Current concepts in coronary artery revascularisation

Mario Gaudino, Felicita Andreotti, Takeshi Kimura

Abstract

Coronary artery revascularisation can be performed surgically or percutaneously. Surgery is associated with higher procedural risk and longer recovery than percutaneous interventions, but with long-term reduction of recurrent cardiac events. For many patients with obstructive coronary artery disease in need of revascularisation, surgical or percutaneous intervention is indicated on the basis of clinical and anatomical reasons or personal preferences. Medical therapy is a crucial accompaniment to coronary revascularisation, and data suggest that, in some subsets of patients, medical therapy alone might achieve similar results to coronary revascularisation. Most revascularisation data are based on prevalently White, non-elderly, male populations in high-income countries; robust data in women, older adults, and racial and other minorities, and from low-income and middle-income countries, are urgently needed.

Introduction

Coronary artery revascularisation is a common procedure in current medical practice. Every year almost 800000 patients in the USA, ${ }^{1} 900000$ in China, ${ }^{2}$ 250000 in Japan, ${ }^{1,3}$ and over $1 \cdot 2$ million in Europe ${ }^{4}$ undergo revascularisation by either coronary artery bypass grafting (CABG) or percutaneous coronary interventions(PCI). In the past 20 years, PCI, CABG, and medical therapy for coronary artery disease have undergone very important changes and their relative results have been tested in numerous randomised controlled trials (RCTs).
In this Review, we evaluate the current evidence on coronary revascularisation with the aim of summarising key concepts to help to inform clinical decision making. We also highlight gaps in knowledge and future research directions.

Coronary artery bypass surgery

After almost three decades of attempts at indirect coronary surgery (through pericardial, sympathetic system, or thyroid gland interventions), ${ }^{5}$ CABG was introduced in the early 1970s and rapidly adopted (figure 1). Currently, it is the most common heart operation, representing over 50% of all adult cardiac surgeries worldwide. ${ }^{6,7}$
During CABG, segments of arteries or veins are connected to the coronary arteries distal to flow-limiting obstructions. Most operations are performed through median sternotomy, with a cardiopulmonary bypass pump, grafting the left anterior descending coronary artery with the internal thoracic artery and bypassing the remaining target coronary arteries with segments of the great saphenous vein. ${ }^{8}$ Operative mortality has progressively declined despite referral of older and more comorbid patients, currently ranging between 1% and 2% for elective cases, and with values in the low decimal range for cases without preoperative organ dysfunction. ${ }^{7.8}$ Stroke is infrequent but is a serious complication of CABG, with a prevalence in modern series ranging between 0.5% and $1 \cdot 5 \%$. ${ }^{8.9}$ Stroke can occur intraoperatively, mainly through embolism from aortic manipulation, or postoperatively from arrhythmias or hypotension. ${ }^{10}$ Cognitive decline is a potential
complication of CABG, but data are mixed and without solid evidence. ${ }^{11,12}$ Some studies reported similar neuropsychological dysfunction after either PCI or CABG, ${ }^{13,14}$ suggesting that cognitive decline in CABG patients might relate to ageing and systemic atherosclerotic disease rather than to the surgery itself. Other important complications are postoperative renal (occurring in $1-2 \%$ of cases) ${ }^{15}$ and respiratory failure (occurring in approximately 10% of cases); ${ }^{16}$ they are usually rapidly reversible in patients with preserved preoperative function.
Postoperative atrial fibrillation is the most common complication of CABG, affecting 20-25\% of patients. ${ }^{17}$ The arrhythmia is generally well tolerated, with most patients reverting to sinus rhythm within 1 or 2 days. ${ }^{17}$ However, postoperative atrial fibrillation significantly increases length of in-hospital stay, costs, risk of subsequent heart failure and stroke, and even mortality, through mechanisms that are not entirely clear. ${ }^{17,18}$ Postoperative atrial fibrillation also increases the risk of recurrent atrial fibrillation in the years after surgery. ${ }^{19} \beta$ blockers or amiodarone and left posterior pericardiotomy are effective measures to prevent postoperative atrial fibrillation, ${ }^{20,21}$ whereas the roles of rhythm versus rate control and of systemic anticoagulation are less clear. ${ }^{22,23}$
Surgical wound complications occur in 5-10\% of CABG patients, ${ }^{24,25}$ particularly in individuals with multiple risk factors (eg, female sex, obesity, and diabetes), affecting postoperative quality of life. ${ }^{26}$ Sternal wound complications are associated with increased short-term and long-term

[^0]Lancet 2023; 401: 1611-28 Published Online
April 27, 2023
https://doi.org/10.1016/ S0140-6736(23)00459-2

Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA (Prof M Gaudino MD); Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy (F Andreotti MD); Department of Cardiology, Hirakata Kohsai Hospital, Osaka, Japan (Prof T Kimura MD)

Correspondence to: Prof Mario Gaudino, Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA mfg9004@med.cornell.edu

Figure 1: Timeline of key advancements in surgical and percutaneous coronary revascularisation
BMS=bare-metal stent. CABG=coronary artery bypass surgery. CASS=Coronary Artery Surgery Study. DAPT=dual antiplatelet. G1-DES=first-generation drug-eluting stent. G2-DES=second-generation drug-eluting stent. PCI=percutaneous coronary intervention. PTCA=percutaneous transluminal coronary angioplasty. POBA=plain old balloon angioplasty. RCTs=randomised clinical trials. SYNTAX=Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery. VA=Veterans Administration.
mortality ${ }^{25}$ and with higher risk of graft failure (probably owing to mediastinal inflammation and hypercoagulability). ${ }^{27}$ Hospital readmission after CABG is frequent, with reported rates of $10-15 \%$ at 30 days and $20-25 \%$ at 90 days. ${ }^{28}$ The most common reasons are pericardial effusions, heart failure related to fluid overload, arrhythmias, and wound complications, whereas myocardial ischaemia and graft failure are less common. ${ }^{28}$
Patients generally recover from surgery within 2-3 months, with large variations based on age, preoperative comorbidity, and severity of heart disease. Adoption of Enhanced Recovery After Surgery (ERAS) protocols can reduce complications and accelerate return to healthy life. ${ }^{29}$ Centre-based and home-based postoperative rehabilitation reduces hospital readmissions and shortens recovery time. ${ }^{30}$ Depression and anxiety are common after surgery and behavioural, psychological, or pharmacological interventions might improve quality of life and even clinical outcomes postoperatively. ${ }^{31}$

Procedural aspects of CABG

Off-pump CABG is undertaken without the cardio pulmonary bypass pump, with the use of dedicated instruments to stabilise the target vessels and perform anastomoses on the beating heart. ${ }^{32}$ Large RCTs have not reported significant benefits compared with traditional techniques, ${ }^{33,34}$ and there have been concerns over less complete revascularisation and higher risks of graft failure when CABG is performed off-pump. Off-pump CABG is currently adopted routinely only by dedicated surgeons, although with important variations (in India
and Japan, for example, most CABG procedures are performed off-pump). ${ }^{8.35}$
The use of arterial rather than saphenous venous grafts to revascularise non-left anterior descending coronary artery targets has been hypothesised to improve long-term CABG outcomes on the basis of the higher failure rate of venous grafts compared with arterial conduits. ${ }^{36,37}$ Although observational series have generally reported better overall and event-free survival for patients operated upon with multiple versus single arterial grafts, RCTs have not shown significant differences between groups, ${ }^{38}$ and treatment allocation and experience bias might be the reason for the reported differences in observational studies. The ongoing ROMA trial ${ }^{39}$ should provide more definitive information.
Minimally invasive CABG through ministernotomy or small thoracotomies, often with the support of dedicated (port-access) or robotic technologies, has been proposed but not tested in adequately powered RCTs; it remains a niche for dedicated surgeons and highly selected patients. ${ }^{40}$ Hybrid revascularisation (minimally invasive surgical grafting of the left anterior descending coronary artery or of few selected targets, complemented by PCI of the remaining vessels) has not been widely embraced in clinical practice and the available evidence is scarce. ${ }^{41}$

Percutaneous coronary interventions

The first PCI was reported by Andreas Gruentzig in 1977 to treat severe, discrete, non-calcified coronary artery stenoses. ${ }^{42}$ PCI was subsequently applied to patients with acute myocardial infarction as early as 1980 (figure 1), ${ }^{43}$
becoming the first-choice reperfusion therapy in this setting, given the survival and safety benefits of PCI over intravenous thrombolytic therapy. ${ }^{44} \mathrm{PCI}$ involves a guiding catheter introduced under local anaesthesia from a peripheral artery and directed to the coronary artery orifice, through which a dilation catheter with a distensible tip (balloon) is advanced across the stenotic or occluded arterial site and inflated to compress and crack atherosclerotic or thrombotic material, thereby dilating the lumen. ${ }^{42}$ Clinical outcomes of patients treated by PCI have progressively improved with technical and medical advances (figure 2). ${ }^{45}$ A first landmark was the introduction of coronary stents that greatly reduced the risk of abrupt vessel closure. ${ }^{46}$ A major drawback, however, was stent thrombosis within the first month, complicating $1-3 \%$ of elective procedures and $7-15 \%$ of emergency procedures, despite the use of intravenous heparin and oral anticoagulation. ${ }^{47}$ A second landmark was replacing oral anticoagulation with a platelet $\mathrm{P}_{2} \mathrm{Y}_{12}$-receptor inhibitor (each on a background of aspirin), with dual antiplatelet therapy (DAPT) substantially reducing stent thrombosis rates and contributing to widespread adoption of PCI. ${ }^{48} \mathrm{~A}$ persistent major drawback of the procedure-although with lower rates after stenting than with plain balloon angioplasty-was restenosis, necessitating repeated interventions. ${ }^{46,49} \mathrm{~A}$ third landmark was the introduction of drug-eluting stents that limited the prevalence of restenosis to single percent digits compared with baremetal stenting. ${ }^{50}$ Older drug-eluting stents (sirolimus or paclitaxel) have been largely superseded by second
generation drug-eluting stents (everolimus or zotarolimus). ${ }^{51}$ Thus, despite referral of increasingly comorbid patients with complex lesions, short-term and long-term cardiovascular mortality following PCI has declined over the decades. ${ }^{45,52}$
Early complications of PCI include periprocedural myocardial infarction (with highly variable prevalence depending on definitions and ascertainment, from 2% to 18%), ${ }^{53}$ stroke $(0 \cdot 1-1 \%)$, ${ }^{54}$ major bleeding ($1-5 \%$), ${ }^{55}$ and acute kidney injury (4-7\%), ${ }^{56}$ all of which can adversely affect short-term and long-term survival. Midterm and long-term stent-related adverse events include stent thrombosis $(0 \cdot 1 \%$ per year) and restenosis requiring revascularisation ($0 \cdot 5-1 \%$ per year), ${ }^{77}$ with little attenuation up to 10 years after PCI, even with new-generation drugeluting stents. ${ }^{58}$ Stent thrombosis is classified on the basis of timing after implantation as acute ($0-24 \mathrm{~h}$), subacute (24 $\mathrm{h}-30$ days), late (30 days -1 year), or very late (>1 year). ${ }^{59}$ Acute and subacute events are generally related to technical issues (inadequate stent expansion, residual dissection, and tissue prolapse) or inadequate platelet inhibition, whereas late and very late events are generally related to discontinuation of antiplatelet therapy, neoatherosclerosis, and delayed vessel healing. ${ }^{60}$ Although new-generation drug-eluting stents and more potent platelet inhibitors have reduced the prevalence of stent thrombosis, it still affects $1-2 \cdot 5 \%$ of PCI patients. ${ }^{57,58}$ Stentfree PCI is a novel approach to avoid stent-related complications. Drug-coated balloons are reported to be non-inferior to drug-eluting stents for small vessel lesions ${ }^{61}$

Figure 2: Timeline of key advancements in medical therapy for coronary artery disease
$A C E i=$ angiotensin-converting enzyme inhibitor. ARNI=angiotensin receptor-neprilysin inhibitor. CCU=coronary care unit. DAPT=dual antiplatelet therapy. LVEF=left ventricular ejection fraction. SAPT=single antiplatelet therapy. SGLT2=sodium-glucose cotransporter-2. STEMI=ST-segment elevation myocardial infarction.
and are used for in-stent restenosis, ${ }^{62}$ whereas bioresorbable stent scaffolds have so far not shown incremental benefits compared with drug-eluting stents. ${ }^{63}$

Procedural aspects of PCl

Radial artery access has become standard PCI practice, as trial findings and meta-analyses show lower rates of
major bleeding, vascular complications, major adverse cardiovascular events, and mortality compared with the traditional femoral artery approach. ${ }^{64,65}$
Fractional flow reserve assessed by adenosine vasodilation or resting instantaneous wave-free ratio is recommended by current guidelines to assess the functional severity of intermediate epicardial artery

	Participants (N [medical therapy; revascularisation])	Patient population	Sex of participants (\%)	Mean age of participants (years)	Modality of revascularisation (\%)	Follow-up period	Primary outcome (revascularisation vs medical therapy)
AVERT (1999) PMID: 10395630	341 (164; 177)	Patients with coronary artery disease and negative stress test	Female 15.9\%	58.5	PCI 100\%	1.5 years	Composite of cardiac death, myocardial infarction, stroke, resuscitation after cardiac arrest, repeat revascularisation, or angina requiring hospitalisation: $\mathrm{PCI} 37 \%$, medical therapy $13 \% ; \mathrm{p}=0.048$
MASS (1999) PMID: 10567287	$\begin{aligned} & 214(72 ; 142 \text { [PCI 72, } \\ & \text { CABG } 70]) \end{aligned}$	Patients with coronary artery disease	Female 18\%	57.0	PCI 51\%, CABG 49\%	5.0 years	Composite of cardiac death, acute myocardial infarction, or refractory angina requiring revascularisation: CABG 8.6\%, PCI 40.3\%, medical therapy 23.9%; $\mathrm{p}=0.001$
$\begin{aligned} & \text { TIME (2001) } \\ & \text { PMID: } 11583747 \end{aligned}$	305 (150; 155)	Patients older than 75 years and chronic coronary syndrome	Female 42.9\%	80.0	PCI 71\%, CABG 29\%	6 months	Composite of death, myocardial infarction, or hospitalisation for acute coronary syndrome: invasive 19.0%, medical therapy 49.0\%; p<0.0001
$\begin{aligned} & \text { RITA-2 (2003) } \\ & \text { PMID: } 14522473 \end{aligned}$	1018 (514; 504)	Patients with coronary artery disease and angina	Female 18\%	58.0	PCI 100\%	7.0 years	Composite of death or myocardial infarction: PCI 14.5\%, medical therapy $12 \cdot 3 \%$; difference $+2 \cdot 2 \%$ ($95 \% \mathrm{Cl}-2.0$ to $6.4 ; \mathrm{p}=0.21$)
COURAGE (2007) PMID: 17387127	2287 (1138; 1149)	Patients with coronary artery disease	Female 15\%	62.6	PCI 100\%	4.6 years	Composite of death or myocardial infarction: PCI 19.0\%, medical therapy 18.5%; HR 1.05 (95% Cl 0.87 to 1.27 ; $\mathrm{p}=0.62$)
COURAGE (2015) PMID: 26559572	$1211(598 ; 613)$	Patients with coronary artery disease	Female 8.5\%	63.0	PCI 100\%	11.9 years	Death: PCI 25\%, medical therapy 24\%; HR 1.03 (95% Cl 0.83 to 1.21; $\mathrm{p}=0.76$)
BARI 2D (2009) PMID: 19502645	$\begin{aligned} & 2368 \text { (1192; 1172 } \\ & \text { [PCI 798, CABG 378]) } \end{aligned}$	Patients with diabetes and coronary artery disease	Female 29.6\%	62.4	PCI 67\%, CABG 33\%	$5 \cdot 3$ years	Death: Revascularisation $11 \cdot 7 \%$, medical therapy $12 \cdot 2 \%$; $\mathrm{p}=0.97 ; \mathrm{PCl} 10 \cdot 8 \%$, medical therapy $10 \cdot 2 \% ; p=0 \cdot 48$; CABG $13 \cdot 6 \%$, medical therapy $16.4 \% ; p=0.33$
MASS II (2010) PMID: 20733102	$\begin{aligned} & 611(203 ; 405 \text { [PCI 205, } \\ & \text { CABG 203]) } \end{aligned}$	Patients with multivessel coronary artery disease	Female 31\%	60.0	PCI 50\%, CABG 50\%	11.4 years	Composite of death, Q-wave myocardial infarction, or angina requiring revascularisation: CABG 33.0\%, PCI 42•4\%, medical therapy 59.1%; $\mathrm{p}<0.001$
$\begin{aligned} & \text { STICH (2011) } \\ & \text { PMID: } 21463150 \end{aligned}$	1212 (602; 610)	Patients with coronary artery disease and left ventricular ejection fraction $\leq 35 \%$	Female 12.2\%	59.0	CABG 100\%	4.6 years	Death: CABG 36%, medical therapy 41%; HR 0.86 (95% Cl 0.72 to $1.04 ; p=0.12$)
STICHES (2016) PMID: 27040723	1212 (602; 610)	Patients with coronary artery disease and left ventricular ejection fraction $\leq 35 \%$	Female 12.2\%	59.0	CABG 100\%	9.8 years	Death: CABG 58.9%, medical therapy 66.1\%; HR 0.84 ($95 \% \mathrm{Cl} 0.73$ to 0.97; $\mathrm{p}=0.02$)
FAME-II (2018) PMID: 29785878	$888(441 ; 447)$	Patients with functionally significant lesions (fractional flow reserve ≤ 0.80)	Female 21-2\%	$63 \cdot 7$	PCI 100\%	5 years	Composite of death, myocardial infarction, or urgent revascularisation: $\mathrm{PCI} 13.9 \%$, medical therapy 27.0%; HR 0.46 ($95 \% \mathrm{CI}$ 0.34 to $0.63 ; p<0.001$)
ORBITA (2018) PMID: 29103656	200 (95; 105)	Patients with 1-vessel coronary artery disease	Female 26.5\%	66.0	PCI 100\%	6 weeks	Exercise time increment (s): PCI 28-4, medical therapy $11 \cdot 8$; Difference 16.6 ($95 \% \mathrm{Cl}-8.9$ to $42 \cdot 0 ; \mathrm{p}=0 \cdot 200$)
							(Table 1 continues on next page)

	Participants (N [medical therapy; revascularisation])	Patient population	Sex of participants (\%)	Mean age of participants (years)	Modality of revascularisation (\%)	Follow-up period	Primary outcome (revascularisation vs medical therapy)
(Continued from previous page)							
$\begin{aligned} & \text { DECISION-CTO } \\ & \text { (2019) } \\ & \text { PMID: } 30813758 \end{aligned}$	$834(398 ; 417)$	Patients with chronic total occlusion lesions	Female 21.8\%	62.6	PCI 100\%	4.0 years	Composite of death, myocardial infarction, stroke, or repeat revascularisation: PCI 22.4\%, medical therapy 22.3\%; HR 1.03 (95\% Cl 0.77 to 1.37; $\mathrm{p}=0.86$)
ISCHEMIA (2020) $\text { PMID: } 32227755$	$\begin{aligned} & 5179 \text { (2591; } 2588 \text { [PCI } \\ & 1915, \text { CABG 673]) } \end{aligned}$	Patients with moderate-severe ischaemia	Female 22.6\%	64.0	PCI 74\%, CABG 26\%	$3 \cdot 2$ years	Composite of cardiovascular death, myocardial infarction, hospitalisation for unstable angina, heart failure, or resuscitated cardiac arrest: invasive 16.4%, conservative 18.2%; difference -1.8% ($95 \% \mathrm{Cl}-4.7$ to 1.0)
$\begin{aligned} & \text { ISCHEMIA-CKD } \\ & \text { (2020) } \\ & \text { PMID: } 32227756 \end{aligned}$	777 (389; 388)	Patients with chronic kidney disease and moderate-severe ischaemia	Female 31-1\%	62.7	PCI 85\%, CABG 15\%	$2 \cdot 2$ years	Composite of cardiovascular death or myocardial infarction: Invasive 36.4%, conservative 36.7%; HR 1.01 (95\% CI 0.79 to $1.29 ; p=0.95$)
REVIVED (2022) PMID: 36027563	$700(353 ; 347)$	Patients with extensive coronary artery disease, left ventricular ejection fraction $\leq 35 \%$, and demonstrable myocardial viability	Female 13\%	$69 \cdot 3$	PCI 100\%	3.4 years	Composite of death or hospitalisation for heart failure: $\mathrm{PCI} 37 \cdot 2 \%$, medical therapy 38.0%; HR 0.99 (95% Cl 0.78 to 1.27 ; $\mathrm{p}=0.96$)
CABG=coronary artery bypass grafting. $\mathrm{HR}=$ hazard ratio. LVEF=left ventricular ejection fraction. $\mathrm{PCI}=$ percutaneous coronary intervention.							

stenoses. ${ }^{66,67}$ In the FAME trial, PCI guided by fractional flow reserve significantly reduced the composite endpoint of death, myocardial infarction, and repeat revascularisation in patients with multivessel coronary artery disease compared with PCI guided by angiography only ($13 \cdot 2 \%$ vs $18 \cdot 3 \%$). ${ }^{68}$ Two subsequent trials showed PCI guided by instantaneous wave-free ratio to be noninferior to PCI guided by fractional flow reserve. ${ }^{6970}$ PCI guided by intravascular ultrasound has been associated with fewer ischaemic events than has PCI guided by angiography only. ${ }^{71}$ More recently, PCI guided by optical coherence tomography was found to be non-inferior to PCI guided by intravascular ultrasound. ${ }^{72}$ Despite the benefits suggested by the data, haemodynamic and imaging guidance are seldom used in clinical practice. ${ }^{1}$
With declining rates of ischaemic cardiovascular events after PCI, growing concerns have emerged over midterm and long-term bleeding related to prolonged DAPT therapy. Recent data show that short-term DAPT (1-3 months) followed by P2Y H_{12}-inhibitor monotherapy reduces major bleeding events compared with standard 12-month DAPT, without significantly increasing ischaemic events. ${ }^{7,74}$
PCI of chronic total occlusion is burdened by technical challenges, low procedural success, and high complication rates, ${ }^{75}$ but recent advances have improved patient outcomes after chronic total occlusion-PCI undertaken by experienced operators. ${ }^{75}$ Complex high-risk indicated PCI is performed in patients with a clinical indication for coronary revascularisation who are at high procedural
risk related to comorbidities, complex coronary anatomy, or unstable haemodynamics. ${ }^{76}$ Many of these patients have anatomical indications for CABG but a prohibitive surgical risk.

Medical therapy

In the 1970s and 1980s, atherogenesis in animals was found to revert with changes in diet and serum cholesterol. ${ }^{7}$ Progression of coronary narrowing in humans was found to slow down with changes in diet, smoking cessation, exercise, and control of blood pressure, bodyweight, and lipid profile. ${ }^{7,78}$ Since then, cardiovascular medical therapy has made great progress (figure 2). In the 1990s, statins, ${ }^{79}$ aspirin, ${ }^{80}$ and angiotensin-converting enzyme inhibitors ${ }^{81}$ were found to benefit patients with chronic coronary syndromes. Cardiovascular events were reduced by fibrinolysis in patients with ST-elevation myocardial infarction, ${ }^{82}$ and by higher intensity statins, ${ }^{83}$ or by DAPT in patients with acute coronary syndromes. ${ }^{84}$ In patients with chronic heart failure, cardiovascular events were reduced by β blockade, ${ }^{85}$ angiotensin receptor-neprilsyn inhibitors, ${ }^{86}$ and sodium-glucose cotransporter-2 inhibition (figure 2). ${ }^{87}$ Yet a major limitation of medical therapy is the suboptimal long-term compliance rate of approximately 50% reported in multiple studies, including revascularisation trials. ${ }^{88,89}$
Numerous randomised trials have compared the efficacy and safety of revascularisation strategies against medical therapy alone in non-acute patients with
obstructive coronary artery disease not involving the left main stem (table 1). The COURAGE trial randomly assigned 2287 patients with coronary artery disease with preserved left ventricular ejection fraction to initial PCI or medical therapy alone and found no difference between groups at 4.6 years in the primary outcome of death and myocardial infarction (19.0% vs 18.5%). ${ }^{90}$ The largest and most recent ISCHEMIA trial randomly assigned

5179 patients with moderate or severe inducible ischaemia and preserved ejection fraction to either an initial invasive strategy (74% by PCI, 26% by CABG) or to medical therapy alone. At $3 \cdot 2$ years, the primary endpoint of cardiovascular death, myocardial infarction, stroke, or hospitalisation for unstable angina or resuscitated cardiac arrest did not differ significantly between groups ($16 \cdot 4 \%$ and $18 \cdot 2 \%$, respectively). ${ }^{91}$ Spontaneous myocardial

	ESC/EACTS 2018 guidelines PMID: 30165437	ACC/AHA/SCAI 2021 guidelines PMID: 34882436	JCS/JSCVS 2018 guidelines PMIDs: 35095031 and 30930428
Stable coronary artery disease			
One-vessel coronary artery disease	No proximal LAD stenosis: PCI* (COR: I; LOE: C); proximal LAD stenosis: CABG or PCI (COR: I; LOE: A)	No proximal LAD stenosis: no revascularisation (COR: III-no benefit; LOE: B-R); proximal LAD stenosis: coronary revascularisation uncertain to improve survival (COR: Ilb; LOE: B-R)	No proximal LAD stenosis: PCI* (COR: I; LOE: C); proximal LAD stenosis: CABG* (COR: I; LOE: C)
Two-vessel coronary artery disease	No proximal LAD stenosis: PCI* (COR: I; LOE: C); proximal LAD stenosis: CABG (COR: I; LOE: B); PCI (COR: I; LOE: C)	No proximal LAD stenosis: no revascularisation (COR: III-no benefit; LOE: B-R); proximal LAD stenosis: coronary revascularisation uncertain to improve survival (COR: IIb; LOE: B-R)	SYNTAX score 0-22: CABG (COR: I; LOE: A) PCI (COR: I; LOE: B); SYNTAX score 23-32: CABG* (COR: I; LOE: A); SYNTAX score ≥ 33 : CABG (COR: I; LOE: A)
Three- or multivessel coronary artery disease	SYNTAX score 0-22: CABG or PCI (COR: I; LOE: A); SYNTAX score >22: CABG* (COR: I; LOE: A)	CABG and PCI (COR: IIb; LOE: B-R to improve survival and COR: Ila; LOE B-R to reduce the risk of cardiovascular events); SYNTAX score >33: CABG to improve survival (COR: Ila; LOE: B-R)	SYNTAX score 0-22: CABG (COR: I; LOE: A) PCI (COR: I; LOE: B); SYNTAX score 23-32: CABG* (COR: I; LOE: A); SYNTAX score ≥ 33 : CABG (COR: I; LOE: A)
Left main coronary artery disease	SYNTAX score 0-22: CABG or PCI (COR: I; LOE: A); SYNTAX score 23-32: CABG* (COR: I; LOE: A); SYNTAX score ≥ 33 : CABG* (COR: I; LOE: A)	CABG (COR I; LOE: B-R); if PCI can provide equivalent revascularisation: PCI acceptable (COR: Ila; LOE: B-NR)	Bifurcation lesions requiring <2 stents, and SYNTAX score 0-22: CABG (COR: I; LOE: A) PCI (COR: I; LOE: B); bifurcation lesions requiring <2 stents, and SYNTAX score 23-32: CABG* (COR: I; LOE: A); bifurcation lesions requiring 2 stents: CABG* (COR: I; LOE: A); SYNTAX score ≥ 33 : CABG (COR: I; LOE: A)
Diabetes			
Two-vessel coronary artery disease:	NA	NA	SYNTAX score 0-22: CABG* (COR: I; LOE: A); SYNTAX score 23-32: CABG* (COR: I; LOE: A); SYNTAX score ≥ 33 : CABG (COR: I; LOE: A)
Three-vessel or multivessel coronary artery disease	CABG (COR: I; LOE: A)	Involvement of LAD and appropriate surgical candidate: CABG (COR: I; LOE: A); poor surgical candidate: PCI (COR: Ila; LOE: B-NR)	SYNTAX score 0-22: CABG* (COR: I; LOE: A); SYNTAX score 23-32: CABG* (COR: I; LOE: A); SYNTAX score ≥ 33 : CABG (COR: I; LOE: A)
Left main stenosis	NA	Low-to-intermediate complexity in remaining coronary anatomy: PCI (COR: IIb; LOE: B-R)	NA
Low ejection fraction			
One-vessel or twovessel coronary artery disease	If complete revascularisation possible: consider PCI (COR: Ila; LOE: C)	NA	CABG (COR: I; LOE: B)
Multivessel coronary artery disease	If acceptable surgical risk: CABG (COR: I; LOE: B)	Ejection fraction <35\%: CABG (COR: I; LOE: B-R); ejection fraction 35-50\%: CABG (COR: Ila; LOE: B-NR)	CABG (COR: I; LOE: B)
Acute coronary syndrome			
Non-ST-elevation	Revascularisation according to same principles for stable coronary artery disease (COR: I; LOE: B)	Revascularisation by PCI or CABG (the mode of revascularisation should be based on the acuity of the patient's condition, the angiographic characteristics of the culprit lesion, and the complexity of the patient's anatomy and, when appropriate, include a Heart Team discussion; COR: I; LOE: A); failed PCl and ongoing ischaemia, haemodynamic compromise, or threatened occlusion of an artery with substantial myocardium at risk: CABG (COR: Ila; LOE: B-NR)	The revascularisation strategy should be discussed within the Heart Team as needed (COR: I; LOE: C); failed PCI or technical difficulty, persistent ischaemic attacks and haemodynamic instability refractory to medical treatment, or frequent ischemic attacks refractory to medical treatment and a large risk area (severe stenosis in left main stem or proximal LAD): CABG (COR: I; LOE: C)

[^1]Table 2: Summary of current practice guidelines' recommendations for coronary revascularisation
infarction, hospitalisation for unstable angina, and cardiac health deterioration were less frequent in the revascularisation group. ${ }^{9,1,22}$ Follow-up extension to 7 years showed no mortality difference between the groups ($12 \cdot 7 \%$ initial invasive strategy vs $13 \cdot 4 \%$ initial medical therapy), but fewer cardiovascular deaths and more noncardiovascular deaths in the invasive group. ${ }^{93}$ The BARI 2D trial ${ }^{94}$ in patients with coronary artery disease and diabetes with preserved ejection fraction also found no difference between initial revascularisation (PCI or CABG) or medical therapy alone at 5 years follow-up. By contrast, in the FAME-II trial the composite of death, myocardial infarction, or urgent revascularisation was significantly reduced in the fractional flow reserve-guided PCI group (13.9%) versus medical therapy alone (27.0\%). ${ }^{95}$

Comprehensive meta-analyses of trials comparing revascularisation (CABG, PCI, or both) to medical therapy alone in patients with non-acute coronary artery disease and without left main disease or severely reduced left ventricular ejection fraction have found no significant difference in overall survival between strategies, ${ }^{96,97}$ but reductions in cardiac deaths ${ }^{97}$ and spontaneous myocardial infarction, at the consequence of more frequent procedural myocardial infarctions with revascularisation. ${ }^{\text {.7 }}$
Two trials, STICH ${ }^{98,99}$ and REVIVED BCIS2, ${ }^{100}$ have compared revascularisation to medical therapy alone in patients with non-acute multivessel coronary artery disease and reduced left ventricular ejection fraction ($\leq 35 \%$). The STITCH trial found no difference in all-cause deaths at 4.6 years, but fewer deaths with CABG after 9.8 years. ${ }^{98,99}$ In REVIVED BCIS2, the primary endpoint of all-cause death or hospitalisation for heart failure did not differ between PCI and medical therapy. ${ }^{100}$
An individual patient data analysis of 2523 patients with and without severely reduced ejection fraction derived from four trials comparing CABG with medical therapy alone found significantly lower 10 -year mortality with CABG (45% vs 52%), with the CABG survival benefit becoming significant after the fourth postoperative year. ${ }^{101}$ Chronic total occlusion-PCI compared with medical therapy alone has been found to improve angina and physical performance, but whether it reduces hard clinical outcomes remains unestablished. ${ }^{75}$ The available evidence on complex high-risk indicated-PCI compared with medical therapy alone is limited to a few registry studies. ${ }^{76}$
In summary, medical therapy should be used in all patients with coronary artery disease, with efforts focused on long-term compliance. Some patients might experience long-term reduction of cardiovascular events and anginal symptoms with revascularisation on top of medical therapy and lifestyle changes. For other patients, revascularisation might not be necessary, or the periprocedural risks might outweigh the potential long-term revascularisation benefits, and medical therapy alone could be the treatment of choice (table 2).

Figure 3: Comparison of key aspects of surgical and percutaneous coronary revascularisation
Parts of the figure were drawn with pictures from Flaticon.com (https://flaticon com) and Servier Medical Art (https://smart.servier.com/). Servier Medical Art by Servier is licensed under a CC BY 3.0 licence. CABG=coronary artery bypass grafting. $\mathrm{CPB}=$ cardiopulmonary bypass. $\mathrm{PCI}=$ percutaneous coronary intervention. *In particular, myocardial infarction and the need for repeat revascularisation.

PCl versus CABG

PCI and CABG are mechanistically and clinically very different interventions (figure 3). PCI treats only the flowlimiting stenosis and increases flow downstream; its technical complexity depends on the lesion characteristics (location, calcification, and length). ${ }^{102}$ Surgery, given its more distal anastomoses, restores distal flow while protecting against potential progression of proximal plaques that were not flow-limiting at the time of intervention, and its technical complexity is independent from lesion characteristics. Periprocedural deaths are very low for both interventions, but non-fatal procedural complications and rehospitalisation rates are higher, and recovery periods longer, with surgery. In the years after the procedure, however, PCI requires more frequent
reinterventions than does surgery (mostly for disease progression in untreated areas), ${ }^{103}$ with a higher risk of acute coronary events. In clinical practice, most patients have clinical or anatomical characteristics (such as older age, diabetes, comorbidities, complex coronary anatomy, or frailty) or strong preferences that make one or the other intervention more indicated. Published comparative trials refer to patients where equipoise between PCI and CABG existed for both the treating physicians and the patient. In the early 2000s, several RCTs compared the relative effects of PCI and CABG. These trials are not representative of current practice and are mainly of historical interest. Table 3 shows the trials that inform current decisionmaking.
The SYNTAX trial in patients with multivessel disease or left main disease ${ }^{104,105}$ found the composite outcome including death, myocardial infarction, stroke, or repeat revascularisation occurred significantly more frequently in the PCI group than the CABG group. No significant difference between groups was found in patients with low coronary artery disease complexity (expressed by a SYNTAX anatomical disease score <23), although the trial was underpowered for subgroup analysis on the basis of SYNTAX score strata. At 10 years, deaths between the two groups did not differ (28% for PCI vs 24% for CABG), but at 11.2 years, deaths were significantly higher with PCI. ${ }^{106}$ The anatomical extent of coronary artery disease was a significant treatment effect modifier, with patients with triple-vessel, but not those with left main, disease having better survival with CABG.
The BEST trial ${ }^{107}$ compared new-generation everolimuseluting stents to CABG in patients with multivessel but not left main coronary artery disease and found the composite of death, myocardial infarction, and repeat revascularisation was significantly higher in the PCI group at 4.6 years, but found no difference at 11.8 years of follow-up, although spontaneous myocardial infarction and revascularisations were significantly more common with PCI than with CABG. ${ }^{108}$
In an individual patient data analysis of 11 PCI versus CABG trials including more than 11000 patients, there were fewer deaths with CABG ($11 \cdot 2 \%$ vs $9 \cdot 2 \%$), but eight trials used old PCI technology (bare-metal stenting and first-generation drug-eluting stents in four trials each). ${ }^{109}$ In the FAME-III trial, ${ }^{10}$ despite the use of fractional flow reserve guidance and current generations stents in the PCI group, the incidence of the primary composite outcome including death, myocardial infarction, stroke, or repeat revascularisation was significantly higher in the PCI group than the CABG group ($10 \cdot 6 \%$ vs $6 \cdot 9 \%$). The EXCEL ${ }^{111}$ and NOBLE ${ }^{112}$ trials found seemingly different results when comparing PCI with CABG in patients with left main coronary disease, but this contradiction in results was due to differences in the studies' primary outcome definitions; myocardial infarction and re-revascularisation during follow-up were more frequent in the PCI group in both trials, while mortality was lower with CABG in the EXCEL
trial, but not in the NOBLE trial. An individual patient-data analysis of four PCI versus CABG trials in patients with left main coronary disease found 5-year deaths were similar for PCI and CABG $(11 \cdot 2 \%$ vs $10 \cdot 2 \%) .{ }^{113}$ Spontaneous myocardial infarction was more common with PCI $(6 \cdot 2 \%$ vs 2.6%), whereas there was no difference in the overall risk of stroke ($2 \cdot 7 \%$ vs $3 \cdot 1 \%$), although in the first year after randomisation the risk of stroke was lower with $\mathrm{PCI} .{ }^{113}$
Prespecified subanalyses of trials have reported overall similar improvement in patients' quality of life after PCI and CABG, although the PCI group showed faster recovery and less physical limitations in the first months and the surgery group showed better symptom relief at late follow-up. ${ }^{11,115}$
No RCT has directly compared PCI and CABG in patients with reduced left ventricular ejection fraction. A network meta-analysis of 23 studies involving 23633 patients (including four small RCTs) found that PCI and medical therapy were associated with more deaths than was CABG, but treatment allocation bias might have favoured surgery. ${ }^{16}$ The ongoing STICH3C trial (NCT05427370) will provide new information.
Overall, the evidence suggests a higher rate of periprocedural complications with CABG versus higher rates of myocardial infarction and re-revascularisation during follow-up with PCI. Current guidelines recommend CABG for patients with complex coronary artery disease, especially with diabetes or reduced ejection fraction, whereas PCI is preferred for patients with less extensive or less complex coronary artery disease and for those at high surgical risk (table 2). ${ }^{6,6,67}$ All guidelines, however, specify that patient preference should be key in informing treatment decisions.

Coronary revascularisation for acute coronary syndromes

The aim of revascularisation in acute coronary syndromes is to salvage ischaemic myocardium and prevent adverse events, including short-term death, while revascularisation in chronic coronary syndromes has the scope of improving symptoms and reducing the risk of long-term cardiac events, particularly myocardial infarctions.
In patients hospitalised with ST-segment-elevation myocardial infarction, early PCI of the culprit lesion (primary PCI) reduces the rates of death, myocardial infarction, stroke, and major bleeding compared with fibrinolysis, ${ }^{4}$ and is a class I recommendation in the current American, European, and Japanese guidelines (fibrinolytic therapy is recommended when primary PCI is not available). ${ }^{66,6,7117-19}$ In RCTs, complete revascularisation, even as a staged procedure, reduced cardiac events compared with culprit lesion-only PCI. ${ }^{120-122}$
In patients with non-ST-segment-elevation acute coronary syndromes, early revascularisation is recommended in patients at high risk, and PCI is often the chosen modality; however, in patients with complex coronary anatomy, CABG should be considered. ${ }^{66,6,717,1723}$

	Participants (N [PCI; CABG])	Patient population	Sex of participants (\%)	Mean age of participants (years)	Follow-up period	Primary outcome (PCI vs CABG)
ARTS (2001) PMID: 11297702	1205 (600; 605)	Patients with multivessel disease	Female 23-5\%	61.0	1 years	Composite of death, myocardial infarction, repeat revascularisation, stroke, or transient ischaemic attack: PCI 26.2\%, CABG 12.2\%; log-rank p <0.001
AWESOME (2001) PMID: 11451264	454 (222; 232)	Patients with medically refractory myocardial ischaemia	Not reported	67.0	4.8 years	Death: PCI 22.0%, CABG 27.0\%; p>0.46
$\begin{aligned} & \text { ERACI-II (2001) } \\ & \text { PMID: } 11153772 \end{aligned}$	450 (225; 225)	Patients with coronary artery disease	Female 20.6\%	61.95	30 days	Composite of death, Q-wave myocardial infarction, stroke, or repeat revascularisation: $\mathrm{PCl} 1.8 \%$, CABG $11.4 \% ; p=0.0002$
$\begin{aligned} & \text { ERACI-II (2005) } \\ & \text { PMID: } 16098419 \end{aligned}$	450 (225; 225)	Patients with coronary artery disease	Female 20.6\%	61.95	5 years	Death: PCI 7-1\%, CABG 11.5\%; p=0.182
Stent or Surgery (2002) PMID: 12383664	$988(488 ; 500)$	Patients with multivessel disease	Female 21.9\%	61.5	2 years	Repeat revascularisation: PCI 21\%, CABG 6\%; HR 3.85 ($95 \% \mathrm{Cl} 2.56$ to 5.79 ; p <0.0001)
OCTOstent (2005) PMID: 25696506	$\begin{gathered} 280(138 ; 142 \\ \text { off-pump CABG }) \end{gathered}$	Patients with coronary artery disease	Female 31-5\%	61.5	1 year	Composite of death, myocardial infarction, stroke, or repeat revascularisation: $\mathrm{PCI} 14.5 \%$, CABG 8.5\%; difference -6.0% ($95 \% \mathrm{Cl}-13.5$ to 1.5)
$\begin{aligned} & \text { CARDia (2010) } \\ & \text { PMID: } 20117456 \end{aligned}$	$510(256 ; 254)$	Patients with multivessel or complex 1-vessel coronary artery disease and diabetes	Female 25.9\%	64.0	1 year	Composite of death, myocardial infarction, or stroke: PCI 13\%, CABG 10.5\%; HR 1.25 (95\% Cl 0.75 to 2.09; $\mathrm{p}=0.39$)
PRECOMBAT (2011) PMID: 21463149	600 (300; 300)	Patients with left main disease	Female:23-5\%	$62 \cdot 3$	2 years	Composite of death, myocardial infarction, stroke, or ischaemia-driven TVR: PCI 12.2\%, CABG 8.1\%; HR 1.50 (95% Cl 0.90 to 2.52; p=0.12)
PRECOMBAT (2020) PMID: 32223567	$600(300 ; 300)$	Patients with left main disease	Female 23-5\%	$62 \cdot 3$	$11 \cdot 3$ years	Composite of death, myocardial infarction, stroke, or ischaemia-driven TVR: PCI 29.8\%, CABG 24.7\%; HR 1.25 ($95 \% \mathrm{Cl} 0.93$ to 1.69)
$\begin{aligned} & \text { FREEDOM (2012) } \\ & \text { PMID: } 23121323 \end{aligned}$	1900 (953; 947)	Patients with diabetes and multivessel disease	Female 28.7\%	$63 \cdot 1$	3.8 years	Composite of death, myocardial infarction, or stroke: PCI 26.6\%, CABG 18.7\%; p=0.005
FREEDOM (2019) PMID: 30428398	943 (478; 465)	Patients with diabetes and multivessel disease	Female 31.0\%	63.2	7.5 years	Death: PCI 23.7\%, CABG 18.7\%; HR 1.32 (95\% CI 0.97 to 1.78; $\mathrm{p}=0.076$)
VA CARDS (2013) PMID: 23428214	198 (101/97)	Patients with diabetes and multivessel or isolated proximal LAD disease	Female 1.1\%	$62 \cdot 5$	2 years	Composite of death or myocardial infarction: PCI 31\%, CABG 53\%; HR 0.89 (95% CI 0.47 to 1.71)
$\begin{aligned} & \text { SYNTAX (2013) } \\ & \text { PMID: } 23439102 \end{aligned}$	1800 (903; 897)	Patients with 3-vessel or left main disease	Female 22-4\%	$65 \cdot 1$	5 years	Composite of death, myocardial infarction, stroke, or repeat revascularisation: $\mathrm{PCI} 32 \cdot 1 \%, \mathrm{CABG} 28.6 \%$; HR 1.13 (95\% CI 0.83 to $1.53 ; \mathrm{p}=0.43$)
SYNTAXES (2019) PMID: 31488373	1689 (841; 848)	Patients with 3-vessel or left main disease	Female 21-9\%	$65 \cdot 1$	$11 \cdot 2$ years	Death: PCI 27.0\%, CABG 24.0\%; HR 1.17 (95\% Cl 0.97 to 1.41; $\mathrm{p}=0.092$)
$\begin{aligned} & \text { BEST(2015) } \\ & \text { PMID: } 25774645 \end{aligned}$	$880(438 ; 442)$	Patients with multivessel disease and Euroscore <8	Female 28.6\%	64.6	4.6 years	Composite of death, myocardial infarction, or TVR: PCI 15.3\%, CABG: 10.6\%; HR 1.47 $\text { (} 95 \% \mathrm{Cl} 1.01 \text { to } 2 \cdot 13 ; \mathrm{p}=0.04 \text {) }$
$\begin{aligned} & \text { BEST }(2022) \\ & \text { PMID: } 36121700 \end{aligned}$	$880(438 ; 442)$	Patients with multivessel disease and Euroscore <8	Female 28.6\%	64.6	11.8 years	Composite of death, myocardial infarction, or TVR: PCI 34.5\%, CABG 30.3\%; HR 1.18 ($95 \% \mathrm{Cl} 0.88$ to $1.56 ; \mathrm{p}=0.26$)
$\begin{aligned} & \text { EXCEL (2019) } \\ & \text { PMID: } 31562798 \end{aligned}$	1905 (948; 957)	Patients with left main disease and SYNTAX score ≤ 32	Female 23-1\%	66.0	5 years	Composite of death, myocardial infarction, or stroke PCI 22.0\%, CABG 19.2\%; event rate difference 2.8\% ($95 \% \mathrm{Cl}-0.9$ to $6.5 ; \mathrm{p}=0.13$)
NOBLE (2020) PMID: 31879028	$1201(598 ; 603)$	Patients with left main disease	Female 22\%	$66 \cdot 2$	4.9 years	Composite of death, myocardial infarction, stroke, or repeat revascularisation: PCI 28\%, CABG 19\%; HR 1.58 (95% Cl 1.24 to 2.01; $p=0.0002$)
$\begin{aligned} & \text { FAME-III (2022) } \\ & \text { PMID: } 34735046 \end{aligned}$	$1500(757 ; 743)$	Patients with 3 -vessel disease	Female 17.7\%	$65 \cdot 2$	$1 \text { year }$	Composite of death, myocardial infarction, stroke, or repeat revascularisation: PCI 10.6\%, CABG 6.9\%; HR 1.5 ($95 \% \mathrm{Cl} 1 \cdot 1$ to 2.2; $\mathrm{p}=0.35$ for non-inferiority)
CABG=coronary artery bypass grafting. HR=hazard ratio. LVEF=left ventricular ejection fraction. PCI=percutaneous coronary intervention. SYNTAX=Synergy between PCI with Taxus and Cardiac Surgery. TVR=target vessel revascularisation.						

Information on the relative effectiveness of PCI and CABG in patients with acute coronary syndromes is scarce, but in the pooled analysis of left main disease trials, clinical presentation was a significant treatment effect modifier and patients with acute coronary syndromes had lower mortality with PCI, whereas patients with chronic coronary artery disease had better outcomes with surgery. ${ }^{113}$
Antiplatelet therapy after PCI differs in patients with acute coronary syndromes or chronic coronary artery disease: ticagrelor or prasugrel for 3-12 months are recommended in patients with acute coronary syndromes, whereas clopidogrel for 1-6 months is recommended in patients with chronic coronary artery disease. Similarly, after CABG, aspirin alone is recommended long term for chronic coronary artery disease, whereas 12 months of DAPT is recommended for acute coronary syndromes. ${ }^{66,6,1 / 17}$

Coronary revascularisation in women and older adults

Women with coronary artery disease are at higher risk than men given their smaller body size, average 4-year to 10 -year older patient age, more frequent comorbidities (diabetes, hypertension, heart and renal failure), more atypical symptoms leading to delayed diagnoses, ${ }^{124-126}$ lower adherence to medications, ${ }^{127}$ and lower socioeconomic status ${ }^{128}$ than men. ${ }^{124,125}$ Medical attention is on average delayed in women, recommended drugs and interventions underused, and revascularisation more often incomplete with lesser use of arterial grafts when CABG is undertaken. ${ }^{124,125}$ Women have higher rates of adverse events, including bleeding, renal dysfunction, vascular or device complications, and early and late mortality after coronary revascularisation, even after adjustment for baseline characteristics. ${ }^{124,125}$
The prevalence of coronary artery disease constantly increases with age, and up to 80% of older individuals are estimated to have asymptomatic coronary artery disease. ${ }^{128}$ Advanced age is a risk-enhancer among patients with coronary artery disease, given atypical disease presentation and delayed diagnosis, more extensive coronary artery disease compared with younger patients, more frequent frailty and comorbidity (particularly renal failure), polypharmacy and poor compliance with medical therapy with cognitive impairment, social dependency, and shorter life expectancy driving second-line care strategies. ${ }^{129}$ The ISCHEMIA-CKD trial randomly assigned patients with advanced chronic kidney disease and moderate or severe inducible myocardial ischaemia to an initial invasive strategy or to medical therapy alone. ${ }^{130}$ After 2.2 years, the composite primary outcome of death or myocardial infarction did not differ in the two groups, but the risks of stroke and of death or dialysis were significantly increased with revascularisation.
Treatment effects for women and older adults are derived from underpowered subgroup analyses. In most
revascularisation trials, women accounted for $20-30 \%$ of the enrolled population (tables 1 and 3). On the basis of available data, the benefits of several coronary artery diseasetherapiesseemtobeextendabletowomen,including fibrinolysis, ${ }^{82}$ antiplatelet regimens, ${ }^{80,125}$ renin-angiotensinaldosterone inhibitors, ${ }^{81,125}$ statins, ${ }^{79,124,125} \beta$ blockers ${ }^{85}$ and angiotensin receptor-neprilysin inhibitor, ${ }^{86}$ SGLT2inhibitors, ${ }^{87}$ radial arterial access, ${ }^{65}$ primary PCI, ${ }^{131}$ PCI in acute coronary syndromes, ${ }^{132}$ revascularisation for ischaemic cardiomyopathy, ${ }^{98}$ drug-eluting stents, ${ }^{133}$ and radial arteries for CABG. ${ }^{13,135}$
In most revascularisation trials, patient age at baseline was approximately 65 years (tables 1 and 3). Most effects of revascularisation and medical therapies also seem applicable to older adults, provided age adjustments are made for drug doses, especially for prasugrel, fibrinolysis, certain direct oral anticoagulants, and enoxaparin. ${ }^{129}$ History of stroke and a high-bleeding risk profile influence the choice and duration of antiplatelet therapy. ${ }^{129}$ Although procedural complications increase exponentially with age, so do the expected benefits of treatment. ${ }^{129}$ The SENIORRITA trial (NCT03052036) is comparing revascularisation (PCI or CABG) versus medical therapy alone in patients aged 75 years or older with acute non-ST elevation myocardial infarction.

Coronary revascularisation in low-income and middle-income countries

Approximately 84% (ie, 6.6 billion people) of the world's current population live in low-income or middle-income countries (LMICs). ${ }^{136}$ Since 1990, age-standardised ${ }^{137}$ annual mortality from cardiovascular diseases has decreased by 43% (from 283 to 160 cases per 100000 people) in high-income countries (HICs), largely thanks to improved lifestyles, diets, medical therapy, and access to health care, but mortality has decreased by only 13% (from 381 to 332 per 100000 people) in LMICs. ${ }^{136,137}$ The PURE cohort study, ${ }^{138}$ evaluating 156424 people from the general population of 17 countries between 2003 and 2009, found substantially higher rates of cardiovascular disease and death in LMICs versus HICs, despite a lower risk factor burden in LMICs, ${ }^{139}$ suggesting important differences across countries in terms of access to recommended medical therapies and appropriate revascularisation.
Compared with HICs, patients with coronary artery disease in LMICs are generally younger and have fewer risk factors (although the latter might be due to less efficient screening and reporting), ${ }^{140}$ with significantly higher fatality rates related to coronary artery disease. ${ }^{13,1,41,142}$ Coronary artery disease is a more frequent cause of heart failure ${ }^{143}$ and prevention, and revascularisation procedures are substantially underused in LMICs compared with HICs. ${ }^{141,122}$ The total number of PCI per million people is positively correlated with gross national income per capita (Kimura T, Kyoto University, Kyoto, Japan;

	Sample (n)	Leading institution	Interventions	Primary aim
CABG us PCI				
PROVERB (NCT05532631)	1040	Assistance Publique-Hôpitaux de Paris, France	Intervention: CABG with total arterial revascularisation; comparator: PCI	Assess whether total arterial CABG vs PCI reduces MACCE at 3-year follow-up
$\begin{aligned} & \text { STICH3C } \\ & \text { (NCT05427370) } \end{aligned}$	754	Sunnybrook Health Sciences Centre, University of Toronto, Canada	Intervention: CABG; comparator: PCI	Assess whether CABG vs PCl in patients with multivessel or left main coronary artery disease and reduced LVEF reduces MACCE at 5 -year follow-up
MILESTONE (NCT01311323)	1000	American Heart of Poland, Poland	Intervention: CABG; comparator: PCI	Assess whether CABG vs PCl in patients with multivessel or left main disease and NSTE-ACS reduces MACCE at 1-year follow-up
Coronary Artery Bypass Grafts or Percutaneous Coronary Intervention for Revascularization in Moderate- to HighRisk Patients With Ischemic Heart Disease and Reduced Left Ventricular Ejection Fraction (NCT05534698)	1550	Danish Study Group, Denmark	Intervention: CABG; comparator: PCI	Assess whether CABG vs PCl in high-risk patients with severe coronary artery disease reduces MACCE at 5 -year follow-up
Minimally invasive surgery, hybrid revascularisation				
Hybrid Revascularization Versus Coronary Artery Bypass Grafting (NCT05504031)	1048	Copenhagen University Hospital, Denmark	Intervention: hybrid coronary revascularisation (MID-CAB using LIMA-LAD with PCI to ≥ 1 nonLAD lesion); comparator: CABG	Assess whether hybrid coronary revascularisation vs CABG reduces a composite outcome of MACCE or unplanned hospitalisation
EDGE (NCT05121610)	2864	Beijing Anzhen Hospital, China	Intervention: CABG; Comparator 1: PCI; comparator 2 : hybrid coronary revascularisation	Assess whether CABG vs PCI vs hybrid coronary revascularisation in multivessel coronary disease (SYNTAX score >22) reduces MACCE at 1-year follow-up
HCR-EAST (NCT04811586)	200	Shanghai East Hospital, China	Intervention: one-stop hybrid coronary revascularisation (off-pump MID-CAB using LIMA-LAD with PCI to 1 or more non-LAD lesions); comparator: PCI	Assess whether hybrid coronary revascularisation vs PCI in multivessel or left main coronary artery disease reduces MACCE at 2-year follow-up
Efficacy and Safety of Minimal Invasive Coronary Surgery in Patients With Complex Coronary Artery Lesions (NCT04795193)	200	Peking University Third Hospital, China	Intervention: MICS-CABG; comparator: off-pump CABG	Assess whether MICS-CABG vs off-pump CABG improves physical quality of life and recovery (physical component score of SF-36) at 30-day follow-up
MIST (NCT03447938)	176	University of Ottawa Heart Institute, Canada	Intervention: MICS-CABG; comparator: CABG	Assess whether MICS-CABG vs CABG improves physical quality of life and recovery (physical component score of SF-36) at 30-day follow-up.
CABG-conduits				
$\begin{aligned} & \text { ROMA } \\ & \text { (NCT03217006) } \end{aligned}$	4300	Weill Cornell-New York Presbyterian, New York, USA	Intervention: CABG with multiple arterial grafts; comparator: CABG with single arterial graft	Assess whether multiple arterial grafting reduces postoperative MACCE in comparison with single arterial grafting
ROMA: Women (NCT04124120)	1310	Weill Cornell-New York Presbyterian, New York, USA	Intervention: CABG with multiple arterial grafts; comparator: CABG with single arterial graft	Assess whether multiple arterial grafting reduces postoperative MACCE in comparison with single arterial grafting in women
CABG-medical therapy				
$\begin{aligned} & \text { TOP-CABG } \\ & \text { (NCT05380063) } \end{aligned}$	2300	Fuwai Hospital, China	Intervention: de-escalated DAPT (ticagrelor 90 mg BID and 100 mg aspirin daily) for 3 months, then aspirin 100 mg daily + placebo) for 9 months; comparator: DAPT (ticagrelor 90 mg BID and 100 mg aspirin daily) for 12 months	Assess whether de-escalated DAPT us DAPT for 12 months following elective CABG reduces SVG total occlusion (on cardiac CTA or coronary angiography) or bleeding events at 1-year follow-up
BEEFBURGER (NCT04788186)	200	Royal University Hospital, University of Saskatchewan, Canada	Intervention: de-prescription of β blockers (halfdose for 3 days, then quarter-dose for 3 days, then discontinuation); comparator: continued β blockers per usual clinical care	Assess whether β blockers deprescription vs continuation reduces MACCE, heart failure hospitalisations, cardiac arrhythmia, syncope or permanent pacemaker, or recurrent myocardial ischemia at 3 -year follow-up following uncomplicated CABG in patients with LVEF $\geq 45 \%$ and no atrial fibrillation or flutter
				(Table 4 continues on next page)

	Sample (n)	Leading institution		Interventions	Primary aim

	Sample (n)	Leading institution	Interventions	Primary aim
(Continued from previous page)				
PROTECT-HBR (NCT04416581)	3000	Asan Medical Center, Korea	Intervention: potassium-competitive acid blocker; comparator: proton-pump inhibitor	Assess whether potassium-competitive acid blocker compared with proton-pump inhibitor in patients with cardiovascular disease receiving antiplatelet or OAC therapy who are at high gastrointestinal bleeding risk reduces gastrointestinal bleeding at 6-month follow-up
Intravascular ultrasound-guided left main PCI				
OPTMAL (NCT04072003)	800	John Radcliffe Hospital, Oxford University Hospitals, UK	Intervention: intravscular ultrasound-guided PCI; comparator: QCA-guided PCI	Assess whether intravscular ultrasound-guided PCI compared with qualitative angiography-guided PCI in patients with unprotected left main disease reduces MACCE at 2-year follow-up
Follow-up after coronary revascularisation				
ARCACHON (NCT04566497)	2664	Pitié-Salpêtrière, France	Intervention: no stress testing strategy; comparator: systematic stress testing strategy	Assess whether no stress testing strategy compared with systematic stress testing strategy is non-inferior for cardiovascular events in asymptomatic patients after coronary revascularisation
Acute myocardial infarction				
BETAMI (NCT03646357)	10000	Oslo University Hospital, Norway	Intervention: β blockers; comparator: no β blockers	Assess whether β blockers in patients with acute myocardial infarction without heart failure or left ventricular systolic dysfunction reduces MACE at ≥ 2-year follow-up
DANBLOCK (NCT03778554)	3570	Bispebjerg Hospital, Denmark	Intervention: β blockers; comparator: no β blockers	Assess whether β blockers in patients with acute myocardial infarction without heart failure or left ventricular systolic dysfunction reduces MACCE at 2-year follow-up
REDUCE-SWEDEHEART (NCT03278509)	7000	Karolinska Institutet, Sweden	Intervention: β blockers; comparator: no β blockers	Assess whether β blockers in patients with acute myocardial infarction without left ventricular systolic dysfunction reduces MACE at 1-year follow-up
$\begin{aligned} & \text { REBOOT } \\ & \text { (NCT03596385) } \end{aligned}$	8468	Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Spain	Intervention: β blockers; comparator: no β blockers	Assess whether β blockers in patients with acute myocardial infarction without heart failure or left ventricular systolic dysfunction reduces MACCE at a median 2.75-year follow-up
SMART- DECISION (NCT04769362)	2540	Samsung Medical Center, Korea	Intervention: discontinuation of β blockers; comparator: continuation of β blockers	Assess whether discontinuation of β blockers after at least 1 year of β blockers compared with continuation of β blockers in patients with acute myocardial infarction without heart failure or left ventricular systolic dysfunction is non-inferior to MACE at 2-year follow-up
AßYSS (NCT03498066)	3700	Assistance Publique-Hôpitaux de Paris, France	Intervention: discontinuation of β blockers; comparator: continuation of β blockers	Assess whether discontinuation of β blockers after at least 6 months of β blockers compared with continuation of β blockers in patients with acute myocardial infarction without left ventricular systolic dysfunction is non-inferior to MACE at 2-year follow-up
SENIOR-RITA (NCT03052036)	2300	Newcastle-upon-Tyne Hospitals, UK	Intervention: coronary angiography; comparator: optimal medical therapy	Assess whether an initial invasive strategy of coronary angiography in older patients with NSTE-ACS compared with optimal medical therapy reduces death or myocardial infarction at 5 -year follow-up

BARC=Bleeding Academic Consortium. CABG=coronary artery bypass grafting. CTA=computed tomography angiography. DAPT=dual antiplatelet therapy. DOAC=direct oral anticoagulant. IABP=intra-aortic balloon counterpulsation. INR=international normalised ratio. LAD=left anterior descending artery. LIMA-LAD=left internal mammary artery to left anterior descending artery grafting. LVAD=left ventricular assist device. LVEF=left ventricular ejection fraction. MACCE=major adverse cardiovascular and cerebrovascular events. MACE=major adverse cardiac events. MICS-CABG=minimally invasive cardiac surgery coronary artery bypass grafting. MID-CABG=minimally invasive direct coronary artery bypass grafting. NSTE-ACS=non ST-elevation acute coronary syndrome. OAC, oral anticoagulation. PCI=percutaneous coronary intervention. PCSK9=proprotein convertase subtilisin-kexin type 9. QCA=qualitative coronary angiography. SAPT=single antiplatelet therapy. SF-36=short form 36 -item physical and mental health questionnaire. SVG=saphenous vein graft. SYNTAX=Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery. VA-ECMO=veno-arterial extracorporeal membrane oxygenation.

Table 4: Summary of ongoing randomised trials on coronary revascularisation
personal communication). When emergency reperfusion is recommended, patients with ST-segment elevation myocardial infarction are mainly given fibrinolytic therapy in LMICs, and primary PCI in HICs. ${ }^{139,40}$
Most published data on the effects of PCI, CABG, and medical therapy come from high income populations and might not apply to LMICs. ${ }^{144}$ Many cardiovascular trials
have shown important geographical differences in treatment effects between HICs and LMICs. ${ }^{14,145}$ Although the available evidence suggests that in patients with coronary artery disease CABG is more cost-effective than PCI in the long-term, ${ }^{146}$ this finding is based on procedural outcomes and postoperative survival that might not be applicable to some LMICs. Differences in demographics,
resources, insurance systems, and health policies between LMICs and HICs make general considerations for revascularisation choices in LMICs difficult. In general, the choice of coronary revascularisation method should be based on resource availability and local expertise. Given that the costs and technical challenges associated with procedural complications can be very high (potentially overwhelming fragile health systems ${ }^{147,188}$), the likelihood of procedural success should drive the choice of revascularisation method.

Future directions and gaps in knowledge

More than five decades after the introduction of CABG and four decades after the introduction of PCI into clinical practice, the procedural and long-term outcomes of the two revascularisation methods are now well characterised. Although technological improvements will continue to increase their safety and efficacy, the relative advantages and disadvantages of the two interventions will probably remain substantially unchanged (for a summary of key ongoing trials on coronary revascularisation see table 4).
A limitation of available data is that they are from prevalently young, White, male, HIC populations. The results of coronary revascularisation in women, nonWhite racial and ethnic groups, older adults, and LMICs require further and urgent investigation. ${ }^{124}$
All trials comparing medical therapy, PCI, or CABG aimed at assessing superiority or non-inferiority of one or other strategy in relation to a short list of cardiovascular outcomes (typically death, myocardial infarction, stroke, and repeat revascularisation). Advances in diagnostic techniques have enabled detection of minor non-fatal cardiovascular events, often neither associated with symptoms nor affecting quality of life. There is uncertainty on the definition of clinically relevant nonfatal events (in particular myocardial infarction and stroke) and on how to account for the competing risk of death, ${ }^{149}$ and this uncertainty has generated confusion and disagreement in the interpretation of the available evidence. Other events that are very important for patients-such as renal, pulmonary, and neuropsychological outcomes, as well as quality of life and the ability to work and interact socially-have been largely ignored or relegated to secondary analyses. Additionally, trials have generally used a time-to-first-event analysis, ignoring recurrent events and methods to adjust for multiplicity. At this stage of knowledge, the use of a superiority or non-inferiority approach seems outdated, as the interventions used to treat coronary artery disease clearly have very different early and late risk profiles and are complementary rather than antagonistic. The new generation of coronary revascularisation trials should provide adequately powered estimates of the results of the two techniques in heterogenous groups of patients and for a larger number of holistic outcomes, which should not be limited to the cardiovascular system or to the first
event only. This information will allow accurately informed treatment decisions based on clinical status and personal expectations and goals to be made by individual patients and their treating physicians.
Finally, some of the classic concepts regarding coronary revascularisation and its role compared with medical therapy might have to be revisited. Future indications for the treatment of coronary artery disease could shift towards less invasive treatments and towards prevention rather than intervention, as generally happens with evolution in medicine.

Contributors

All authors contributed equally to the conceptualisation, writing, editing, and review of this Review.

Declaration of interests

The authors declare no competing interests. MG receives research grants from the Canadian Institutes of Health and Research and the National Institute of Health. FA reports personal fees from Amgen, AstraZeneca, Bayer, Bristol Meyers Squibb/Pfizer, and Daiichi-Sankyo. TK receives research grants from ABBOT and Boston Scientific. There has been no funding or payment directed towards this Review or the authors' decision to submit for publication.

Acknowledgments

We thank Lamia Harik and Ko Yamamoto for their help in the preparation of this work.

References

1 Inohara T, Kohsaka S, Spertus JA, et al. Comparative trends in percutaneous coronary intervention in Japan and the United States, 2013 to 2017. J Am Coll Cardiol 2020; 76: 1328-40.
2 Ma L-Y, Chen W-W, Gao R-L, et al. China cardiovascular diseases report 2018: an updated summary. J Geriatr Cardiol 2020; 17: 1-8.
3 Shimizu H, Okada M, Toh Y, et al. Thoracic and cardiovascular surgeries in Japan during 2018: annual report by the Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg 2021; 69: 179-212.
4 OECD. Health at a glance 2021: OECD indicators. 2021. https:// www.oecd-ilibrary.org/deliver/ae3016b9-en.pdf (accessed Sept 10, 2022).
5 Mueller RL, Rosengart TK, Isom OW. The history of surgery for ischemic heart disease. Ann Thorac Surg 1997; 63: 869-78.
6 Bowdish ME, D'Agostino RS, Thourani VH, et al. STS Adult Cardiac Surgery Database: 2021 update on outcomes, quality, and research. Ann Thorac Surg 2021; 111: 1770-80.
7 Ohri SK, Benedetto U, Luthra S, et al. Coronary artery bypass surgery in the UK, trends in activity and outcomes from a 15-year complete national series. Eur J Cardiothorac Surg 2022; 61: 449-56.
8 ElBardissi AW, Aranki SF, Sheng S, O’Brien SM, Greenberg CC, Gammie JS. Trends in isolated coronary artery bypass grafting: an analysis of the Society of Thoracic Surgeons adult cardiac surgery database. J Thorac Cardiovasc Surg 2012; 143: 273-81.
9 Chan J, Dimagli A, Dong T, Fudulu DP, Sinha S, Angelini GD. Trend and factors associated with multiple arterial revascularization in coronary artery bypass grafting in the UK. Eur J Cardiothorac Surg 2022; 62: ezac284.
10 Gaudino M, Rahouma M, Di Mauro M, et al. Early versus delayed stroke after cardiac surgery: a systematic review and meta-analysis. J Am Heart Assoc 2019; 8: e012447.
11 Lappalainen L, Rajamaki B, Tolppanen A-M, Hartikainen S. Coronary artery revascularizations and cognitive declinea systematic review. Curr Probl Cardiol 2022; 47: 100960.
12 Kuźma E, Airdrie J, Littlejohns TJ, et al. Coronary artery bypass graft surgery and dementia risk in the Cardiovascular Health Study. Alzheimer Dis Assoc Disord 2017; 31: 120-27.
13 Whitlock EL, Diaz-Ramirez LG, Smith AK, et al. Association of coronary artery bypass grafting vs percutaneous coronary intervention with memory decline in older adults undergoing coronary revascularization. JAMA 2021; 325: 1955-64.

14 Währborg P, Booth JE, Clayton T, et al. Neuropsychological outcome after percutaneous coronary intervention or coronary artery bypass grafting: results from the Stent or Surgery (SoS) Trial. Circulation 2004; 110: 3411-17.
15 Rydén L, Sartipy U, Evans M, Holzmann MJ. Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease. Circulation 2014; 130: 2005-11.
16 Gumus F, Polat A, Yektas A, et al. Prolonged mechanical ventilation after CABG: risk factor analysis. J Cardiothorac Vasc Anesth 2015; 29: 52-58.
17 Dobrev D, Aguilar M, Heijman J, Guichard J-B, Nattel S. Postoperative atrial fibrillation: mechanisms, manifestations and management. Nat Rev Cardiol 2019; 16: 417-36.
18 Caldonazo T, Kirov H, Rahouma M, et al. Atrial fibrillation after cardiac surgery: a systematic review and meta-analysis. J Thorac Cardiovasc Surg 2023; 165: 94-103.
19 Park YM, Cha MS, Park C-H, et al. Newly developed post-operative atrial fibrillation is associated with an increased risk of late recurrence of atrial fibrillation in patients who underwent open heart surgery: long-term follow up. Cardiol J 2017; 24: 633-41.
20 Gaudino M, Sanna T, Ballman KV, et al. Posterior left pericardiotomy for the prevention of atrial fibrillation after cardiac surgery: an adaptive, single-centre, single-blind, randomised, controlled trial. Lancet 2021; 398: 2075-83.
21 Gillinov AM, Bagiella E, Moskowitz AJ, et al. Rate control versus rhythm control for atrial fibrillation after cardiac surgery. N Engl J Med 2016; 374: 1911-21.
22 Yao RJR, Hawkins NM, Lavaie Y, Deyell MW, Andrade JG, Bashir J. Anticoagulation management of postoperative atrial fibrillation after cardiac surgery: a systematic review. J Card Surg 2021; 36: 2081-94.
23 Arsenault KA, Yusuf AM, Crystal E, et al. Interventions for preventing post-operative atrial fibrillation in patients undergoing heart surgery. Cochrane Database Syst Rev 2013; 2013: CD003611.
24 Huang T-Y, Huang T-S, Cheng Y-T, et al. Radial artery harvesting in coronary artery bypass grafting surgery-endoscopic or open method? A meta-analysis. PLoS One 2020; 15: e0236499.
25 Perezgrovas-Olaria R, Audisio K, Cancelli G, et al. Deep sternal wound infection and mortality in cardiac surgery: a meta-analysis. Ann Thorac Surg 2023; 115: 272-80.
26 Hokkanen M, Huhtala H, Laurikka J, Järvinen O. The effect of postoperative complications on health-related quality of life and survival 12 years after coronary artery bypass grafting-a prospective cohort study. J Cardiothorac Surg 2021; 16: 173.
27 Risnes I, Abdelnoor M, Almdahl SM, Svennevig JL. Mediastinitis after coronary artery bypass grafting risk factors and long-term survival. Ann Thorac Surg 2010; 89: 1502-09.
28 Shawon MSR, Odutola M, Falster MO, Jorm LR. Patient and hospital factors associated with 30-day readmissions after coronary artery bypass graft (CABG) surgery: a systematic review and meta-analysis. J Cardiothorac Surg 2021; 16: 172.
29 Engelman DT, Ben Ali W, Williams JB, et al. Guidelines for perioperative care in cardiac surgery: Enhanced Recovery After Surgery Society recommendations. JAMA Surg 2019; 154: 755-66.
30 Anderson L, Sharp GA, Norton RJ, et al. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst Rev 2017; 6: CD007130.
31 Rollman BL, Belnap BH, LeMenager MS, et al. Telephone-delivered collaborative care for treating post-CABG depression: a randomized controlled trial. JAMA 2009; 302: 2095-103.
32 Gaudino M, Angelini GD, Antoniades C, et al. Off-pump coronary artery bypass grafting: 30 years of debate. J Am Heart Assoc 2018; 7: e009934.
33 Quin JA, Wagner TH, Hattler B, et al. Ten-year outcomes of off-pump vs on-pump coronary artery bypass grafting in the Department of Veterans Affairs: a randomized clinical trial. JAMA Surg 2022; 157: 303-10.
34 Diegeler A, Börgermann J, Kappert U, et al. Five-year outcome after off-pump or on-pump coronary artery bypass grafting in elderly patients. Circulation 2019; 139: 1865-71.
35 Kuwahara G, Tashiro T. Current status of off-pump coronary artery bypass. Ann Thorac Cardiovasc Surg 2020; 26: 125-32.
36 Gaudino M, Hameed I, Robinson NB, et al. Angiographic patency of coronary artery bypass conduits: a network meta-analysis of randomized trials. J Am Heart Assoc 2021; 10: e019206.

37 Gaudino M, Antoniades C, Benedetto U, et al. Mechanisms, consequences, and prevention of coronary graft failure. Circulation 2017; 136: 1749-64.
38 Taggart DP, D'Amico R, Altman DG. Effect of arterial revascularisation on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet 2001; 358: 870-75.
39 Gaudino M, Alexander JH, Bakaeen FG, et al. Randomized comparison of the clinical outcome of single versus multiple arterial grafts: the ROMA trial-rationale and study protocol. Eur J Cardiothorac Surg 2017; 52: 1031-40.
40 Guo MH, Wells GA, Glineur D, et al. Minimally Invasive coronary surgery compared to STernotomy coronary artery bypass grafting: the MIST trial. Contemp Clin Trials 2019; 78: 140-45.
41 Dixon LK, Akberali U, Di Tommaso E, George SJ, Johnson TW, Bruno VD. Hybrid coronary revascularization versus coronary artery bypass grafting for multivessel coronary artery disease: a systematic review and meta-analysis. Int J Cardiol 2022; 359: 20-27.
42 Grüntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet 1978; 1: 263.
43 Hartzler GO, Rutherford BD, McConahay DR. Percutaneous transluminal coronary angioplasty: application for acute myocardial infarction. Am J Cardiol 1984; 53: 117C-21C.
44 Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 2003; 361: 13-20.
45 Szummer K, Wallentin L, Lindhagen L, et al. Relations between implementation of new treatments and improved outcomes in patients with non-ST-elevation myocardial infarction during the last 20 years: experiences from SWEDEHEART registry 1995 to 2014. Eur Heart J 2018; 39: 3766-76.
46 Fischman DL, Leon MB, Baim DS, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 1994; 331: 496-501.
47 Kimura T, Nosaka H, Yokoi H, Iwabuchi M, Nobuyoshi M. Serial angiographic follow-up after Palmaz-Schatz stent implantation: comparison with conventional balloon angioplasty. J Am Coll Cardiol 1993; 21: 1557-63.
48 Schömig A, Neumann F-J, Kastrati A, et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N Engl J Med 1996; 334: 1084-89.
49 Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 1994; 331: 489-95.
50 Morice M-C, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002; 346: 1773-80.
51 Navarese EP, Tandjung K, Claessen B, et al. Safety and efficacy outcomes of first and second generation durable polymer drug eluting stents and biodegradable polymer biolimus eluting stents in clinical practice: comprehensive network meta-analysis. BMJ 2013; 347: f6530.
52 Shiomi H, Morimoto T, Furukawa Y, et al. Coronary revascularization in the past two decades in Japan (from the CREDO-Kyoto PCI/CABG Registries Cohort -1, -2 , and -3). Am J Cardiol 2021; 153: 20-29.
53 Ueki Y, Otsuka T, Bär S, et al. Frequency and outcomes of periprocedural MI in patients with chronic coronary syndromes undergoing PCI. J Am Coll Cardiol 2022; 79: 513-26.
54 Kwok CS, Kontopantelis E, Myint PK, et al. Stroke following percutaneous coronary intervention: type-specific incidence, outcomes and determinants seen by the British Cardiovascular Intervention Society 2007-12. Eur Heart J 2015; 36: 1618-28.
55 Subherwal S, Peterson ED, Dai D, et al. Temporal trends in and factors associated with bleeding complications among patients undergoing percutaneous coronary intervention: a report from the National Cardiovascular Data CathPCI Registry. J Am Coll Cardiol 2012; 59: 1861-69.
56 Tsai TT, Patel UD, Chang TI, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. JACC Cardiovasc Interv 2014; 7: 1-9.

57 Giustino G, Colombo A, Camaj A, et al. Coronary in-stent restenosis: JACC state-of-the-art review. J Am Coll Cardiol 2022; 80: 348-72.
58 Brugaletta S, Gomez-Lara J, Ortega-Paz L, et al. 10-year follow-up of patients with everolimus-eluting versus bare-metal stents after ST-segment elevation myocardial infarction. J Am Coll Cardiol 2021; 77: 1165-78.
59 Garcia-Garcia HM, McFadden EP, Farb A, et al. Standardized end point definitions for coronary intervention trials: the Academic Research Consortium-2 consensus document. Circulation 2018; 137: 2635-50.
60 Claessen BE, Henriques JPS, Jaffer FA, Mehran R, Piek JJ, Dangas GD. Stent thrombosis: a clinical perspective. JACC Cardiovasc Interv 2014; 7: 1081-92.
61 Jeger RV, Farah A, Ohlow M-A, et al. Drug-coated balloons for small coronary artery disease (BASKET-SMALL 2): an open-label randomised non-inferiority trial. Lancet 2018; 392: 849-56.
62 Siontis GCM, Stefanini GG, Mavridis D, et al. Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. Lancet 2015; 386: 655-64.
63 Sorrentino S, Giustino G, Mehran R, et al. Everolimus-Eluting bioresorbable scaffolds versus everolimus-eluting metallic stents. J Am Coll Cardiol 2017; 69: 3055-66.
64 Ferrante G, Rao SV, Jüni P, et al. Radial versus femoral access for coronary interventions across the entire spectrum of patients with coronary artery disease: a meta-analysis of randomized trials. JACC Cardiovasc Interv 2016; 9: 1419-34.
65 Valgimigli M, Gagnor A, Calabró P, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet 2015; 385: 2465-76.
66 Neumann F-J, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J 2019; 40: 87-165.
67 Lawton JS, Tamis-Holland JE, Bangalore S, et al. 2021 ACC/AHA/ SCAI guideline for coronary artery revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022; 145: e4-17.
68 Tonino PAL, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009; 360: 213-24.
69 Götberg M, Christiansen EH, Gudmundsdottir IJ, et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med 2017; 376: 1813-23.
70 Davies JE, Sen S, Dehbi H-M, et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N Engl J Med 2017; 376: 1824-34.
71 Zhang J, Gao X, Kan J, et al. Intravascular ultrasound versus angiography-guided drug-eluting stent implantation: the ULTIMATE trial. J Am Coll Cardiol 2018; 72: 3126-37.
72 Kubo T, Shinke T, Okamura T, et al. Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur Heart J 2017; 38: 3139-47.
73 Costa F, Montalto C, Bhatt D, et al. Abbreviated dual antiplatelet therapy after PCI in patients at high bleeding risk: a collaborative meta-analysis of randomized trials. Eur Heart J 2022; 43: ehac544.1402
74 Benenati S, Galli M, De Marzo V, et al. Very short vs. long dual antiplatelet therapy after second generation drug-eluting stents in 35785 patients undergoing percutaneous coronary interventions: a meta-analysis of randomized controlled trials. Eur Heart J Cardiovasc Pharmacother 2021; 7: 86-93.
75 Azzalini L, Karmpaliotis D, Santiago R, et al. Contemporary issues in chronic total occlusion percutaneous coronary intervention. JACC Cardiovasc Interv 2022; 15: 1-21.
76 Kirtane AJ, Doshi D, Leon MB, et al. Treatment of higher-risk patients with an indication for revascularization: evolution within the field of contemporary percutaneous coronary intervention. Circulation 2016; 134: 422-31.
77 Kannel WB, Sytkowski PA. Atherosclerosis risk factors. Pharmacol Ther 1987; 32: 207-35.
78 Haskell WL, Alderman EL, Fair JM, et al. Effects of intensive multiple risk factor reduction on coronary atherosclerosis and clinical cardiac events in men and women with coronary artery disease. The Stanford Coronary Risk Intervention Project (SCRIP). Circulation 1994; 89: 975-90.

79 Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383-89.
80 Juul-Möller S, Edvardsson N, Jahnmatz B, Rosén A, Sørensen S, Omblus R. Double-blind trial of aspirin in primary prevention of myocardial infarction in patients with stable chronic angina pectoris. Lancet 1992; 340: 1421-25.
81 Sleight P. The HOPE Study (Heart Outcomes Prevention Evaluation). J Renin Angiotensin Aldosterone Syst 2000; 1: 18-20.
82 Fibrinolytic Therapy Trialists' (FTT) Collaborative Group. Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Lancet 1994; 343: 311-22.
83 Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350: 1495-504.
84 Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001; 345: 494-502.
85 Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996; 334: 1349-55.
86 McMurray JJV, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371: 993-1004.
87 Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive metaanalysis of five randomised controlled trials. Lancet 2022; 400: 757-67.
88 Newby LK, LaPointe NM, Chen AY, et al. Long-term adherence to evidence-based secondary prevention therapies in coronary artery disease. Circulation 2006; 113: 203-12.
89 Pinho-Gomes A-C, Azevedo L, Ahn J-M, et al. Compliance with guideline-directed medical therapy in contemporary coronary revascularization trials. J Am Coll Cardiol 2018; 71: 591-602.
90 Boden WE, O'Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 2007; 356: 1503-16.
91 Maron DJ, Hochman JS, Reynolds HR, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med 2020; 382: 1395-407.
92 Spertus JA, Jones PG, Maron DJ, et al. Health-status outcomes with invasive or conservative care in coronary disease. N Engl J Med 2020; 382: 1408-19.
93 Hochman JS, Anthopolos R, Reynolds HR, et al. Survival after invasive or conservative management of stable coronary disease. Circulation 2023; 147: 8-19.
94 Frye RL, August P, Brooks MM, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med 2009; 360: 2503-15.
95 Xaplanteris P, Fournier S, Pijls NHJ, et al. Five-year outcomes with PCI guided by fractional flow reserve. N Engl J Med 2018; 379: 250-59.
96 Bangalore S, Maron DJ, Stone GW, Hochman JS. Routine revascularization versus initial medical therapy for stable ischemic heart disease: a systematic review and meta-analysis of randomized trials. Circulation 2020; 142: 841-57.
97 Navarese EP, Lansky AJ, Kereiakes DJ, et al. Cardiac mortality in patients randomised to elective coronary revascularisation plus medical therapy or medical therapy alone: a systematic review and meta-analysis. Eur Heart J 2021; 42: 4638-51.
98 Velazquez EJ, Lee KL, Deja MA, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med 2011; 364: 1607-16.
99 Velazquez EJ, Lee KL, Jones RH, et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 2016; 374: 1511-20.
100 Perera D, Clayton T, O'Kane PD, et al. Percutaneous revascularization for ischemic left ventricular dysfunction. N Engl J Med 2022; 387: 1351-60.

101 Gaudino M, Audisio K, Hueb WA, et al. Coronary artery bypass grafting versus medical therapy in patients with stable coronary artery disease: an individual patient data pooled meta-analysis of randomized trials. J Thorac Cardiovasc Surg 2022; published online June 9. https://doi.org/10.1016/j.jtcvs.2022.06.003.
102 Doenst T, Bonow RO, Bhatt DL, Falk V, Gaudino M. Improving terminology to describe coronary artery procedures: JACC Review Topic of the Week. J Am Coll Cardiol 2021; 78: 180-88.
103 Taniwaki M, Stefanini GG, Silber S, et al. 4-year clinical outcomes and predictors of repeat revascularization in patients treated with new-generation drug-eluting stents: a report from the RESOLUTE All-Comers trial (A Randomized Comparison of a ZotarolimusEluting Stent With an Everolimus-Eluting Stent for Percutaneous Coronary Intervention). J Am Coll Cardiol 2014; 63: 1617-25.
104 Farkouh ME, Domanski M, Sleeper LA, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med 2012; 367: 2375-84.
105 Mohr FW, Morice M-C, Kappetein AP, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5 -year followup of the randomised, clinical SYNTAX trial. Lancet 2013; 381: 629-38.
106 Thuijs DJFM, Kappetein AP, Serruys PW, et al. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10 -year follow-up of the multicentre randomised controlled SYNTAX trial. Lancet 2019; 394: 1325-34.
107 Park S-J, Ahn J-M, Kim Y-H, et al. Trial of everolimus-eluting stents or bypass surgery for coronary disease. N Engl J Med 2015; 372: 1204-12.
108 Ahn J-M, Kang D-Y, Yun S-C, et al. Everolimus-eluting stents or bypass surgery for multivessel coronary artery disease: extended follow-up outcomes of multicenter randomized controlled BEST trial. Circulation 2022; 146: 1581-90.
109 Head SJ, Milojevic M, Daemen J, et al. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease: a pooled analysis of individual patient data. Lancet 2018; 391: 939-48.
110 Fearon WF, Zimmermann FM, De Bruyne B, et al. Fractional flow reserve-guided PCI as compared with coronary bypass surgery. N Engl J Med 2022; 386: 128-37.
111 Stone GW, Kappetein AP, Sabik JF, et al. Five-year outcomes after PCI or CABG for left main coronary disease. N Engl J Med 2019; 381: 1820-30.
112 Holm NR, Mäkikallio T, Lindsay MM, et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in the treatment of unprotected left main stenosis: updated 5 -year outcomes from the randomised, non-inferiority NOBLE trial. Lancet 2020; 395: 191-99.
113 Sabatine MS, Bergmark BA, Murphy SA, et al. Percutaneous coronary intervention with drug-eluting stents versus coronary artery bypass grafting in left main coronary artery disease: an individual patient data meta-analysis. Lancet 2021; 398: 2247-57.
114 Baron SJ, Chinnakondepalli K, Magnuson EA, et al. Quality-of-life after everolimus-eluting stents or bypass surgery for left-main disease: results from the EXCEL trial. J Am Coll Cardiol 2017; 70: 3113-22.
115 Abdallah MS, Wang K, Magnuson EA, et al. Quality of life after surgery or DES in patients with 3 -vessel or left main disease. J Am Coll Cardiol 2017; 69: 2039-50.
116 Gaudino M, Hameed I, Khan FM, et al. Treatment strategies in ischaemic left ventricular dysfunction: a network meta-analysis. Eur J Cardiothorac Surg 2020; 59: 293-301.
117 Nakamura M, Yaku H, Ako J, et al. JCS/JSCVS 2018 guideline on revascularization of stable coronary artery disease. Circ J 2022; 86: 477-588.
118 Collet J-P, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021; 42: 1289-367.
119 Ibanez B, James S, Agewall S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2018; 39: 119-77.

120 Mehta SR, Wang J, Wood DA, et al. Complete revascularization vs culprit lesion-only percutaneous coronary intervention for angina-related quality of life in patients with ST-segment elevation myocardial infarction: results from the COMPLETE randomized clinical trial. JAMA Cardiol 2022; 7: 1091-99.
121 Engstrøm T, Kelbæk H, Helqvist S, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3-PRIMULTI): an open-label, randomised controlled trial. Lancet 2015; 386: 665-71.
122 Wald DS, Morris JK, Wald NJ, et al. Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med 2013; 369: 1115-23.
123 Fox KAA, Clayton TC, Damman P, et al. Long-term outcome of a routine versus selective invasive strategy in patients with non-ST-segment elevation acute coronary syndrome a metaanalysis of individual patient data. J Am Coll Cardiol 2010; 55: 2435-45.
124 Gaudino M, Di Franco A, Cao D, et al. Sex-related outcomes of medical, percutaneous, and surgical interventions for coronary artery disease: JACC Focus Seminar 3/7. J Am Coll Cardiol 2022; 79: 1407-25.
125 Andreotti F, Marchese N. Women and coronary disease. Heart 2008; 94: 108-16.
126 Andreotti F, Maggioni AP, Scambia G. Sex- and genderspecific precision medicine for chronic coronary syndromes: challenges and opportunities. Kardiol Pol 2021; 79: 373-75.
127 Lee CMY, Mnatzaganian G, Woodward M, et al. Sex disparities in the management of coronary heart disease in general practices in Australia. Heart 2019; 105: 1898-904.
128 Madhavan MV, Gersh BJ, Alexander KP, Granger CB, Stone GW. Coronary artery disease in patients ≥ 80 years of age. J Am Coll Cardiol 2018; 71: 2015-40.
129 Andreotti F, Geisler T, Collet JP, et al. Acute, periprocedural and longterm antithrombotic therapy in older adults: 2022 update by the ESC Working Group on Thrombosis. Eur Heart J 2023; 44: 262-79.
130 Bangalore S, Maron DJ, O'Brien SM, et al. Management of coronary disease in patients with advanced kidney disease. N Engl J Med 2020; 382: 1608-18.
131 Bueno H, Betriu A, Heras M, at el. Primary angioplasty vs fibrinolysis in very old patients with acute myocardial infarction: TRIANA (TRatamiento del Infarto Agudo de miocardio eN Ancianos) randomized trial and pooled analysis with previous studies. Eur Heart J 2011; 32: 51-60.
132 O'Donoghue M, Boden WE, Braunwald E, et al. Early invasive vs conservative treatment strategies in women and men with unstable angina and non-ST-segment elevation myocardial infarction: a meta-analysis. JAMA 2008; 300: 71-80.
133 Stefanini GG, Baber U, Windecker S, et al. Safety and efficacy of drug-eluting stents in women: a patient-level pooled analysis of randomised trials. Lancet 2013; 382: 1879-88.
134 Schwann TA, Habib RH, Wallace A, et al. Operative outcomes of multiple-arterial versus single-arterial coronary bypass grafting. Ann Thorac Surg 2018; 105: 1109-19.
135 Gaudino M, Benedetto U, Fremes S, et al. Association of radial artery graft vs saphenous vein graft with long-term cardiovascular outcomes among patients undergoing coronary artery bypass grafting: a systematic review and meta-analysis. JAMA 2020; 324: 179-87.
136 The World Bank. Population, total - Low \& middle income. 2021. https://data.worldbank.org/indicator/SP.POP.TOTL?locations=XO (accessed Aug 27, 2022).
137 Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol 2020; 76: 2982-3021.
138 Teo K, Chow CK, Vaz M, Rangarajan S, Yusuf S. The Prospective Urban Rural Epidemiology (PURE) study: examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. Am Heart J 2009; 158: 1-7.e1.
139 Tern PJW, Ho AKH, Sultana R, et al. Comparative overview of ST-elevation myocardial infarction epidemiology, demographics, management, and outcomes in five Asia-Pacific countries: a meta-analysis. Eur Heart J Qual Care Clin Outcomes 2021; 7: 6-17.

140 Shimony A, Grandi SM, Pilote L, et al. Utilization of evidence-based therapy for acute coronary syndrome in high-income and low/ middle-income countries. Am J Cardiol 2014; 113: 793-97.
141 Yusuf S, Rangarajan S, Teo K, et al. Cardiovascular risk and events in 17 low-, middle-, and high-income countries. N Engl J Med 2014; 371: 818-27.
142 Kämpfer J, Yagensky A, Zdrojewski T, et al. Long-term outcomes after acute myocardial infarction in countries with different socioeconomic environments: an international prospective cohort study. BMJ Open 2017; 7: e012715.
143 Tromp J, Ouwerkerk W, Cleland JGF, et al. Global differences in burden and treatment of ischemic heart disease in acute heart failure: REPORT-HF. JACC Heart Fail 2021; 9: 349-59.
144 Mentz RJ, Kaski J-C, Dan G-A, et al. Implications of geographical variation on clinical outcomes of cardiovascular trials. Am Heart J 2012; 164: 303-12.
145 Yusuf S, Wittes J. Interpreting geographic variations in results of randomized, controlled trials. N Engl J Med 2016; 375: 2263-71.

146 Magnuson EA, Chinnakondepalli K, Vilain K, et al. Cost effectiveness of percutaneous coronary intervention versus bypass surgery for patients with left main disease: results from the EXCEL trial. Circ Cardiovasc Interv 2022; 15: e011981.
147 Jacobson KM, Hall Long K, McMurtry EK, Naessens JM, Rihal CS. The economic burden of complications during percutaneous coronary intervention. Qual Saf Health Care 2007; 16: 154-59.
148 Mehaffey JH, Hawkins RB, Byler M, et al. Cost of individual complications following coronary artery bypass grafting. J Thorac Cardiovasc Surg 2018; 155: 875-82.e1.
149 McCarthy CP, Januzzi JL Jr. Periprocedural MI as an endpoint in clinical trials: a proposed path forward. J Am Coll Cardiol 2022; 79: 527-29.

Copyright © 2023 Elsevier Ltd. All rights reserved.

[^0]: Search strategy and selection criteria
 We searched PubMed from the site's inception to
 Dec 31, 2022 for references with the terms "coronary revascularisation", "percutaneous coronary intervention", "coronary bypass surgery", "medical therapy", or any combination of these terms in the title or abstract, and no language restrictions. We also identified relevant articles from the reference lists of selected articles. We prioritised RCTs and publications from the past 10 years, but we cited other references when relevant.

[^1]: ACC=American College of Cardiology. AHA=American Heart Association. BMS=bare-metal stents. B-NR=B-non-randomised. B-R=B-randomised. CABG=coronary artery bypass graft. COR=class of recommendation (I, Ila, llb, or III). DES=drug-eluting stents. ESC/EACTS=European Society of Cardiology and European Association for Cardio-Thoracic Surgery. JCS=Japanese Circulation Society. JSCVS=Japanese Society of Cardiovascular Surgeons. LAD=left anterior descending artery. LIMA=left internal mammary artery. LOE=level of evidence (A, B or C). PCI=percutaneous coronary intervention. SCAI=Society of Cardiovascular Angiography \& Interventions. SYNTAX=Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery. *For categories with more than one revascularisation strategy recommended, we listed the one with the higher class of recommendation.

