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Abstract: Pathology clinical practice has evolved by adopting techno-
logical advancements initially regarded as potentially disruptive, such
as electron microscopy, immunohistochemistry, and genomic
sequencing. Breast pathology has a critical role as a medical domain,
where the patient’s pathology diagnosis has significant implications for
prognostication and treatment of diseases. The advent of digital and
computational pathology has brought about significant advancements
in the field, offering new possibilities for enhancing diagnostic accuracy
and improving patient care. Digital slide scanning enables to conversion
of glass slides into high-fidelity digital images, supporting the review of
cases in a digital workflow. Digitization offers the capability to render
specimen diagnoses, digital archival of patient specimens, collabo-
ration, and telepathology. Integration of image analysis and machine
learning–based systems layered atop the high-resolution digital images
offers novel workflows to assist breast pathologists in their clinical,
educational, and research endeavors. Decision support tools may
improve the detection and classification of breast lesions and the
quantification of immunohistochemical studies. Computational bio-
markers may help to contribute to patient management or outcomes.
Furthermore, using digital and computational pathology may increase
standardization and quality assurance, especially in areas with high
interobserver variability. This review explores the current landscape
and possible future applications of digital and computational techni-
ques in the field of breast pathology.
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INTRODUCTION TO DIGITAL AND
COMPUTATIONAL PATHOLOGY

The accurate and timely pathologic diagnosis of breast
lesions is fundamental to patient care. The integration of whole
slide imaging and digital workflows in routine pathology
practice enables the implementation of computational pathol-
ogy systems. Digital and computational pathology can con-
tribute to improve patient care. Machine learning systems show
promise in analyzing histology images and detecting and clas-
sifying breast lesions, quantifying biomarkers, and predicting
treatment response. This review critically examines the breast
pathology landscape on the future practices and applications in
digital and computational pathology. This review aims to dis-
cuss how these tools can assist in improving diagnosis, grading,
and biomarker quantification, focusing on diagnostic and
prognostic applications.

TECHNOLOGY ADOPTION CURVE
With the introduction of any new technology, the

adoption lifecycle (eg, diffusion of innovation) is a function
of how individuals and organizations embrace emerging
technologies. It typically follows a bell-shaped curve, start-
ing with innovators who eagerly embrace new technologies,
followed by early adopters who are influential leaders, who
quickly follow suit, recognizing the need for change and
readily adopt new ideas. As the technology gains momen-
tum, the next group of adopters are the early majority,
representing a pragmatic larger cohort who embrace the
technology once its value and benefits are proven. The late
majority is more skeptical and adopts the technology only
after it has been proven successful by the early majority.
Last, laggards or skeptics who are resistant to change, may
or may not adopt the new technology, typically requiring
significant evidence and pressure from prior adopters. When
it comes to digital pathology, early adopters have imple-
mented the technology gradually as it matured, based on
evolving use cases and the technology’s advancement. The
approach to adopting new medical technologies depends on
factors such as specific use cases, organizational processes,
and the risk aversion levels of individuals within the clinical
organization, with the ultimate goal of improving patient
care. To date, the use of computational pathology has
mostly been innovating in the research arena with early
adopters using the computational pathology workflows in
clinical care. The cycle reflects the diffusion of innovation,
with each group influencing the next, and successful adop-
tion often relies on effective communication, education, and
addressing concerns and barriers to each specific
subsequent group.

DIGITIZATION WORKFLOW
The digitization of pathology assets (eg, glass slides)

begins with the same standard histology procedures similar
to all surgical pathology breast specimens. Once sectioning,
staining, and coverslipping are complete, the prepared glass
slides are loaded onto a digital pathology scanner (eg, whole
slide scanner) equipped with a robotic stage, high-resolution
camera, and optical system. The scanner captures high-res-
olution images of the tissue present on the glass slide by
scanning it in a raster pattern and stitching together adja-
cent images to create a high-fidelity digital representation of
the glass slide. The acquired images may undergo image
processing techniques to enhance clarity, color accuracy,
and overall image quality. Relevant metadata, such as
patient information and pathology specimen details, may be
associated with the digital image for proper clinical inte-
gration using advanced barcoding and tracking solutions
present within the laboratory information system, predom-
inantly by decoding barcodes present on the glass slide label
area by the camera sensor within the whole slide scanner.
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The resulting digital images, known as whole slide images
(eg, digital slides), are digitally stored and accessible in an
image management system. Pathologists can view these
digital slides using specialized digital pathology software,
allowing the ability to navigate and review the whole slide
images similar to that of a brightfield microscope to facili-
tate low, medium, and high magnification tissue review, as
well as perform various diagnostic and analytical tasks.
Studies have shown noninferiority to reviewing whole slide
images (eg, digital slides) in comparison to glass slides, and
the Food and Drug Administration has approved several
industry platforms for primary diagnosis.1,2 Furthermore,
the College of American Pathologists have published vali-
dation guidelines for laboratories to implement these tech-
nologies in clinical use for patient care.3,4 Validation studies
specific to breast pathology have demonstrated the equiv-
alence in performance and ability to diagnostically evaluate
patient tissue in a digital format to ensure safe and effica-
cious patient care.5–7 Digital pathology enables primary
diagnostics workflows, telepathology and remote con-
sultations, collaboration, and efficient archiving of digital
slides, facilitating enhanced accessibility, accuracy, and
potential integration with computational pathology techni-
ques for (semi)automated analysis.

IMAGE ANALYSIS AND MACHINE LEARNING
Computational pathology (eg, image analysis,

machine learning) techniques are emerging as powerful
tools that have the potential to revolutionize breast path-
ology. Through image analysis algorithms, digital path-
ology images can be processed, segmented, and quantified
to extract relevant features and patterns in the data.
Machine learning models can then be trained on similar
extracted features to predict narrow, specific tasks in
pathology. These tools are used in an adjunctive fashion as
a virtual pathology assistant in assessing pathology digital
images. In addition, machine learning systems may also
assist in prognostication, predicting outcomes, and guiding
patient management. With sufficient data, machine learn-
ing systems can facilitate the discovery of computational
biomarkers by uncovering unbeknownst relationships
within the datasets. As the field of breast pathology con-
tinues to embrace image analysis and machine learning,
the potential for enhanced precision, consistency, and
data-driven decision-making in diagnostic pathology is
poised to grow exponentially. These technologies can drive
decision-making in pathology to move from a qualitative
to a quantitative diagnostic discipline. One key principle is
emerging from medical professional societies to encourage
the use of “AI” machine learning systems as assistive
workflows under “augmented intelligence” instead of
“artificial intelligence” (AI) where the nature of the system
does not replace pathologists, nor act on behalf of an
expert trained pathologist, but rather intend to collabo-
ratively strengthen the role of the pathologist for specific
directed tasks.8,9 Tasks for the digital and augmented
workflows in breast pathology offer capabilities to increase
accuracy, improve productivity, and enable discovery.

ACCURACY
The use of decision support tools in breast pathology can

enhance the detection, classification, and quantification of
breast lesions, and bolster patient safety. AI is not intended to
replace pathologists or health care professionals but to

augment their expertise. AI tools can assist in decision-mak-
ing, enhance accuracy, and improve patient care by providing
additional information and insights. Pathologists remain
essential for validating AI-generated results, considering
clinical context, and making the final diagnostic decisions.

Detection
Machine learning–based models can aid in screening the

digital slides and detecting suspicious and/or abnormal regions.
Some of these models have been trained on sufficiently large
expert-level datasets, whereby they can assist pathologists in
identifying abnormalities in the breast specimens, and prompt
focused evaluation. In other systems, machine learning has
been enhanced with annotations of specific lesions by dedicated
pathologists. These tools can identify potential areas for
directed review in digitized histopathology slides, such as
malignancies (eg, in situ and invasive carcinoma), atypical
epithelial proliferations (eg, atypical ductal hyperplasia), or
non-neoplastic findings such as adenosis, usual hyperplasia, or
microcalcifications. The literature shows investigators devel-
oping machine learning–based models for detection, local-
ization, and segmentation of various mammary lesions.
Detection of in situ and invasive carcinoma has been docu-
mented with high accuracy.10–18 Hanna et al evaluated a
dataset of 9751 anatomical specimens (biopsy, 6289; excision,
3462) comprising total of 40,637 slides to train a convoluted
neural network. The system was validated on whole slide
images generated from 3742 breast specimens (biopsy, 2250;
excision, 1492) comprising 13,601 digital slides that were not
included in the training of the convolutional neural network
model. Results showed high sensitivity of detection, with area
under the receiver operating characteristic curve (AUC)
of 0.98, 0.98, 0.97, 0.95, and 0.92, for invasive carcinoma,
ductal carcinoma in situ (DCIS), lobular carcinoma in situ,
atypical lobular hyperplasia, and atypical ductal hyperplasia,
respectively18 (Fig. 1). Breast cytology is also an area of active
investigation, where small but promising studies have shown
high performant models in detection of breast carcinoma.19–22

In addition to detection, machine learning models have also
been developed to segment breast pathology of interest.10,23

Segmentation involves highlighting the specific pixels of inter-
est for a given label (eg, ductal carcinoma in situ). Investigators
have also tried to replicate machine learning models similar to
how pathologists typically evaluate histopathology slides,
training multimagnification neural networks to detect and
segment various breast tissue compartments including carci-
noma, necrosis, adipose tissue, stroma, and benign breast
parenchyma.23 These tools offer an unprecedented opportunity
for quality assurance, where pathologists can now be aided in
using detection systems as a second read, or virtual consult for
all patients. This level of detection can provide a paradigm shift
in patient safety without increasing pathologists’ workloads,
and no substantial delay on turnaround time compared with
current practices, where secondary pathologist review for every
patient in the existing analog workflow is currently time pro-
hibitive and increases the pathologist’s workload. For decision
support tools that may detect the presence of carcinoma, these
systems can provide supportive workflows for pathologists,
especially for breast specimens with small volume of disease.
Overall, using machine learning–based systems for detection of
clinically meaningful lesions in breast pathology is equivalent
to promoting significant patient safety measures, without
increasing turnaround time or case workload.
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Classification
Accurate classification of breast lesions is paramount

to ensuring appropriate patient management, especially
during breast screening applications. Instead of binary
detection models, many clinical applications in breast
pathology use classification systems. These systems can
learn to identify specific features and patterns associated
with different subtypes of breast cancer. Decision support
systems that provide classifications of lesions in breast
pathology have been shown to determine the histologic
subtype, nuclear grade, presence of mitoses, tumor grade,
and analyze the tumor microenvironment.

Based on the previously published work of the BreakHis
dataset, He et al24 showed high performance in classifying
adenopathy, fibroadenoma, tubular adenoma, phyllodes
tumor, invasive ductal carcinoma, invasive lobular carci-
noma, mucinous carcinoma, and papillary carcinoma. Mer-
can et al25 showed the development of a computer vision
method to classify benign, atypical, in situ, and invasive
breast lesions with moderate to high performance, with
highest classification performance of discriminating between
atypical hyperplasia and DCIS, compared with pathologists.
Althoughmost of the published literature documents research
work not implemented in clinical practice yet, a recent clinical
validation of a breast classification model showed high per-
formance with area under the AUC ranging from 0.92 to 0.99
in discriminating between atypical ductal hyperplasia versus

ductal carcinoma in situ, and detection of ductal carcinoma
in situ and invasive ductal carcinoma, respectively.26

In addition, subtyping of breast lesions is important to
provide clinical context and appropriate morphologic
assessment. Sandbank et al26 reported distinguishing
between invasive ductal and lobular carcinoma with an
AUC of 0.97. Pathologists also routinely grade carcinoma
present in breast specimens, where automated classification
can support pathologist workflows. Grading of invasive
carcinoma is based on the degree of nuclear atypia, tubule
formation, and mitotic score, while DCIS is graded based
only on nuclear atypia. Machine learning models to support
grading of breast cancer have shown “pathologist-level”
performance for the classification of nuclear grade.27–31

Mercan et al27 hypothesized grading nuclear atypia as a
continuous variable instead of the traditional stepwise
grading as low, intermediate, and high-grade nuclear score,
and the developed model showed, on average, the highest
agreement out of 10 pathologists. Other investigators have
reported the development of machine learning models to
support pathologists grading of breast cancer.28,32,33 The
accurate assessment of mitotic count, however, is most
challenging, as cell debris and poor nuclear detail may
mimic the dense chromatin of dividing cells.34

Multiclass models have also been shown to evaluate the
tumor microenvironment by classifying immune cells, tumor
cells, and their respective relationships. A machine learning

FIGURE 1. Representative breast detection of atypical ductal hyperplasia on whole slide image. Visualization of machine learning model
trained to detect lesions in breast pathology. A, Low magnification image of hematoxylin and eosin slide with atypical ductal hyperplasia
(ADH); B, Low magnification image of hematoxylin and eosin slide showing ADH detection by machine learning model with crosshair
visualization; C, High magnification image of hematoxylin and eosin slide with ADH detection by machine learning model with crosshair
visualization; D, with ruler measurement.
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system developed to classify nuclei in a hematoxylin and
eosin (H&E) image into lymphocytes, tumor cells, or
fibroblasts reported a high Spearman correlation (R= 0.73)
for computer-assisted tumor-infiltrating lymphocytes (TILs)
compared with pathologist consensus, greater than the
reported interpathologist correlation (R= 0.66).35 Zhang
et al36 reported accuracies of up to 0.90 and 0.80 for lym-
phocyte detection and segmentation, respectively. In a
dataset of intermediate to high-grade DCIS compared with
DCIS with adjacent invasive carcinoma, the pure DCIS
cases had more TILs compared with DCIS with adjacent
invasive carcinoma. In addition, colocalization of TILs with
DCIS was higher in DCIS with adjacent invasive carci-
noma, suggesting that the microenvironment associated
with breast ducts with DCIS is more inflamed than the
microenvironment associated with invasive carcinoma.37

This technology has the potential to automate the analysis
of morphology and immune ecology of breast lesions.
Whereby, this information can aid pathologists in accurately
classifying tumors, providing valuable insights for treatment
planning and prognostic assessment.

Quantification
Many routine tasks in breast pathology require semi-

quantification. Machine learning systems may be best suited
to quantify various findings and support pathologists’
workflows. Breast biomarkers can be quantified manually or
using computer-assisted image analysis tools (Fig. 2). Many
image analysis systems have received Food and Drug
Administration for several immunohistochemical stains [eg,

estrogen receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor 2 (HER2), Ki-67, pro-
grammed death-ligand 1 (PD-L1)]38 (Table 1). In this set-
ting, pathologists identify regions of interest using the soft-
ware systems, then the image analysis software computes the
positive to negative tumor cell ratios and provides a digital
visualization to the pathologist who can review it and
approve if he/she deems it correct. Sequential “Zero-click”
models are now available that can identify the tumor areas
on a given slide and use the same area for quantification of
tumor cell expression of a given protein detected with
immunohistochemical stain. Computer-assisted quantifica-
tion of breast biomarkers with image analysis software
demonstrated noninferior performance to the current
standard of care.39 All digital image analysis methods out-
performed manual quantification concordance and Cohen κ
agreement when compared with the PAM50 gene expression
assays. Quantification of staining in tumor cells intensity
and completeness of circumferential membranous staining
of HER2 is also documented.40 The College of American
Pathologists published validation guidelines for digital
quantitative image analysis of HER2 to support pathologist
validation efforts using these tools41 (Fig. 3). Brightfield
chromogenic, and darkfield fluorescent in situ hybridization
probe quantification is also possible and has been reported
to show high concordance with manual quantification.42–48

Quantification of mitotic figures based on overall high-
power field tissue areas is another possible application of
digital technologies. Transitioning from a circular field of
view in a brightfield microscope to a digital workflow with

FIGURE 2. Computer aided quantification of immunohistochemical nuclear stains. A, Digital image of Ki-67 immunohistochemical stain
showing whole slide image and; B, pathologist annotated region of interest; C, x 20 magnification of Ki-67 immunohistochemical stain
with D, corresponding segmentation of the nuclear quantification image analysis tool; E, Cell count quantification by image analysis tool.
Please see this image in color online.
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rectangular displays requires new methods for quantification
as a digital high-power field may not be equivalent to a
microscopic high-power field on a brightfield microscope.49

Novel methods may automate quantification in ways where
current standards may no longer be applicable in a digital
workflow (ie, automated mitotic figure quantification and
ratio of mitoses per tissue area or per number of tumor
cells).50 Mitotic figures can be subjective in analog detection
workflows for pathologists.51 Computational methodologies

support screening and quantification of mitotic figures with
high interrater κ coefficients. Grand challenges have been
organized to provide public datasets for organizations to use
and train machine learning–based models, including for
mitotic figure detection.52 Tellez et al53 used phosphohi-
stone-H3 immunohistochemical stains, a mitotic figure-
specific marker, to train a neural network model for the
quantification of mitoses. The authors reported an average κ
correlation of 0.72 between manual and automated counting

TABLE 1. Commercially Available Image Analysis Tools for Breast Biomarker Quantification

Biomarker Company (alphabetical) Product
Regulatory status/510K if US

cleared

ER Aperio Technologies (Leica) Scanscope XT System K073677
Aperio Technologies (Leica) Aperio ePathology eIHC IVD System (Scanscope

CS, AT Turbo)
K141109

Applied Imaging Corp. Applied Imaging Arial K033200
Applied Spectral Imaging Ltd Genasis HiPath IHC Family K140957
Cell Analysis Inc. QCA (Version 3.1) K031363
Chromavision Medical Systems Inc. Automated Cellular Imaging System (ACIS) K012138
Tripath Imaging Inc. Ventana Image Analysis System (VIAS) K050012
Ventana Medical Systems Inc. Virtuoso System for IHC (iScan Corea scanner) K130515, K140465
Mindpeak Mindpeak Breast ER/PR RUO
Visiopharm ER, Breast Cancer, AI RUO
aiforia Clinical AI Model for Breast Cancer: ER RUO
Panakeia PANProfiler RUO

PR Applied Imaging Corp. Applied Imaging Arial™ K033200
Aperio Technologies (Leica) Scanscope XT System K073677, K080254
Aperio Technologies (Leica) Aperio ePathology elHC IVD System (Scanscope

CS, AT Turbo)
K141109

Applied Spectral Imaging Ltd Genasis HiPath IHC Family K140957
Tripath Imaging Inc. Ventana Image Analysis System (VIAS) K050012
Ventana Medical Systems Inc. Virtuoso System for IHC (iScan Corea) K111869, K122143
Ventana Medical Systems Inc. Virtuoso System for IHC (iScan HT) K142965
Mindpeak Mindpeak Breast ER/PR RUO
Visiopharm PR, Breast Cancer, AI RUO
aiforia Clinical AI Model for Breast Cancer: PR RUO

HER2 Applied Imaging Corp. Applied Imaging Arial K031715
Aperio Technologies (Leica) Scanscope XT System K071128, K071671, K080564
Aperio Technologies (Leica) Aperio ePathology eIHC IVD System (Scanscope

CS, AT Turbo)
K141109

Applied Spectral Imaging Ltd Genasis HiPath IHC Family K140957
Bioimagene Inc. (Roche) Pathiam Imaging Software K062756
Bioimagene Inc. (Ventana) Pathiam System (iScan scanner) K080910
Chromavision Medical Systems Inc. Automated Cellular Imaging System (ACIS) K032113
Chromavision Medical Systems Inc. Automated Cellular Imaging System (ACIS) K012138
Olympus America Inc. Virtual Slide System Olympus VS800 System K111914
Omnyx LLC Omnyx IDP (VL4 scanner) K131140
Philips Medical Systems Philips Herceptest Digital Score (UFS scanner) K130021
Tripath Imaging Inc. Ventana Image Analysis System (VIAS) K051282
Ventana Medical Systems Inc. Virtuoso System for IHC (iScan Corea scanner) K111543, K121516
Mindpeak Mindpeak Breast HER2 RUO
Visiopharm HER2, Breast Cancer RUO
Visiopharm HER2-FISH, Breast Cancer RUO
Visiopharm HER2-SISH, Breast Cancer RUO
Visiopharm HER2-CISH, Breast Cancer RUO

Ki-67 Applied Spectral Imaging Ltd. Genasis HiPath IHC Family K140957
Bioimagene Inc. (Ventana) Pathiam Imaging System (iScan scanner) K092333
Tripath Imaging Inc. Ventana Image Analysis System (VIAS) K053520, K061613
Ventana Medical Systems Inc. Virtuoso System for IHC (iScan Corea scanner) K111755, K121033
Mindpeak Mindpeak Breast Ki-67 RUO
Visiopharm Ki-67, Breast Cancer, AI RUO
Aiforia Clinical AI Model for Breast Cancer: Ki-67 RUO

p53 Bioimagene Inc. (Ventana) Pathiam System (iScan scanner) K092333
Tripath Imaging Inc. Ventana Image Analysis System (VIAS) K062428
Ventana Medical Systems Inc. Virtuoso System for IHC (iScan Corea scanner) K111872, K121350

ER indicates estrogen receptor; HER2, human epidermal growth factor receptor 2; PR, progesterone receptor.
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on predefined hotspots with an F1 score of 0.65.53,54 The
study concluded that counting mitoses in a digital format is
achievable with sufficient resolution on the whole slide
images, and furthermore, that semiautomated quantification
using a machine learning model is feasible without intro-
ducing significant bias or variability. By automating these
quantification tasks, AI can reduce interobserver variability
and provide consistent and reliable measurements, ensuring
more accurate staging and treatment decisions.

Standardization
AI can contribute to standardizing breast pathology

practices by minimizing interobserver variability and
improving consistency in diagnosis. Pathologists may have
variations in interpreting challenging or borderline
diagnoses.55 Machine learning–based systems can predict
patterns from expert annotations and historical data to

establish standardized criteria for diagnosis, reducing dis-
crepancies and enhancing the overall quality of breast
pathology assessments. This standardization can lead to
improved patient outcomes and more reliable comparisons
in research studies. Furthermore, in all the considered areas
of detection, classification, and quantification—these deci-
sion support tools provide newfound methodologies for
standardization across the practice of breast pathology. In a
world where computer-aided diagnostic systems provide
augmented assistance in the detection, classification, and
quantification of breast pathology, evidence adopted from
other decision support tools in pathology suggests improved
interpathologist agreement related to tumor grading.56

Further monitoring is needed to ensure the performance of
the pathologist does not converge with the performance of
the decision support system, however, for diagnostic chal-
lenges with conventionally high interobserver variability,
these tools may promote an increase in pathologist agree-
ment. Pathologists are still required to verify and validate
machine learning–based systems before patient testing, and
this analysis will determine the performance characteristics
across the model’s intended use. Standardization and qual-
ity assurance are improved through established workflows,
automated quality control measures, and structured
reporting templates offered by digital pathology platforms.
These advances promote interobserver agreement, reduce
errors, and contribute to overall quality improvement in
breast pathology.

PRODUCTIVITY
Pathologists using digital workflows and decision sup-

port tools have the foundation to enable productivity gains
based on various practices. Digital transformation of path-
ology includes use of digital workflows where pathologists are

FIGURE 3. Computer aided quantification of immunohistochemical membranous stains. A, Digital image of HER2 immunohistochemical
stain showing whole slide image with heterogenous HER2 staining and; B, corresponding segmentation and classification of the
membranous staining quantification by the image analysis tool; C, Cell count quantification by image analysis tool. Please see this image
in color online.

FIGURE 4. Pathology triage workflow in patient case manage-
ment worklist. Clinical digital worklist showing patient case level
predictions based on machine learning models computed on
whole slide images of patient cases. Please see this image in color
online.
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using computer monitors and input devices to navigate digital
slides akin to glass slides on a microscope. Pathologists using
high-resolution monitors can review more tissue in a given
field of view compared with standard-definition monitors.49,57

Digital workflows also provide the capabilities of digital
worklists enabled to provide relevant data for patient triage
(Fig. 4). Having the appropriate metadata available to the
pathologist can prioritize patients based on breast surgery
postoperative appointments or machine learning outputs (eg,
invasive carcinoma detection). Pathologists can use this
information to more appropriately review their patient case
assignments, as well as order breast biomarkers sooner
compared with conventional workflows.26

Use of machine learning systems for screening and
diagnostic review are available for narrow tasks in breast
pathology. Machine learning–based systems are available to
detect clinically meaningful breast lesions (eg, atypia, in situ,
and invasive carcinoma). Furthermore, certain systems also
provide visualization of microcalcifications and metastatic

carcinoma to lymph nodes. Sandbank et al26 also shows
classification of microcalcifications, which can be clinically
useful for screening of stereotactic breast biopsies. Time to
detection of microcalcifications can be delayed if calcifica-
tions are focal, or if deeper tissue sections are needed to
evaluate and compare calcifications on the specimen radio-
graph. Automated screening systems such as detection and
visualization of microcalcifications could enable patholo-
gists reviewing breast specimens targeted for calcifications
an optimized workflow. Regarding automated detection of
mitotic figures, Pantanowitz et al58 published an average of
27.8% increase in efficiency to detecting mitotic figures when
using computer-aided workflow compared with glass slide
review. Other screening tasks include detection of small foci
of tumor, or tumor metastases in axillary lymph nodes59–64

(Fig. 5). One study describes improvement in time to detect
micrometastases up to 48%.65 Detection systems identifying
metastatic carcinoma should be properly evaluated to
ensure appropriate performance in various subgroups such

FIGURE 5. Representative metastatic breast carcinoma detection of micrometastasis on whole slide image. Visualization of machine
learning model trained to detect metastatic breast cancer in lymph node tissue. A, Low magnification image of hematoxylin and eosin
stained lymph node tissue; B, Low magnification image of hematoxylin and eosin stained lymph node tissue showing detection by
machine learning model with crosshair visualization; C, High magnification image of hematoxylin and eosin slide with metastatic
carcinoma detection by machine learning model with opacity visualization; D, with ruler measurement. Please see this image in color
online.
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as patients who received neoadjuvant chemotherapy, carci-
noma subtype (ductal vs. lobular), and small tumor burden
in the lymph nodes (eg, isolated tumor cells).61 Intra-
operative consultations or frozen sections are another area
where decision support systems could be implemented for
decreasing turnaround time to reporting of sentinel lymph
nodes in breast pathology, or margin assessment. In addi-
tion, semi or automated breast cancer grading could help
decrease a portion of the time to appropriately grade car-
cinoma. Similar productivity can be demonstrated for breast
biomarker quantification.

As these machine learning–based systems are being
trained on large, high-quality datasets, the potential for
democratization of pathology expert knowledge can also
expand global outreach. Patients and pathologists in rural
areas or in resource-restricted countries can benefit from a
virtual pathology consult from a machine learning model
trained using expert-level data. The combined pathologist
workforce limitations could be alleviated by potential pro-
ductivity improvements.66,67 The current pathology con-
sultation process requires shipment of glass slides and is
reliant on courier transportation. Several manual tasks as
well as the risk of glass slide damage would be alleviated by
the immediate transmission of digital slides.

DISCOVERY
Machine learning systems have the potential to provide

novel diagnostic and prognostic predictions for patients with
breast disease. These systems may also use nonpathology
metadata (eg, demographics, survival, comorbidities, radi-
ology) for prognostic outputs, to combine additional cova-
riates for quality training data. Breast cancers are associated
with genetic aberrations and require biomarker testing (eg,
ER, PR, and HER2). Furthermore, as novel computational
biomarkers become available, training data including hor-
mone receptor status or molecular status has been
researched to be respectively predicted. In some instances,
machine learning–based systems could be used in screening
applications with high negative predictive value to rule out
the possibility of a given mutation and avoid the need for
unnecessary molecular testing. Alternatively, machine
learning–based systems with positive predictive values
approaching 100% may be used as a replacement for
molecular tests or hormone receptor status prediction.
Machine learning systems have been shown to predict breast
biomarker status, molecular classification, and recurrence
risk based on the morphology present in the H&E whole
slide image alone.31 Shamai et al68 also developed a deep
learning model that predicted ER expression solely from
H&E-stained breast pathology images with noninferior
accuracy to standard immunohistochemical studies. Similar
principles have been used to predict HER2 status from
tumor morphology on H&E digital slides.69,70 Tests using
machine learning must be extensively validated for such
results, as the performance for a test with treatment man-
agement decision implications remains quite high. In the
early testing phases, it may be prudent to use machine
learning decision support systems as an adjunct to molecular
testing to validate their performance.

The ideal biomarker in pathology should correlate to
patient outcomes. Some existing genomic tests provide
results that estimate response to therapy and other outcomes
in patients with ER-positive breast cancer.71–74 Investigators
demonstrated independent risk prediction using

morphologic features on H&E digital images (eg, nuclear
shape, texture, and architecture) to assess predicted risk of
recurrence and overall survival in patients with ER-positive
breast cancers with accuracies ranging from 75% to
86%.75–77 BCR-Net, a machine learning network recently
developed to predict breast cancer recurrence from histo-
pathology images achieved an overall AUC of 0.775 using
H&E digital slides.78 Image-based Risk Score (IbRiS), a
machine learning model using breast pathology whole slide
images, was developed to serve as an alternative to genomic
testing and demonstrated a mean accuracy of 84% in dis-
tinguishing low-risk from high-risk patients.79,80 In addition,
computational biomarkers measuring the spatial arrange-
ment and architecture of breast tissue elements such as TILs
within the tumor have been described to predict patient
survival and recurrence risk.81,82

For future discovery of machine learning–based sys-
tems in breast pathology, one of the highest potentials for
scientific breakthroughs involves uncovering features in the
breast pathology data that have yet to be described. Breast
pathology has been thoroughly defined by morphologic
features, graded by differentiation, and well-documented
staging criteria. However, computational biomarkers may
discern patterns in breast pathology data that have yet to be
discovered. For instance, breast carcinoma nuclear ori-
entation and intensity patterns (eg, consistency of nuclear
intensity vs. diversity of nuclear intensity) was shown to
provide prognostic importance.83,84 Some described features
may be synonymous with what is described in pathology
textbooks, such as the maximal blue pixel value for atypical
nuclei being akin to hyperchromasia, a hallmark of neo-
plasia, however, the ability to quantify these foundational
tenants of disease is critical to transforming the field of
breast pathology.

The fundamental principle of training machine learn-
ing models using breast pathology whole slide images to
predict patient outcomes was well demonstrated. Wulczyn
et al,85 developed a deep learning system in conjunction with
clinical metadata to predict low, medium, and high risk in
relation to survival probability for various malignancies,
including breast cancer. The integration of multimodal data
in machine learning can provide several benefits in the field
of breast pathology and its advancement. Multimodal data
refers to a combination of data obtained with different
techniques, such as histopathology whole slide images,
clinical data, radiology, or genomic data. Training of
machine learning systems on multimodal data can improve
the accuracy of breast cancer diagnosis and classification.
Integrating whole slide images and DNA sequencing data of
the same tissue can provide a more comprehensive under-
standing of the disease, allowing for more precise subtyping
of breast tumors. Multimodal datasets can be used to
develop predictive models that can assist in prognosis and
treatment decisions and better predict patient outcomes,
such as survival rates or response to specific treatments. In a
recent article by The Mahmood Lab, coupling histo-
pathology and genomic information was superior to either
alone.86 In another study, multimodal data including patient
clinical data, and pathologic (ER status, HER2 status,
Nottingham grade, tumor size, and nodal status), molecular
and staging features of the carcinoma, was used to train a
machine learning model to predict the response to neo-
adjuvant chemotherapy with the best-performing model
demonstrating an AUC of 0.88.87 These models can con-
tribute to the development of personalized medicine for
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breast cancer patients, especially for patients with a family
history of breast cancer or BRCA germline mutation
carriers.88

The integration of pathology imaging and clinical data
with biomarker and molecular testing techniques allows for
the correlation of histopathological features with molecular
data, enabling personalized treatment decisions and prog-
nostication. Furthermore, the accumulation of large-scale
pathology datasets paves the way for big data analytics,
facilitating research into breast cancer etiology, biomarker
discovery, and therapeutic targets.

LIMITATIONS AND ERRORS
The application of machine learning models to breast

pathology has limitations and potential sources of error.
The available training data are limited, as acquiring large,
high-quality annotated datasets can be challenging. The use
of large well-annotated datasets may also lead to poor
performance and lack of generalizability when applying a
machine learning model to other patient data. Breast
detection models trained on curated datasets may not be
generalizable to real-world data with a range of preanalytic
artifacts due to air bubbles, tissue folds, ink markings, fin-
gerprints, etc.89 In addition, evidence in other areas of
pathology and machine learning show biased training data
can lead to inaccurate predictions and perpetuate biases in
the decision support system.90–93 If the training data con-
tains a disproportionate representation of patient demo-
graphics or specific types of breast lesions, the model may
show poor performance and lower accuracy in under-
represented diagnoses. For instance, a decision support tool
trained using a set with an overrepresentation of invasive
ductal carcinomas may not perform as well in detecting
invasive lobular carcinoma or rare breast cancer subtypes
(eg, adenoid cystic carcinoma). Furthermore, the intended
use of the model is critical to be aware of. If only carcinomas
were used in the training data, and other diagnoses of
interest are not represented, the model may not recognize
other clinically meaningful entities (eg, malignant phyllodes
tumors). Model explainability is also important to allow
increased trust and confidence in the system. Visualizations
such as heatmaps can allow pathologists to better under-
stand the model’s predictions. Proper validation is required
before implementing any decision support tool in clinical
practice. As these tools become increasingly available and
are adopted, continued research to qualify and avert these
limitations is needed to improve the performance and reli-
ability of machine learning models in breast pathology.

Errors in machine learning may occur in an imaging
workflow based on challenges surrounding generalizability
across different training, tuning, and evaluation datasets.
Lack of generalizability may occur across changes in image
properties, whole slide scanners, and image analysis soft-
ware. Pantanowitz et al94 expanded on the limits of serially
changing a single image’s brightness, contrast, blur, and
compression of an image of invasive ductal carcinoma,
HER2-positive immunohistochemical stain. By serially
changing the image properties of the same image, the same
image analysis software output was effected, changing from
0 to 3+, and vice versa. While some of these changes may
not correlate with real scenarios in routine practice, they
help understand how changes in image properties may affect
image analysis and machine learning decision support sys-
tems aiding to evaluate breast pathology. In addition,

staining protocols and scanner variability may also intro-
duce bias into patient’s digital slides. Leo et al95 introduced
a preparation-induced instability score that evaluates sim-
ilarities between preanalytic slide generations, and a latent
instability score, to quantify feature instability across and
within datasets. One of the hopes for machine learning in
pathology is to support the quantification of immunohis-
tochemical stains, however, Combrinck et al analyzed ER,
PR, HER2, and Ki-67 immunohistochemical staining of the
same 20 tissue samples across 2 different image analysis
software. Half of the ER results showed results with dis-
crepancies over 20% between the 2 image analysis software,
and Ki-67 results showed discrepancies over 20% in 60% of
the samples.96

FUTURE CONSIDERATIONS
Breast pathology has evolved as new technologies have

become available. Many of these advancements came with
the advent of the light microscope, followed by immuno-
histochemical staining, and then molecular testing. Adop-
tion of decision support tools using machine learning–based
systems will supply pathologists with capabilities that are
not available in an analog workflow. Natural language
processing (NLP) techniques have provided solutions for
text extraction and generation. Other future technologies
that constitute an innovative area of digital imaging include
multispectral imaging and multiphoton microscopy.

NATURAL LANGUAGE PROCESSING
NLP is a wide-encompassing field of techniques and

methodologies aimed at enabling computers to interact with
and understand human language (eg, language under-
standing, semantics, and syntax, sentiment analysis,
machine translation, and text summarization). Recently,
large language models (LLM) built using NLP and deep
learning techniques, have become popularized and are
developed within the NLP framework to enhance text
generation capabilities. NLP has been used to extract
information from pathology reports and other enterprise
information systems (ie, electronic medical records, and
laboratory information systems), but also has capabilities to
summarize, translate, or generate data based on pathology
reports or other patient clinical metadata. For example,
CancerBERT, a cancer-related corpus of breast cancer
patients was trained to extract cancer phenotypes from
clinical notes and pathology reports, which achieved up to
an F1 score of 0.9.97 Buckley et al98 demonstrated an NLP
system to extract clinical data from pathology reports, with
sensitivity and specificity of 99.1% and 96.5%, respectively
when compared with expert human coders. NLP systems
were also developed to be used as a clinical decision support
system for radiology-pathology correlation when comparing
mammographic imaging features and breast cancer
subtype.99 LLM have also been used to evaluate the per-
formance of ChatGPT as a clinical decision support tool in
patient management of breast tumor board decisions. One
study showed the LLM provided similar clinical recom-
mendations with those of the tumor board members in 70%
of cases.100 These technologies will continue to mature and
evolve how breast pathology is practiced by facilitating data
collection for research and providing newfound methods for
pathology education to practitioners and patients.

Multispectral imaging (eg, multiplex microscopy) ena-
bles the characterization of breast tissue beyond the
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traditional H&E stain. By detecting and quantifying multi-
ple biomarkers in a single tissue sample, pathologists can
gain deeper insights into cellular heterogeneity, tumor
microenvironment interactions, and varying permutations
of biomarker profiles of disease of the breast. These tech-
niques allow for simultaneously assessing multiple bio-
markers on the same specimen and can be further
quantified.101,102 With digitized images, evaluating breast
tissue with varying antibodies on a single specimen enables
discovery of patient prognostication based on cellular pro-
files and spatial arrangement. Hou et al103 analyzed breast
tissue with multiplex immunohistochemistry and found all
patients with intratumoral CD8+ cells without PD-L1
expression achieved pathologic complete response. In
addition, multivariate analysis showed that PR negativity
and HER2/chromosome 17 centromere ratio were sig-
nificantly associated with pathologic complete response.
These novel cellular profiling and imaging methods have
emerged as powerful tools for analyzing breast tissue. They
enable simultaneous assessment of multiple biomarkers,
preservation of spatial context, and digital image analysis,
introducing new avenues for diagnostic, research, and edu-
cational applications in breast pathology.

Nondestructive direct imaging of breast tissue, such as
multiphoton microscopy, can generate high-resolution
images of breast tissue structures and cellular features
without the need for conventional histology laboratory
processing and staining. These advanced imaging modalities
use nonlinear optical techniques to generate images at cel-
lular and subcellular levels, including tubules, nuclei, and
mitoses, which can aid in the assessment of tumor biology
and prognosis. One significant advantage of multiphoton
microscopy is its ability to provide almost real-time evalu-
ation of breast tissue specimens. This technology is non-
destructive allowing pathologists the ability to examine the
tissue while preserving its integrity and allowing use of it for
downstream biomarker or molecular testing.104–108 Li
et al109 conducted a study to analyze the efficacy of multi-
photon microscopy in detecting changes in breast cancer to
the response of neoadjuvant chemotherapy. Using image
analysis the authors report significant differences in the cell
nucleus area and content of collagen fibers between the
neoadjuvant and posttreatment breast carcinoma tissues.
The investigators also demonstrated visualization of lym-
phovascular invasion using multiphoton microscopy.110 In
diagnostic evaluation of breast tissue, multiphoton micro-
scopy was shown to have accuracies ranging from of 87.5%
to 94% in rendering a breast pathology diagnosis from
multiphoton images.111,112 These techniques generate
images of the tissue in a relatively short time (eg, seconds to
minutes) and would be amenable to intraoperative con-
sultation workflows, and could contribute to identify sus-
picious foci and expedite the evaluation and reporting of
margin or sentinel lymph node status in the context of
intraoperative frozen section workflows.108 Furthermore,
multiphoton microscopy can be combined with other
imaging modalities and molecular testing to enhance its
diagnostic capabilities. It can be integrated with fluorescence
imaging techniques to visualize specific molecular targets
within breast tissue, such as tumor biomarkers or fluo-
rescently labeled antibodies. This approach enables com-
prehensive and detailed characterization of breast lesions at
both the cellular and molecular levels. These novel imaging
technologies can be also combined with machine learning

systems to enhance the accuracy of pathologists using
these tools.

Despite its potential, there are substantial limitations to
the application of multiphoton microscopy in breast path-
ology, as it requires specialized equipment and expertise to
perform the imaging and analyze the complex datasets
generated. The imaging data also require significant digital
storage, orders of magnitude larger than whole slide images.
These requirements may limit the widespread adoption of
multiphoton microscopy in routine clinical practice. In
addition, the imaging depth is relatively shallow, typically
limited to a few hundred micrometers, which may restrict
the visualization of deeper tissue structures. While direct
breast tissue imaging using multiphoton microscopy offers
exciting prospects for improving the understanding and
diagnosis of breast pathologies, the ongoing research will
need to be clinically realized.

CONCLUSIONS
The future of breast pathology lies in the hands of

pathologists to properly implement and validate these
emerging technologies. Digital and computational pathol-
ogy tools complement existing pathology workflows and
provide a means to enhance the diagnostic and prognosti-
cation of patients. However, their implementation neces-
sitates careful validation, regulatory compliance, and
ongoing training of pathologists. Using such tools, pathol-
ogists have the potential to enhance diagnostic accuracy,
enable personalized medicine, and drive research to advance
our current understanding of breast pathology. With any
new technology, continued research, proper validation, and
collaboration among pathologists, technologists, and
researchers will be instrumental in realizing the full potential
of digital and computational pathology systems in breast
pathology practice. Embracing these novel technologies as
complementary tools that can augment the expertise of
pathologists and enhance their critical role in diagnosis and
patient care is fundamental to the evolving practice of
pathology.
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