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KEY POINTS

� Three-dimensional (3D)-printed technology can create patient-specific prosthetics for spinal recon-
struction and screw placement.

� Modifying interbody porosity and surface coating can improve osseous integration and reduce
subsidence.

� Innovations in percutaneous pedicle screw systems have improved safety and efficiency.

� Carbon fiber-reinforced polyetheretherketone pedicle screws offer promising benefits in imaging
evaluation and adjuvant treatment planning in spinal malignancies.

� Lumbar facet replacement devices offer a potential alternative to some spinal conditions tradition-
ally considered for fusion surgeries.
m

INTRODUCTION

Spine implant materials continue to evolve to
address the diverse needs of themulticompartment
spine.1 In only a few decades, a plethora of devices
have emerged. The intervertebral disc can be
replaced with interbody spacers or artificial discs,
the vertebral body can be matched by cages for
both structure and function, the stabilizing posterior
elements can be reconstituted by the now-conven-
tional pedicle screw and rod paradigm, just to
name a few.1 In this article, the authors discuss
new developments in spine implants for both de-
vices and materials. These advances in implant
technology include three-dimensional (3D)-printed
materials, expandable devices, specialized surface
designs, pedicle screw techniques and construc-
tion, and novel facet replacements. The authors
analyze these state-of-the-art technologies, their
proposed uses, and consider future applications.
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THREE-DIMENSIONAL-PRINTED
TECHNOLOGY
Spine Prosthetics

Because 3D printing can be so personalized, multi-
ple groups in recent years have evaluated its utility
in complex reconstruction outcomes, particularly
for en bloc resection of spinal tumors.2–4 In patients
undergoing total sacrectomies, 3D-printed prosthe-
ses have demonstrated more uniform stress distri-
bution, lower peak stress, and better stability.4

More recently, a small series reported on thoraco-
lumbar tumor reconstructions using 3D-printed tita-
nium alloy prosthetics and demonstrated proof of
principle with reasonable clinical outcomes up to
w1 year follow-up.2,3 These studies have shown a
wide range of prosthesis subsidence but few cases
of revision surgery. In direct comparisons between
patients with 3D-printed titanium alloy and tradi-
tional titanium mesh cages, studies have noted
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Fig. 1. Anterior view of expandable vertebral body
replacement cage (A) and lateral view of Globus
expandable VBR in thoracic spine (B).
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non-inferiority in terms of fixation failure or subsi-
dence and, in some cases, decreased rates of sub-
sidence and back pain.5,6

SCREW APPLICATIONS

In addition to customized implants, 3D-printing
has been used in preoperative planning for screw
placement in terms of insertion point, path, length,
and thickness of screws.7 Such 3D-printed screw
guide templates have helped further reduce instru-
mentation complications.8,9

This application has been used especially in
deformity surgery to facilitate preoperative plan-
ning. In both adult degenerative scoliosis and
adolescent idiopathic scoliosis, reports have
detailed how preoperative 3D models have helped
intraoperative screw trajectories with accurate
placement within w1 mm of optimal screw entry
points and greater than 90% acceptable screw
placement. Although such studies have been in
small case series, comparisons to historical re-
ports of misplaced freehand screws have been
encouraging.9,10

Although the early findings suggest that 3D-
printed patient-specific screw guidesmay improve
the precision and safety of spinal procedures,
more extensive and robust studies are required
to elucidate their full potential in clinical practice.

Expandable Vertebral Body Replacement
Cages

The anterior spinal column bears up to 75%of axial
loading.11 To optimize its reconstruction following
corpectomy, expandable cages (Fig. 1A, B) have
been applied in practice.11–18

The expandable feature of vertebral body
replacement (VBR) cages has been studied for
reducing subsidence, which complicates 80% of
patients with anterior column reconstruction. In
principle, maximizing end cap size may ameliorate
loading stress and, thereby, decrease subsidence.
Several reports have detailed the feasibility of using
these expandable cages in a broad range of patient
populations, from cervical to lumbar spine and for
pathologies ranging from degenerative disease to
malignancies, and confirmed improvement in stan-
dard clinical outcomesand low revision rates (eg, 1/
40).11,19 Radiographically, reports have shown
greater than 90% fusion with these cages in both
cervical and thoracolumbar locations, though
subsidence rates up to 17% have been shown
with 14-month follow-up.13,14 As these studies
hadheterogeneous population, limited conclusions
could be drawn. Nevertheless, the reports have
indicated the feasibility of an expandable anchored
titanium cage after anterior corpectomy.15
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One of the larger series on expandable VBR
cages focused on traumatic thoracolumbar spinal
fractures. After 2 years, 97.9% bony fusion and
4.2% total revision rates were reported.16 A few
other studies have also focused on specific patient
populations including osteoporotic thoracolumbar
fractures, post-traumatic kyphosis, and thoraco-
lumbar metastases. In general, these reports
have demonstrated good clinical outcomes,
improved VAS scores, and kyphotic deformity pa-
rameters.17–20 Interestingly, in those patients with
osteoporotic thoracolumbar fractures, subgroup
analyses suggested that Japanese Orthopedics
Association scores were improved more in
lumbar-only pathology than thoracolumbar pathol-
ogy.17 Further, in patients who underwent subaxial
corpectomies, although there seemed to be low
fusion rates (65.3% over 3 years), there were still
improved rates of average VAS pain scores, neck
disability index (NDI) scores, and Cobb angles.20

Overall, though there are notable limitations, re-
ports in recent years on expandable VBR cages
have painted a favorable landscape for expand-
able VBR cages.

INTERBODY IMPLANT INNOVATIONS

Implant characteristics, including surface coating,
chemistry, and topography including porosity and
roughness, determine implant osteointegration
and successful bony fusion. Therefore, evolving
technologies have focused on optimizing all these
exico@gmail.com) en National Library of Health 
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Fig. 2. Nuvasive anterior lumbar interbody fusion
(ALIF) Modulus implant.
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features together in order to enhance fusion
outcomes.21

EXPANDABLE INTERBODY IMPLANTS

As noted above with expandable VBR cages, de-
vices that conform in situ offer several unique ad-
vantages in the surgical setting, namely that they
require a smaller corridor for access while still
providing for in vivo pathology correction. In TLIFs,
Lin and colleagues’ meta-analysis of expandable
and static cages in 1440 patients showed higher
anterior disc height and foraminal height, lower
Oswestry disability index scores, and nonsignifi-
cant increase in posterior disc height and lordosis
for the expandable cage group.22 Conformational
meshes have emerged as another type of expand-
able implants. They offer the additional advantage
of integrating in accordance with the patient’s
anatomy. Stone and colleagues reported success
with a radiolucent, porous polyester mesh pouch
that is compatible with minimally invasive ap-
proaches offering multiple planes for graft–device
interaction, promoting osteogenesis. This device
was tested in a prospective, multicenter, single-
arm FDA-approved investigational device exemp-
tion (IDE) trial. The study which enrolled 102
patients reported significant reduction in VAS
back pain at 6 weeks and 24 months postopera-
tively. Similar reductions were noted in pain radi-
ating to lower limbs and 99% fusion rates
2 years after surgery. No adverse events solely
related to the implanted device were reported.23

Of note, however, this particular study faced limi-
tations such as lack of a control group and limited
follow-up and needs to be validated by a future
randomized study.

Porous Implants

Porous implants, by virtue of their construction
and osteointegration, result in a more mechani-
cally stable column and lower risk of fusion failure.
Increased bone–device interface results in lower
rates of disc subsidence and early bone fusion,
as proven in canine24 and ovine models under
standardized stress settings.25 Fogel and col-
leagues evaluated the potential effects of porous
bodies (lattice vs solid) and endplates (micropo-
rous vs smooth) on cage stiffness and subsidence
in an ovine interbody fusion model. There were
16.7% and 16.6% reduction in cage stiffness by
using porous body lattice and microporous end-
plate, indicating that body lattice and microporous
endplates characteristic can enhance early fusion
through cage stiffness and stress shielding reduc-
tion. Furthermore, porous titanium cage showed
the lowest stiffness and block stiffness (Fig. 2).
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Owing to stiffness reduction, and hence optimized
osteointegration and potential diminished subsi-
dence, they hypothesized that porous titanium
cage may be a viable option in clinical settings.25

In terms of subsidence, Kraftt and colleagues
showed that 3D-printed porous titanium interver-
tebral cages in lateral interbody fusions showed
a subsidence rate of 6.7%, though all were clini-
cally irrelevant and did not require revision opera-
tion.26 Porous polyetheretherketone (PEEK)
implants have been reported in multilevel anterior
cervical discectomy and fusions procedures
(Fig. 3), with data suggesting good clinical out-
comes. Out of 33 patients with �3-level anterior
cervical discectomy and fusion (ACDFs), two pa-
tients developed cage subsidence (6.1%) and
one patient had pseudoarthrosis (3%), though
overall successful fusion rate was recorded at
97%, which supersedes established rates for
complex cohorts.27

Surface-Coated Technologies

Antimicrobial-coated orthopedic implants have
already proven to be efficacious and safe in clinical
use.28 Silver (Ag), copper (Cu), and iodine (I) are
candidates for coated implants, with delivery also
possible throughavariety of techniques.29 Applica-
tion in spinal surgery with the use of silver and hy-
droxyapatite surface-coated lumbar interbody
cage was recently reported by Morimoto and col-
leagues which showed promising results.30 In
another small study comparing titanium-coated
versus uncoated PEEK cage in single-level
ibliomexico@gmail.com) en National Library of Health 
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Fig. 3. Nuvasive porous PEEKCohere extreme lateral in-
terbody fusion (XLIF) implant. (Courtesy of NuVasive.)
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posterior lumbar interbody fusion, 3-month fusion
rateswere88%andquantified vertebral cancellous
condensation, as an index of bone ingrowth, were
significantly greater in titanium-coated cages, sug-
gesting titanium coatingsmay promote solid fusion
and enhance the outcomes of interbody fusions.31

SCREW INNOVATIONS
Minimally Invasive Spine Surgery

Minimally invasive spine surgery (MISS) has been
defined by key technologies, notably percutaneous
pedicle screw systems. This technique has signifi-
cantly changed since its initial description in the
early 1980s by Magerl and colleagues,32 now with
a currently established insertion technique of:33

1. X-ray imaging for localization (eg, fluoroscopy
or CT scan)

2. Skin incision and blunt dissection of fascia
3. Jamshidi needle to dock at screw insertion

site
4. Kirschner (K)-wire placement
5. Repeat X-ray imaging for confirmation of

screw insertion site
6. Breach cortical bone using the K-wire as a

guide (ie, with a cannulated awl)
7. Successive dilators
8. Tunneling or “tapping” through a pedicle
9. Cannulated screw placement over the K-wire

10. Repeat X-ray imaging for final screw
confirmation

Recently, fourth-generation percutaneous
pedicle screw systems have streamlined the screw
insertion process further. Systems like the VIPER
PRIME (DePuy Synthes Spine, Raynham, MA,
USA) (Fig. 4A–I),34 Voyager ATMAS (Medtronic,
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Memphis, TN, USA), and RELINE ONE (NuVasive,
San Diego, CA, USA) (Fig. 5A–C) consolidate
many of the above steps into a single instrument
pass while using intraoperative navigation. These
systems remove the need for Jamshidi needles,
K-wires, dilators, tapping of cancellous bone, or
multiple radiation exposures. Ultimately, these
“all-in-one" instruments can abbreviate a screw
insertion process to.

1. Intraoperative scan for navigation
2. Skin incision
3. Navigated placement of screwdriver system to

desired insertion point
4. Screw insertion
5. Repeat intraoperative scan for hardware place-

ment confirmation (optional)

Although the fourth-generation systems achieve
this integrated approach with different mecha-
nisms, the common factor is a single device that
allows for maneuvering a screw to a desired inser-
tion point, breaching cortical bone, and tunneling
through a pedicle. Previously, each of these steps
involved an exchange between the operator and
assistant. However, with all-in-one instruments, a
significant amount of time is saved per screw;
the VIPER PRIME35 claims a 60% reduction in
screw insertion time. This has been corroborated
by multiple groups and a significant reduction in
operative time has been confirmed across similar
systems, although studies define differently what
is the time required for screw insertion.36–38

Beyond saving time, removing the K-wire also re-
duces risks as it has been implicated in various
complications related to displacement or bending
(eg, cerebral spinal fluid [CSF] leak and retroperito-
neal hematoma).39

Biomechanical data on the all-in-one screw sys-
tems, although sparse, have been promising in
demonstrating at least non-inferiority. Pereira and
colleagues showed no significant difference in pull-
out forces, fixation stiffness, or screw displacement
necessary for pullout in cadaveric spines using both
new and conventional systems.40 Early clinical re-
ports have also shown minimal complication rates.
Misplacement and breach of screws have been re-
ported at w10%, which is comparable to current
minimally-invasive spine surgery (MISS) techniques
of 6% to 23% and remains improved compared
with the upward of 39%breach rates in a traditional
open approach.37,38

Carbon Fiber-Reinforced
Polyetheretherketone

Modern titanium instruments are strong fixation de-
vices that reliably immobilize the spine. However, a
exico@gmail.com) en National Library of Health 
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Fig. 4. (A) VIPER PRIME screw inserter assembled with a navigation tower. (B) At baseline, the stylet rests w3 mm
past the screw tip. (C) Expanded view of the handle with red stylet depth line. Screw insertion involves (D) dock-
ing at desired location and turning red handle clockwise to extend stylet past the screw tip as you (E) mallet the
stylet into bone and through pedicle. (F) The depth gauge (expanded view) indicates how far the stylet is past the
screw tip. (G) Insert screw by holding the red stylet handle still and turning the T-handle. (H) The red line de-
creases toward its baseline as the screw advances. (I) Turn green knob to disengage the inserter assembly from
the screw.
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persistent problem has been the imaging artifact
caused by the metal, which restricts postoperative
MRI and CT evaluation.41 The thermoplastic poly-
mer PEEK helped address this problem as PEEK
systems are radiolucent and have been commonly
used in cervical spine surgery.42 However, their
semirigid design limits long-term fusion because
they permit continued micromovements.43 In
recent years, integrating carbon fiber into the
PEEK matrix has generated a rigid and radiolucent
material for screw designs and instrumentation.

In biomechanical studies, carbon fiber-reinforced
PEEK (CFR PEEK) is equivalent to titanium con-
structs in both biocompatibility and biomechanical
properties.41 Studies across CFR PEEK systems
have shown similar properties compared with
known titanium constructs for mean bending yield
load, fatigue from cyclic axial compression, and
Descargado para Biblioteca Medica Hospital México (b
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pullout strength.44,45 The benefits of CFR PEEK
have mostly focused on their potential in oncology
patients. Presumably, radiolucent constructs
(Fig. 6A–C) facilitate imaging evaluation and
increased accuracy for radiotherapy planning in
the short term and more easily detect local recur-
rence in the long term. However, few studies have
objectively evaluated the benefits of CFR PEEK in
postoperative radiation planning. Müller and col-
leagues compared radiation planning accuracy on
five patients with CFR PEEK screws and five with
standard titanium alloy screws and found that CFR
PEEK allowed for a reduced standard deviation in
target volume measurements.46 By extension, CFR
PEEK systems allowed for more accurate and pre-
cise postoperative radiation planning.

Intraoperatively, retrospective series show low
complications with CFR PEEK including 1 of 34
ibliomexico@gmail.com) en National Library of Health 
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Fig. 5. (A) Nuvasive RELINE ONE all-in-
one cannulated pedicle screws with
extended tabs. The awl-tipped vector
enables docking and breaching of
cortical bone. The vector is then
extended further (B) by rotation and
advancement of the handle cap to
guide the screw in its determined tra-
jectory (C).
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cases and 1 of 69 cases having a fractured screw
during insertion.47,48 A recent systematic review
on CFR PEEK for primary and metastatic spine tu-
mor patients showed similar operative outcomes
compared with titanium implants.49 Pedicle screw
fractures occurred in 1.7% of CFR PEEK cases
and 2.4% of titanium constructs. Reoperation
occurred in 5.7% of CFR PEEK systems and
4.8% of titanium constructs. Multiple groups are
actively collecting long-term oncologic outcomes,
but current limited cumulative data have shown an
overall local recurrence rate of 13.0% more than
13.5 months average follow-up.
Despite its promise, common limitations to CFR

PEEK systems have been recognized.48 Current
products cannot be bent to suit individual anatomy
intraoperatively and available pre-bent options
may not suit every individual case. Ultimately, it
is unclear whether the presumed increase in post-
operative imaging accuracy and higher chance of
detecting local recurrence generates a significant
clinical impact on oncology patient outcomes.
Recent commentary on CFR PEEK systems
pointed out how the continued evolution of tar-
geted therapies and immunotherapies in oncology
are what will really affect these patients’ out-
comes.50 However, for spine tumors that continue
Descargado para Biblioteca Medica Hospital México (bibliom
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to have limited systemic options and still rely on en
bloc surgical therapy, such as primary chordoma
and chondrosarcoma tumors, CFR PEEK systems
may substantially impact their postoperative
course. In part due to this unclear effect on out-
comes and also from the considerable increase
in costs, CFR PEEK systems have not yet been
widely adopted.

Facet Replacement Devices

Lumbar facet arthroplasty (LFA), using facet
replacement devices (FRD), has been proposed
as a method for achieving dynamic spinal stabili-
zation. Although several FRD systems have
emerged for LFA, including the Anatomic Facet
Replacement System (Facet Solutions Inc, ac-
quired by Globus Medical) and the Total Facet
Arthroplasty System (TFAS) (Archus Orthopedics,
acquired by Globus Medical), the Total Posterior
Spine System (TOPS) (Premia Spine) is the only
such device with FDA approval thus far (FDA
PMA number P220002).51

The TOPS consists of a motion implant and four
pedicle screws (Fig. 7A, B). The motion implant is
defined as two titanium endplates connected by a
polyurethane chamber. This chamber houses tita-
nium and polycarbonate urethane articulating
exico@gmail.com) en National Library of Health 
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Fig. 6. (A) Sagittal X-ray of thoracolumbar CFR PEEK instrumentation (icotec ag, Altstätten, Switzerland) demon-
strating their radiolucent screw shafts. Postoperative MRI (B) and CT (C) demonstrating reduced imaging artifact.
(Image B, Courtesy of prof. Ehab Shiban, department of neurosurgery, university hospital of Augsburg, Germany.)
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components and a woven PEEK ribbon. Following
a standard midline posterior approach, four
pedicle screws are placed at the cranial and
caudal levels, followed by placement of the
TOPS motion implant.52 Coric and colleagues
published findings from the prospective, random-
ized TOPS FDA IDE trial for one-level symptomatic
lumbar stenosis with grade 1 degenerative spon-
dylolisthesis. A greater percentage of patients in
the TOPS group (85%) met a composite outcome
at 24 months than in the transforaminal lumbar
interbody fusion (TLIF) group (64%).53 This work
followed initial results from the investigational
arm reported by Pinter and colleagues.54 An
important limitation of this work is the relatively
short follow-up for the outcome of adjacent
segment disease. Small, prospective studies sug-
gest clinical improvement, maintained range of
motion, and low rates of reoperation at 555 and
11 years.56

The Anatomic Facet Replacement System
(AFRS) also uses traditional pedicle screw fixation,
which is then connected by a cross-link at the
caudal aspect of the construct. AFRS consists of
PEEK, titanium alloys, cobalt chromium alloy,
commercially pure titanium, and hydroxyapatite.57

An FDA IDE trial (NCT00401518) comparing AFRS
Fig. 7. Anterior-posterior (A) and lateral (B) illustrations o
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with posterior lumbar fusion (PLF) for spinal steno-
sis was initiated in 2006 and completed in 2017,
though the final results have not been published.
Preliminary trial results suggest that similar clinical
improvements and reoperation rates at between
AFRS and PLF at 2 and 4 years.58 Of note, there
has been a case report (N 5 2) describing cobalt
allergies (a key component of the implant “metal
on metal” motion preservation design) with local
tissue reaction and return of neurologic symptoms
requiring revision to traditional titanium PLF.59

The TFAS is composed of a rostral “L”-shaped
stems anchored to a caudal motion-preserving
system. TFAS is anchored via straight stems pass-
ing into the vertebral body via a traditional pedicle
screw trajectory. The straight stems are secured
using polymethyl methacrylate cement.60,61 Clin-
ical evidence for TFAS is limited. A small series
(N 5 14) was reported in 2014 with a mean
follow-up of 3.7 years and revealed consistent
improvement in clinical outcomes and preserved
motion on dynamic radiographs.62 An FDA IDE trial
(NCT00418197) was initiated in 2005 to compare
TFAS with PLF, but not completed. Preliminary re-
sults (TFAS, N 5 96; PLF, N 5 8) suggest that the
device may yield comparable clinical improve-
ments compared with PLF.63 Importantly, a case
f Total Posterior Spine System.
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report (N 5 2) described breakage of the stems
requiring revision interbody fusion.64

Although FRDs offer a motion-preserving option
to traditional fusion for degenerative spinal pathol-
ogy, further research is required. Initial clinical re-
sults suggest that these devices can provide
clinical improvements in pain and disability,
though it is difficult to determine if improvements
are attributable to decompression of neural ele-
ments. Long-term studies are required to thor-
oughly understand the impact of FRDs on
adjacent segment disease.

SUMMARY

Spine implants are becoming increasingly diversi-
fied. Taking inspiration from other industries, 3D
modeling of the spinal column has helped meet
the custom needs of individual patients as both
en bloc replacements and pedicle screw designs.
Intraoperative tailoring of devices, a common need
in the operating room, has led to expandable ver-
sions of cages and interbody spacers. The implant
surface has been scrutinized as collaborations
with other surgical fields have found certain com-
pounds with antimicrobial and fusion-promoting
properties. These partnerships have also changed
the composition of implants themselves, with
carbon-fiber reinforced compounds representing
a hopeful addition to the spine oncology arsenal.
Techniques with existing implants have also
advanced, with minimally invasive “all-in-one”
pedicle screws streamlining instrumentation steps
in the operating room. Finally, new treatment par-
adigms continue to emerge, including facet
replacement devices that may help treat degener-
ative spine pathology in a new light.
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