies reported baseline neural correlates of response to ketamine, 21,22,24,27,41,44,48,50,64,66,68,70-72 of which ten studies examined resting state and four investigated neural correlates during tasks. Ten studies investigated functional connectivity, of which eight had statistically significant findings. Five studies investigated brain activation, of which three had statistically significant findings. There was no significant convergence between positive findings relating to functional connectivity or brain activation.

27 studies examined the association between longitudinal neuroimaging findings and response to ketamine, ^{21–25,29,35,37,38,44,48,50,58–72} of which 20 studies examined resting state and seven investigated neural correlates during tasks. 20 studies investigated longitudinal changes in functional connectivity, of which nine (45%) had statistically significant findings. 11 studies examined the association between longitudinal changes in brain activation and response to ketamine, of which

eight (73%) found statistically significant associations. In resting-state studies, there was convergence in findings associating response to ketamine with post-ketamine increases in functional connectivity in the prefrontal cortex (appendix 1 pp 4–5).^{23,25} Six of the seven task-based studies reported statistically significant findings. However, there was no significant convergence between the positive results.

Electrophysiological modalities

20 studies investigated the neural correlates of response to ketamine with electrophysiological neuroimaging modalities (appendix 1 pp 16-17). 26,28,31,33,34,39,42,43,61,73-83 12 studies used MEG, of which four used resting-state $\text{MEG}^{\scriptscriptstyle 33,34,39,79}$ and eight used task-based MEG, $^{\scriptscriptstyle 42,43,73-78}$ and eight studies used EEG, of which four used wake restingstate EEG, 26,28,31,61 two used sleep EEG, 81,82 and two used task-based EEG.80,83 In the ten task-based studies (eight using MEG and two using EEG), the task used varied substantially, with four studies using a passive somatosensory stimulation task and each of the other six studies using a distinct task (appendix 1 pp 16-17). 17 (85%) of the 20 studies using electrophysiological modalities reported statistically significant associations between neuroimaging findings and response to ketamine. There was substantial sample overlap between the studies that used MEG, with all 12 studies ultimately coming from two independent samples. The eight EEG studies comprised five independent samples.

Six electrophysiological studies reported on baseline biomarkers of response to ketamine. 26,28,33,42,43,82 All six studies reported statistically significant findings but the specific electrophysiological correlates highlighted were variable, and there was no significant convergence between positive results.

17 studies investigated the association between longitudinal changes in electrophysiological parameters and response to ketamine. 26,28,31,33,34,39,61,71-81,83,84 All studies used distinct analytical approaches, complicating comparisons between studies. With this caveat in mind, there was convergence in two types of findings: (1) response to ketamine was associated with postketamine increases in power in the gamma band in frontoparietal regions, 28,31,75 an EEG frequency range (typically between 30 Hz and 50 Hz) that is closely related to the generation of action potential by cortical neurons85,86 (observed in three studies using three independent samples), and (2) response to ketamine was associated with post-ketamine decreases in theta cordance, an electrophysiological measure that correlates with brain consumption of energys (observed in two studies with two independent samples; appendix 1 pp 5-6).26,28

Molecular modalities

15 studies examined the neural correlates of response to ketamine with molecular neuroimaging modalities

uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.

(appendix 1 pp 18–19). $^{30,32,36,41,45,46,49,51,53,88-93}$ Eight studies used molecular resonance spectroscopy $^{32,36,41,45,46,88-90}$ and seven studies used PET. $^{30,49,51,53,91-93}$ Nine studies investigated glutamatergic function, $^{32,36,41,45,46,88-90,93}$ six studies investigated GABAergic function, $^{32,36,41,45,46,88-90,93}$ five studies (all using PET) examined [18F]-fluorodeoxyglucose 30,49,53,91,92 to measure cerebral glucose metabolism, and one study examined serotonergic function (changes in 5-HT $_{1B}$ receptor availability). 51 11 (73%) of the 15 studies using molecular modalities reported statistically significant associations between molecular or biochemical function and response to ketamine.

Eight studies using molecular neuroimaging reported on baseline biomarkers of response to ketamine. 36,41,46,51,53,88,89,92 Four studies reported statistical significance but there was no significant convergence in positive results.

12 studies examined the association between longitudinal changes in molecular or biochemical function and response to ketamine. 30,32,45,49,51,53,88–93 Eight studies reported statistically significant results but there was no significant convergence between the positive findings (appendix 1 pp 6–7).

Convergence in findings across neuroimaging modalities

A cross-modality comparison (including structural, fMRI-based, electrophysiological, and molecular modalities) revealed substantial disparities across the results, with no strict convergence (replication) between study-specific positive findings. However, at a broader level, some findings showed convergence in two or more studies, warranting further consideration (table 3).

In the baseline (pre-treatment) neuroimaging analyses, there were associations between response to ketamine and smaller baseline hippocampal volume in sMRI studies, 452 and between response to ketamine and greater baseline fractional anisotropy in the cingulum in DTI studies. However, an important caveat is that although these results showed convergence in two independent samples, the association with smaller baseline hippocampal volume was much less consistent since there were four negative studies 40,53-55 and there were no negative studies for the association with greater baseline fractional anisotropy in the cingulum.

Six longitudinal (post-treatment) neuroimaging biomarkers showed convergence in independent samples, of which three biomarkers were observed

	Number of independent samples for which the finding was observed	Number of independent samples for which the finding was not observed
Baseline (pre-treatment) findings		
Response to ketamine was associated with greater baseline fractional anisotropy in the cingulum	Two independent samples: Vasavada et al (2016 ⁵⁶ ; DTI) and Sydnor et al (2020 ⁵⁷ ; DTI)	None
Response to ketamine was associated with smaller baseline hippocampal volume	Two independent samples: Abdallah et al (2015 ⁵² ; sMRI) and Sydnor et al (2020 ⁵⁷ ; sMRI)	Four independent samples: Ortiz et al (2015) ⁵³ (sMRI), Niciu et al (2017 ⁵⁴ ; sMRI), Zhou et al (2020 ⁵⁵ ; sMRI), and Herrera-Melendez et al (2021 ⁴ sMRI)
Longitudinal (post-treatment) findings		
Response to ketamine was associated with post- ketamine increases in gamma power	Three independent samples: Nugent et al (2019 ⁷⁵ ; MEG), de la Salle et al (2022 ²⁶ ; EEG), and Lijffijt et al (2022 ³¹ ; EEG)	One independent sample: McMillan et al (2020°; EEG)
Response to ketamine was associated with post- ketamine increases in functional connectivity within the prefrontal cortex	Three independent samples: Abdallah et al (2017 ²³ ; rs-fMRI), Abdallah et al (2018 ²⁵ ; rs-fMRI), and Nugent et al (2020 ³⁴ ; MEG)	Three independent samples: Nugent et al (2016 ⁷⁹ , MEG), Kraus et al (2020 ⁶⁰ ; rs-fMRI), and McMillan et al (2020 ⁶¹ ; rs-fMRI)
Response to ketamine was associated with post- ketamine increases in activation within the striatum	Three independent samples: Nugent et al (2014°; PET), Sterpenich et al (2019³; tb-fMRI), and Gonzalez et al (2020³; ASL)	Two independent samples: Murrough et al (2015' tb-fMRI) and Downey et al (2016's; rs-fMRI)
Response to ketamine was associated with post- cetamine increases in functional connectivity within the striatum	Two independent samples: Murrough et al (2015 48 ; tb-fMRI) and Abdallah et al (2017 21 ; rs-fMRI)	One independent sample: Nugent et al (2016 79 ; MEG)
Response to ketamine was associated with post- cetamine increases in activation within the prefrontal cortex	Two independent samples: Li et al (2016 ³⁰ ; PET) and Sterpenich et al (2019 ³⁷ ; tb-fMRI)	Three independent samples: Carlson et al (2013 ⁹¹ ; PET), Gonzalez et al (2020 ²⁹ ; ASL), and Loureiro et al (2020 ⁶⁸ ; tb-fMRI)
Response to ketamine was associated with post- ketamine decreases in theta cordance in the prefrontal cortex	Two independent samples: Cao et al $(2019^{26}; EEG)$ and de la Salle et al $(2022^{28}; EEG)$	None
SL=arterial spin labelling. DTI=diffusion tensor imaging MRI=structural MRI. tb-fMRI=task-based functional MRI	. EEG=electroencephalography. MEG=magnetoencephalog	raphy. rs-fMRI=resting-state functional MRI.
able 3: Convergence between neuroimaging bion	narkers of antidepressant response to ketamine	

three independent samples and the three biomarkers were observed only in two independent samples. All convergent longitudinal findings were related to functional neuroimaging studies. Findings that broadly replicated in three independent samples included: (1) post-treatment increases in gamma power in frontoparietal regions, a putative marker of cortical excitability and synaptic potentiation, in electrophysiological studies (observed in two EEG studies28,31 and one MEG study,75 with only one negative study61); (2) posttreatment increases in functional connectivity within the prefrontal cortex (observed in two fMRI-based studies23,25 and one MEG study,34 with three negative studies^{60,61,79}); and (3) post-treatment increases in activation within the striatum (observed in two fMRI-based studies29,37 and one PET study,49 with two negative studies38,48). The other three convergent associations (that were observed in two independent samples) were the relationship between response to ketamine and the following findings: (1) posttreatment increases in functional connectivity within the striatum (observed in two fMRI-based studies,23,48 with one negative study79); (2) post-treatment increases in activation within the prefrontal cortex (one fMRI-based study³⁷ and one PET study,³⁰ with three negative studies^{29,68,91}); and (3) decreases in theta cordance (observed in two EEG studies, 26,28 with no negative studies).

For findings that were convergent in at least two independent samples (26 studies), we compared the characteristics of the studies that had convergent findings (18 studies) with those without convergent findings (eight studies). There were no statistical differences in any characteristics including number of ketamine infusions, ketamine dose, study design, and primary diagnosis (appendix 1 p 20).

Discussion

We performed a systematic review of 69 studies that examined baseline (pre-treatment) and longitudinal (post-treatment) neuroimaging biomarkers. Ketamine and esketamine might have overlapping mechanisms of action, however, the number of studies investigating esketamine was small (n=2), therefore, this systematic review mainly summarised the evidence relating to racemic ketamine. Although we found no systematically replicated results due to the substantial methodological heterogeneity across studies, promising convergence was seen in longitudinal (post-treatment) biomarkers, including the association between response to ketamine and the following outcomes: (1) post-treatment increases in gamma power in frontoparietal regions, (2) posttreatment increases in functional connectivity within the prefrontal cortex, and (3) post-treatment increases in activation within the striatum. Each of these three associations was observed in three independent samples; however, the most consistency was seen in studies of increased gamma power in frontoparietal regions.

The heterogeneity in the findings included in this systematic review might be explained by several factors. First, most studies had relatively small sample sizes with the median sample size being 22 participants (IQR 16-32). Small samples are both statistically underpowered94 and susceptible to yielding inaccurate effect sizes that replicate poorly.95 Second, the fact that 55 (80%) of the 69 studies included in this systematic review reported statistically significant findings together with the inconsistency of results and the small sample sizes suggests the likelihood of publication bias. Third, there was substantial heterogeneity of analytical methods and statistical strategy, including variable approaches to correction for potential confounders (eg, age, sex, and BMI; appendix 1 p 7).94 Fourth, there was substantial variability in study characteristics, including factors such as inclusion criteria, sample characteristics such as prevalence of concurrent psychiatric disorders, treatment schedule, and timepoints when neuroimaging outcomes were obtained. Fifth, major depressive disorder is an intrinsically heterogeneous disorder.

In addition, this systematic review has several limitations that need to be taken into account. In particular, details of each study's statistical analyses (specific tests used and adjustment for multiple comparisons) were not always thoroughly described and limited our ability to perform a more quantitative comparison of the literature. Similarly, given the scarcity of individual-level data, we were not able to conduct reliable meta-analytical calculations. We reported the brain regions as named in the original studies, which does not necessarily mean they have the exact same brain coordinates. Finally, neuroimaging studies usually do not include individuals with severe active symptoms (such as acute suicidality), which limits the generalisability of our findings.

Despite these caveats, an encouraging finding was the association between post-ketamine increased gamma power in frontoparietal regions and response to ketamine. This association was investigated in four independent samples and, in three of them, this association was statistically significant in individuals receiving the standard antidepressant dose of ketamine (0.5 mg/kg). Increases in gamma power have a strong translational potential since they can be captured by EEG, a widely available neuroimaging modality, and are observed in early stages of antidepressant response (within minutes to hours after treatment with ketamine). Another result seen broadly in three independent samples was the association between response to ketamine and post-treatment increases in functional connectivity within the prefrontal cortex, which could counteract the hypoconnectivity of the prefrontal cortex previously found in major depressive disorder and bipolar depression.^{3,96} Finally, post-treatment increases in the activity within the striatum, a brain region involved in reward processing, is consistent with previous findings

that individuals with depression have hypoactive striatum and that ketamine, a medication with substantial antianhedonic action, could normalise this hypoactivity.⁹⁷

The three brain-based correlates of response to ketamine that were most widely convergent are broadly consistent with ketamine's proposed main mechanisms of action, which could underlie our findings. Preclinical studies conclude that ketamine is an N-methyl-Daspartate receptor antagonist that preferentially blocks y-aminobutyric-acid-containing (GABAergic) inhibitory interneurons.98 This blockage in GABA transmission results in a downstream increase of neuronal firing. resulting in glutamate release (disinhibition hypothesis). As the EEG gamma band is closely related to the generation of action potentials by cortical neurons,85,86 increases in gamma power could reflect the strengthening of glutamatergic neurotransmission as a result of ketamine. In addition, this increase in glutamatergic transmission triggers intracellular pathways ultimately increase concentrations of neurotrophins, such as BDNF, which leads to synaptogenesis.98 This increase in synaptic strength can be seen in functional neuroimaging as increases in functional connectivity, such as the one observed within the prefrontal cortex in three independent samples. 23,25,34 The strengthening of glutamatergic transmission and increased synaptogenesis, as well as ketamine's potential effect on dopamine, either direct or via glutamatergic connections, could also explain the increases in the activity within the striatum.

Interestingly, six of the eight replicated neuroimaging biomarkers were longitudinal (post-treatment), which raises the question as to why there were fewer replicated baseline (pre-treatment) neuroimaging biomarkers. First, there were fewer publications that addressed baseline neuroimaging biomarkers than longitudinal studies. Although data on baseline neuroimaging biomarkers were obtained in all 69 studies included in this systematic review, less than half of the studies

(33 [48%] of 69) reported on them, whereas 86% (59 of 69) reported on longitudinal neuroimaging biomarkers. In addition, baseline biomarkers could be intrinsically more difficult to identify due to prominent interindividual heterogeneity when compared with longitudinal biomarkers, for which each individual can effectively act as their own control in a more controlled analytical framework. As a result, the identification of interindividual (baseline) biomarkers will probably require larger sample sizes and more effective subtyping than for longitudinal biomarkers to reduce heterogeneity.

Given the inconsistencies and possible publication bias of the current literature, future studies investigating brain-based biomarkers of response to ketamine should address the limitations of previous studies (appendix 1 pp 7, 21). Table 4 summarises some recommendations for improving the reproducibility or replicability and the clinical use of neuroimaging studies. First, it is important to investigate larger samples to reduce the noise due to sampling variability, which could be particularly pronounced when studying a highly heterogeneous condition such as depression. Recruitment of larger samples could be achieved with development of multisite collaborations and open sharing of neuroimaging data. Second, preregistration in publicly available repositories can improve research transparency, accountability, and credibility of the results, and decrease multiple testing and selective reporting. Third, it is crucial to control appropriately for common confounders (appendix 1 p 21). Finally, modalities with good temporal resolution, such as EEG and MEG, might be particularly useful to examine rapid-changing phenomena such as those during ketamine treatment or immediately after ketamine infusion. Studies using modalities highly susceptible to physiological and motion artifacts, such as sMRI and fMRI, should incorporate protocols that predefine exclusion motion thresholds and conduct posthoc corrections.

	Rationale	Actions that facilitate the implementation of the recommendations
Investigation of larger samples	Most neuroimaging studies examine small samples, which are underpowered, and more likely to provide inaccurate or inflated effect sizes and false-positive findings; larger samples decrease the noise due to sampling variability, which could be particularly pronounced when studying a highly heterogeneous condition such as depression	Development of neuroimaging consortia and multisite collaborations; open sharing of neuroimaging data (eg, free and open-source platforms)
Preregistration in publicly available repositories	Most neuroimaging studies are not preregistered, which might facilitate the use of inappropriate analytical designs and of multiple testing; preregistration allows for a better distinction between exploratory and confirmatory studies, improves research transparency, accountability, and credibility of the results, and could decrease selective reporting	Use of free and open-source platforms that allow the researchers to register and share their studies (eg, Open Science Framework and the AsPredicted platform); journal or editorial policies that require or prioritise preregistered neuroimaging studies such as publishing preregistered studies even if the results are negative
Appropriate controlling of confounders	Most studies do not describe or perform controlling for confounders; procedural (such as motion) and patient-related confounders (such as age, gender, BMI, other medications or substances, and other psychiatric comorbidities) could substantially affect neuroimaging results	Implement study protocols that decrease motion by minimising time, increasing comfort and familiarisation in the scanner; predefine exclusion motion thresholds and conduct post-hoc corrections; conduct and describe controlling for main patient-related confounders; research design that minimises the effect of medications and substances; when combining distinct samples, use harmonisation techniques such as the ComBat algorithm

esketamine

Conclusion

A well replicated neuroimaging biomarker of ketamine response was not identified in this systematic review. However, we found convergence across some significant results, particularly in longitudinal (post-treatment) biomarkers, that warrants further investigation. Post-treatment increases in gamma power in fronto-parietal regions are particularly promising given their consistency, strong translational potential, and occurrence in early stages of antidepressant response.

Contributors

GCM wrote the first draft of the report, set up the database, conducted manual searches, selected included studies, and extracted, verified, analysed, and interpreted the data. MM assisted in the writing of the first draft of the report, conducted manual searches, selected included studies, extracted and verified the data, interpreted the data, and critically reviewed and edited the report for important intellectual content. ID assisted in the writing of the first draft of the report, participated in the data extraction, interpreted the data, and critically reviewed and edited the report for important intellectual content. MJR interpreted the data and critically reviewed and edited the report for important intellectual content. SM selected included studies, interpreted the data, and critically reviewed and edited the report for important intellectual content. CT conducted the systematic searches in the electronic databases, interpreted the data, and critically reviewed and edited the report for important intellectual content. GSS interpreted the data, and critically reviewed and edited the report for important intellectual content. TDG assisted in the writing of the first draft of the report, interpreted the data, and critically reviewed and edited the report for important intellectual content. CAZ interpreted the data and critically reviewed and edited the report for important intellectual content. FSB provided input into the design and conceptualisation of the study, interpreted the data, and critically reviewed and edited the report for important intellectual content. FSG designed and conceptualised the study, provided supervision, assisted in the writing of the first draft of the report, verified the data, interpreted the data, and critically reviewed and edited the report for important intellectual content. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Declaration of interests

GSS conducted an investigator-initiated study that used medication (vortioxetine) provided without charge by Lundbeck. TDG is listed as coauthor on patent and patent applications related to the pharmacology and use of (2R,6R)-hydroxynorketamine in the treatment of depression, anxiety, anhedonia, suicidal ideation, and post-traumatic stress disorder. He has assigned his patent rights to the University of Maryland, Baltimore, but will share a percentage of any royalties that might be received. TDG has also received research funding from Allergan and Roche Pharmaceuticals. CAZ is listed as a co-inventor on a patent for the use of ketamine in major depression and suicidal ideation; as a co-inventor on a patent for the use of (2R,6R)-hydroxynorketamine, (S)-dehydronorketamine, and other stereoisomeric dehydroxylated and hydroxylated metabolites of (R,S)ketamine metabolites in the treatment of depression and neuropathic pain; and as a co-inventor on a patent application for the use of (2R,6R)-hydroxynorketamine and (2S,6S)-hydroxynorketamine in the treatment of depression, anxiety, anhedonia, suicidal ideation, and post-traumatic stress disorders. He has assigned his patent rights to the US Government but will share a percentage of any royalties that might be received. FSB is a scientific adviser for WavePaths, and MindState Design Labs. FSG has received research grant support from Janssen Therapeutics. All other authors declare no competing interests.

${\bf Acknowledgments}$

This systematic review has not been directly funded by any legal entities or organisations. We received operational support from the

Johns Hopkins School of Medicine. TDG is supported by the US National Institutes of Health (NIH; R01-MH107615 and RAI145211A), and VA Merit Awards 1101BX004062 and 101BX003631-01A1. CAZ is funded in part by the Intramural Research Program at the National Institute of Mental Health, NIH (IRP-NIMH-NIH; ZIAMH002857). FSB is supported by the Johns Hopkins Center for Psychedelic and Consciousness Research. FSG received partial support from the Johns Hopkins Catalyst Award.

Doforonco

- 1 GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. *Lancet Psychiatry* 2022; 9: 137–50.
- McIntyre RS, Rosenblat JD, Nemeroff CB, et al. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. Am J Psychiatry 2021; 178: 383–99.
- 3 Malhi GS, Mann JJ. Depression. Lancet 2018; 392: 2299-312.
- 4 Medeiros GC, Gould TD, Prueitt WL, et al. Blood-based biomarkers of antidepressant response to ketamine and esketamine: a systematic review and meta-analysis. *Mol Psychiatry* 2022; 27: 3658–69.
- 5 Niciu MJ, Luckenbaugh DA, Ionescu DF, et al. Clinical predictors of ketamine response in treatment-resistant major depression. J Clin Psychiatry 2014; 75: e417–23.
- 6 Permoda-Osip A, Skibińska M, Bartkowska-Sniatkowska A, Kliwicki S, Chłopocka-Woźniak M, Rybakowski JK. Factors connected with efficacy of single ketamine infusion in bipolar depression. Psychiatr Pol 2014; 48: 35–47 (in Polish).
- 7 Price RB, Kissel N, Baumeister A, et al. International pooled patient-level meta-analysis of ketamine infusion for depression: in search of clinical moderators. *Mol Psychiatry* 2022; 27: 5096–112.
- 8 Thomas RK, Baker G, Lind J, Dursun S. Rapid effectiveness of intravenous ketamine for ultraresistant depression in a clinical setting and evidence for baseline anhedonia and bipolarity as clinical predictors of effectiveness. J Psychopharmacol 2018; 32: 1110–17.
- 9 Moaddel R, Luckenbaugh DA, Xie Y, et al. D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression. *Psychopharmacology* 2015; 232: 399–409.
- 10 Zheng W, Zhou Y-L, Liu W-J, et al. Rapid and longer-term antidepressant effects of repeated-dose intravenous ketamine for patients with unipolar and bipolar depression. J Psychiatr Res 2018; 106: 61–68.
- 11 Kruse JL, Vasavada MM, Olmstead R, et al. Depression treatment response to ketamine: sex-specific role of interleukin-8, but not other inflammatory markers. *Transl Psychiatry* 2021; 11: 167.
- 12 Zheng W, Zhou Y-L, Liu W-J, et al. A preliminary study of adjunctive ketamine for treatment-resistant bipolar depression. J Affect Disord 2020; 275: 38–43.
- 13 Murrough JW, Iosifescu DV, Chang LC, et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 2013; 170: 1134–42.
- 14 Medeiros GC, Twose C, Weller A, et al. Neuroimaging correlates of depression after traumatic brain injury: a systematic review. J Neurotrauma 2022; 39: 755–72.
- 15 Hammoud DA, Hoffman JM, Pomper MG. Molecular neuroimaging: from conventional to emerging techniques. *Radiology* 2007; 245: 21–42.
- 16 Ionescu DF, Felicione JM, Gosai A, et al. Ketamine-associated brain changes: a review of the neuroimaging literature. Harv Rev Psychiatry 2018; 26: 320–39.
- 17 Zavaliangos-Petropulu A, Al-Sharif NB, Taraku B, et al. Neuroimaging-derived biomarkers of the antidepressant effects of ketamine. Biol Psychiatry Cogn Neurosci Neuroimaging 2023; 8: 361–86.
- 18 Alario AA, Niciu MJ. Biomarkers of ketamine's antidepressant effect: a clinical review of genetics, functional connectivity, and neurophysiology. *Chronic Stress* 2021; 5: 24705470211014210.

- 19 Kotoula V, Webster T, Stone J, Mehta MA. Resting-state connectivity studies as a marker of the acute and delayed effects of subanaesthetic ketamine administration in healthy and depressed individuals: a systematic review. *Brain Neurosci Adv* 2021; 5: 23982128211055426.
- 20 Murad MH, Asi N, Alsawas M, Alahdab F. New evidence pyramid. Evid Based Med 2016; 21: 125–27.
- 21 Gärtner M, Aust S, Bajbouj M, et al. Functional connectivity between prefrontal cortex and subgenual cingulate predicts antidepressant effects of ketamine. Eur Neuropsychopharmacol 2019; 29: 501–08.
- 22 Gärtner M, de Rover M, Václavů L, Scheidegger M, van Osch MJP, Grimm S. Increase in thalamic cerebral blood flow is associated with antidepressant effects of ketamine in major depressive disorder. World J Biol Psychiatry 2022; 23: 643–52.
- 23 Abdallah CG, Averill LA, Collins KA, et al. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology 2017; 42: 1210–19.
- 24 Abdallah CG, Averill CL, Salas R, et al. Prefrontal connectivity and glutamate transmission: relevance to depression pathophysiology and ketamine treatment. Biol Psychiatry Cogn Neurosci Neuroimaging 2017: 2: 566–74.
- 25 Abdallah CG, Dutta A, Averill CL, et al. Ketamine, but not the NMDAR antagonist lanicemine, increases prefrontal global connectivity in depressed patients. *Chronic Stress* 2018; 2: 2470547018796102.
- 26 Cao Z, Lin C-T, Ding W, Chen M-H, Li C-T, Su T-P. Identifying ketamine responses in treatment-resistant depression using a wearable forehead EEG. IEEE Trans Biomed Eng 2019; 66: 1668–79.
- 27 Chen M-H, Chang W-C, Lin W-C, et al. Functional dysconnectivity of frontal cortex to striatum predicts ketamine infusion response in treatment-resistant depression. *Int J Neuropsychopharmacol* 2020; 23: 791–98.
- 28 de la Salle S, Phillips JL, Blier P, Knott V. Electrophysiological correlates and predictors of the antidepressant response to repeated ketamine infusions in treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115: 110507.
- 29 Gonzalez S, Vasavada M, Njau S, et al. Acute changes in cerebral blood flow after single-infusion ketamine in major depression: a pilot study. Neurol Psychiatry Brain Res 2020; 38: 5–11.
- 30 Li CT, Chen MH, Lin WC, et al. The effects of low-dose ketamine on the prefrontal cortex and amygdala in treatment-resistant depression: a randomized controlled study. *Hum Brain Mapp* 2016; 37: 1080–90.
- 31 Lijffijt M, Murphy N, Iqbal S, et al. Identification of an optimal dose of intravenous ketamine for late-life treatment-resistant depression: a Bayesian adaptive randomization trial. Neuropsychopharmacology 2022: 47: 1088–95.
- 32 Milak MS, Proper CJ, Mulhern ST, et al. A pilot in vivo proton magnetic resonance spectroscopy study of amino acid neurotransmitter response to ketamine treatment of major depressive disorder. Mol Psychiatry 2016; 21: 320–27.
- 33 Nugent AC, Ballard ED, Gould TD, et al. Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Mol Psychiatry 2019; 24: 1040–52.
- 34 Nugent AC, Ballard ED, Gilbert JR, Tewarie PK, Brookes MJ, Zarate CA Jr. The effect of ketamine on electrophysiological connectivity in major depressive disorder. Front Psychiatry 2020; 11: 519.
- 35 Rivas-Grajales AM, Salas R, Robinson ME, Qi K, Murrough JW, Mathew SJ. Habenula connectivity and intravenous ketamine in treatment-resistant depression. *Int J Neuropsychopharmacol* 2021; 24: 383–91.
- 36 Salvadore G, van der Veen JW, Zhang Y, et al. An investigation of amino-acid neurotransmitters as potential predictors of clinical improvement to ketamine in depression. Int J Neuropsychopharmacol 2012; 15: 1063–72.
- 37 Sterpenich V, Vidal S, Hofmeister J, et al. Increased reactivity of the mesolimbic reward system after ketamine injection in patients with treatment-resistant major depressive disorder. *Anesthesiology* 2019; 130: 923–35.
- 38 Downey D, Dutta A, McKie S, et al. Comparing the actions of lanicemine and ketamine in depression: key role of the anterior cingulate. Eur Neuropsychopharmacol 2016; 26: 994–1003.

- 39 Gilbert JR, Ballard ED, Galiano CS, Nugent AC, Zarate CA Jr. Magnetoencephalographic correlates of suicidal ideation in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging 2020; 5: 354–63.
- 40 Herrera-Melendez A, Stippl A, Aust S, et al. Gray matter volume of rostral anterior cingulate cortex predicts rapid antidepressant response to ketamine. Eur Neuropsychopharmacol 2021; 43: 63–70.
- 41 Nugent AC, Farmer C, Evans JW, Snider SL, Banerjee D, Zarate CA Jr. Multimodal imaging reveals a complex pattern of dysfunction in corticolimbic pathways in major depressive disorder. Hum Brain Mapp 2019; 40: 3940–50.
- 42 Salvadore G, Cornwell BR, Colon-Rosario V, et al. Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological biomarker that predicts rapid antidepressant response to ketamine. *Biol Psychiatry* 2009; 65: 289–95.
- 43 Salvadore G, Cornwell BR, Sambataro F, et al. Anterior cingulate desynchronization and functional connectivity with the amygdala during a working memory task predict rapid antidepressant response to ketamine. Neuropsychopharmacology 2010; 35: 1415–22.
- 44 Siegel JS, Palanca BJA, Ances BM, et al. Prolonged ketamine infusion modulates limbic connectivity and induces sustained remission of treatment-resistant depression. *Psychopharmacology* 2021; 238: 1157–69.
- 45 Singh B, Port JD, Voort JLV, et al. A preliminary study of the association of increased anterior cingulate gamma-aminobutyric acid with remission of depression after ketamine administration. Psychiatry Res 2021; 301: 113953.
- 46 Singh B, Port JD, Pazdernik V, Coombes BJ, Vande Voort JL, Frye MA. Racemic ketamine treatment attenuates anterior cingulate cortex GABA deficits among remitters in treatment-resistant depression: a pilot study. Psychiatry Res Neuroimaging 2022; 320: 111432.
- 47 Abdallah CG, Jackowski A, Salas R, et al. The nucleus accumbens and ketamine treatment in major depressive disorder. Neuropsychopharmacology 2017; 42: 1739–46.
- 48 Murrough J, Collins K, Fields J, et al. Regulation of neural responses to emotion perception by ketamine in individuals with treatment-resistant major depressive disorder. *Trans Psychiatry* 2015; 5: e509.
- 49 Nugent AC, Diazgranados N, Carlson PJ, et al. Neural correlates of rapid antidepressant response to ketamine in bipolar disorder. *Bipolar Disord* 2014; 16: 119–28.
- 50 Sahib AK, Loureiro JR, Vasavada M, et al. Modulation of the functional connectome in major depressive disorder by ketamine therapy. *Psychol Med* 2020; 52: 2596–605.
- 51 Tiger M, Veldman ER, Ekman C-J, Halldin C, Svenningsson P, Lundberg J. A randomized placebo-controlled PET study of ketamine's effect on serotonin₁₈ receptor binding in patients with SSRI-resistant depression. *Transl Psychiatry* 2020; 10: 159.
- 52 Abdallah CG, Salas R, Jackowski A, Baldwin P, Sato JR, Mathew SJ. Hippocampal volume and the rapid antidepressant effect of ketamine. J Psychopharmacol 2015; 29: 591–95.
- 53 Ortiz R, Niciu MJ, Lukkahati N, et al. Shank3 as a potential biomarker of antidepressant response to ketamine and its neural correlates in bipolar depression. J Affect Disord 2015; 172: 307–11.
- Niciu MJ, Iadarola ND, Banerjee D, et al. The antidepressant efficacy of subanesthetic-dose ketamine does not correlate with baseline subcortical volumes in a replication sample with major depressive disorder. J Psychopharmacol 2017; 31: 1570–77.
- 55 Zhou Y-L, Wu F-C, Liu W-J, et al. Volumetric changes in subcortical structures following repeated ketamine treatment in patients with major depressive disorder: a longitudinal analysis. *Transl Psychiatry* 2020; 10: 264.
- 56 Vasavada MM, Leaver AM, Espinoza RT, et al. Structural connectivity and response to ketamine therapy in major depression: a preliminary study. J Affect Disord 2016; 190: 836–41.
- 57 Sydnor VJ, Lyall AE, Cetin-Karayumak S, et al. Studying pre-treatment and ketamine-induced changes in white matter microstructure in the context of ketamine's antidepressant effects. Transl Psychiatry 2020; 10: 432.
- 58 Evans JW, Szczepanik J, Brutsché N, Park LT, Nugent AC, Zarate CA Jr. Default mode connectivity in major depressive disorder measured up to 10 days after ketamine administration. *Biol Psychiatry* 2018; 84: 582–90.

- 59 Chen M-H, Lin W-C, Tu P-C, et al. Antidepressant and antisuicidal effects of ketamine on the functional connectivity of prefrontal cortex-related circuits in treatment-resistant depression: a double-blind, placebo-controlled, randomized, longitudinal resting fMRI study. J Affect Disord 2019; 259: 15–20.
- 60 Kraus C, Mkrtchian A, Kadriu B, Nugent AC, Zarate CA Jr, Evans JW. Evaluating global brain connectivity as an imaging marker for depression: influence of preprocessing strategies and placebocontrolled ketamine treatment. *Neuropsychopharmacology* 2020; 45: 982–89.
- 61 McMillan R, Sumner R, Forsyth A, et al. Simultaneous EEG/fMRI recorded during ketamine infusion in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99: 109838.
- 62 Zhuo C, Ji F, Tian H, et al. Transient effects of multi-infusion ketamine augmentation on treatment-resistant depressive symptoms in patients with treatment-resistant bipolar depression—an openlabel three-week pilot study. *Brain Behav* 2020; 10: e01674.
- 63 Mkrtchian A, Evans JW, Kraus C, et al. Ketamine modulates frontostriatal circuitry in depressed and healthy individuals. *Mol Psychiatry* 2021: 26: 3292–301.
- 64 Nakamura T, Tomita M, Horikawa N, et al. Functional connectivity between the amygdala and subgenual cingulate gyrus predicts the antidepressant effects of ketamine in patients with treatmentresistant depression. Neuropsychopharmacol Rep 2021; 41: 168–78.
- 65 Vasavada MM, Loureiro J, Kubicki A, et al. Effects of serial ketamine infusions on corticolimbic functional connectivity in major depression. Biol Psychiatry Cogn Neurosci Neuroimaging 2021; 6: 735–44
- 66 Wang M, Chen X, Hu Y, et al. Functional connectivity between the habenula and default mode network and its association with the antidepressant effect of ketamine. *Depress Anxiety* 2022; 39: 352–62.
- 67 Reed JL, Nugent AC, Furey ML, Szczepanik JE, Evans JW, Zarate CA Jr. Ketamine normalizes brain activity during emotionally valenced attentional processing in depression. *Neuroimage Clin* 2018; 20: 92–101
- 68 Loureiro JRA, Leaver A, Vasavada M, et al. Modulation of amygdala reactivity following rapidly acting interventions for major depression. *Hum Brain Mapp* 2020; 41: 1699–710.
- 69 Morris LS, Costi S, Tan A, Stern ER, Charney DS, Murrough JW. Ketamine normalizes subgenual cingulate cortex hyper-activity in depression. *Neuropsychopharmacology* 2020; 45: 975–81.
- 70 Sahib AK, Loureiro JR, Vasavada MM, et al. Modulation of inhibitory control networks relate to clinical response following ketamine therapy in major depression. *Transl Psychiatry* 2020; 10: 260.
- 71 Loureiro JRA, Sahib AK, Vasavada M, et al. Ketamine's modulation of cerebro-cerebellar circuitry during response inhibition in major depression. *Neuroimage Clin* 2021; 32: 102792.
- 72 Sahib AK, Loureiro JRA, Vasavada MM, et al. Single and repeated ketamine treatment induces perfusion changes in sensory and limbic networks in major depressive disorder. Eur Neuropsychopharmacol 2020; 33: 89–100.
- 73 Cornwell BR, Salvadore G, Furey M, et al. Synaptic potentiation is critical for rapid antidepressant response to ketamine in treatmentresistant major depression. *Biol Psychiatry* 2012; 72: 555–61.
- 74 Gilbert JR, Yarrington JS, Wills KE, Nugent AC, Zarate CA Jr. Glutamatergic signaling drives ketamine-mediated response in depression: evidence from dynamic causal modeling. Int J Neuropsychopharmacol 2018; 21: 740–47.
- 75 Nugent AC, Wills KE, Gilbert JR, Zarate CA Jr. Synaptic potentiation and rapid antidepressant response to ketamine in treatment-resistant major depression: a replication study. *Psychiatry Res Neuroimaging* 2019: 283: 64–66.
- 76 Fagerholm ED, Leech R, Williams S, Zarate CA Jr, Moran RJ, Gilbert JR. Fine-tuning neural excitation/inhibition for tailored ketamine use in treatment-resistant depression. *Transl Psychiatry* 2021, 11, 235
- 77 Gilbert JR, Galiano CS, Nugent AC, Zarate CA. Ketamine and attentional bias toward emotional faces: dynamic causal modeling of magnetoencephalographic connectivity in treatment-resistant depression. Front Psychiatry 2021; 12: 673159.
- 78 Lundin NB, Sepe-Forrest L, Gilbert JR, et al. Ketamine alters electrophysiological responses to emotional faces in major depressive disorder. J Affect Disord 2021; 279: 239–49.

- 79 Nugent AC, Robinson SE, Coppola R, Zarate CA Jr. Preliminary differences in resting state MEG functional connectivity pre- and post-ketamine in major depressive disorder. Psychiatry Res Neuroimaging 2016; 254: 56–66.
- 80 Sumner RL, McMillan R, Spriggs MJ, et al. Ketamine enhances visual sensory evoked potential long-term potentiation in patients with major depressive disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 2020; 5: 45–55.
- 81 Duncan WC Jr, Sarasso S, Ferrarelli F, et al. Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder. Int J Neuropsychopharmacol 2013; 16: 301–11
- 82 Duncan WC Jr, Selter J, Brutsche N, Sarasso S, Zarate CA Jr. Baseline delta sleep ratio predicts acute ketamine mood response in major depressive disorder. J Affect Disord 2013; 145: 115–19.
- 83 Sumner RL, McMillan R, Spriggs MJ, et al. Ketamine improves short-term plasticity in depression by enhancing sensitivity to prediction errors. Eur Neuropsychopharmacol 2020; 38:73–85.
- 84 Petcharunpaisan S, Ramalho J, Castillo M. Arterial spin labeling in neuroimaging. *World J Radiol* 2010; 2: 384–98.
- 85 Nir Y, Fisch L, Mukamel R, et al. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 2007; 17: 1275–85.
- 86 Watson BO, Ding M, Buzsáki G. Temporal coupling of field potentials and action potentials in the neocortex. Eur J Neurosci 2018; 48: 2482–97.
- 87 Horacek J, Brunovsky M, Novak T, et al. Subanesthetic dose of ketamine decreases prefrontal theta cordance in healthy volunteers: implications for antidepressant effect. *Psychol Med* 2010; 40:1443-51
- 88 Valentine GW, Mason GF, Gomez R, et al. The antidepressant effect of ketamine is not associated with changes in occipital amino acid neurotransmitter content as measured by [(1)H]-MRS. Psychiatry Res 2011; 191: 122–27.
- 89 Evans JW, Lally N, An L, et al. 7T 1H-MRS in major depressive disorder: a ketamine treatment study. *Neuropsychopharmacology* 2018; 43: 1908–14.
- 90 Milak MS, Rashid R, Dong Z, et al. Assessment of relationship of ketamine dose with magnetic resonance spectroscopy of Glx and GABA responses in adults with major depression: a randomized clinical trial. JAMA Netw Open 2020; 3: e2013211.
- 91 Carlson PJ, Diazgranados N, Nugent AC, et al. Neural correlates of rapid antidepressant response to ketamine in treatment-resistant unipolar depression: a preliminary positron emission tomography study. Biol Psychiatry 2013; 73: 1213–21.
- 92 Ballard ED, Lally N, Nugent AC, Furey ML, Luckenbaugh DA, Zarate CA Jr. Neural correlates of suicidal ideation and its reduction in depression. Int J Neuropsychopharmacol 2014; 18: pyu069.
- 93 Esterlis I, DellaGioia N, Pietrzak RH, et al. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: an ["C]ABP688 and PET imaging study in depression. Mol Psychiatry 2018; 23: 824–32.
- 94 Smith SM, Nichols TE. Statistical challenges in "big data" human neuroimaging. Neuron 2018; 97: 263–68.
- 95 Bzdok D, Varoquaux G, Steyerberg EW. Prediction, not association, paves the road to precision medicine. *JAMA Psychiatry* 2020; 78: 127–28.
- 96 Dima D, Roberts R, Frangou S. Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder. *Translational psychiatry* 2016; 6: e706.
- Notoula V, Stringaris A, Mackes N, et al. Ketamine modulates the neural correlates of reward processing in unmedicated patients in remission from depression. Biol Psychiatry Cogn Neurosci Neuroimaging 2022; 7: 285–92.
- 98 Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry 2018; 23: 801–11.

Copyright © 2023 Elsevier Ltd. All rights reserved.