b Review article
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Rationale and Objectives: The purpose of this systematic review and meta-analysis was to assess the quality and diagnostic accuracy
of MRI-based radiomics for predicting Ki-67 expression in breast cancer.

Materials and Methods: A systematic literature search was performed to find relevant studies published in different databases, in-
cluding PubMed, Web of Science, and Embase up until March 10, 2023. All papers were independently evaluated for eligibility by two
reviewers. Studies that matched research questions and provided sufficient data for quantitative synthesis were included in the sys-
tematic review and meta-analysis, respectively. The quality of the articles was assessed using Quality Assessment of Diagnostic
Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools. The predictive value of MRI-based radiomics for Ki-67
antigen in patients with breast cancer was assessed using pooled sensitivity (SEN), specificity, and area under the curve (AUC). Meta-
regression was performed to explore the cause of heterogeneity. Different covariates were used for subgroup analysis.

Results: 31 studies were included in the systematic review; among them, 21 reported sufficient data for meta-analysis. 20 training
cohorts and five validation cohorts were pooled separately. The pooled sensitivity, specificity, and AUC of MRI-based radiomics for
predicting Ki-67 expression in training cohorts were 0.80 [95% Cl, 0.73-0.86], 0.82 [95% ClI, 0.78-0.86], and 0.88 [95%ClI, 0.85-0.91],
respectively. The corresponding values for validation cohorts were 0.81 [95% Cl, 0.72-0.87], 0.73 [95% CI, 0.62—0.82], and 0.84 [95%Cl,
0.80-0.87], respectively. Based on QUADAS-2, some risks of bias were detected for reference standard and flow and timing domains.
However, the quality of the included article was acceptable. The mean RQS score of the included articles was close to 6, corresponding
to 16.6% of the maximum possible score. Significant heterogeneity was observed in pooled sensitivity and specificity of training cohorts
(% > 75%). We found that using deep learning radiomic methods, magnetic field strength (3 T vs. 1.5 T), scanner manufacturer, region of
interest structure (2D vs. 3D), route of tissue sampling, Ki-67 cut-off, logistic regression for model construction, and LASSO for feature
reduction as well as PyRadiomics software for feature extraction had a great impact on heterogeneity according to our joint model
analysis. Diagnostic performance in studies that used deep learning-based radiomics and multiple MRI sequences (e.g., DWI+DCE) was
slightly higher. In addition, radiomic features derived from DWI sequences performed better than contrast-enhanced sequences in terms
of specificity and sensitivity. No publication bias was found based on Deeks’ funnel plot. Sensitivity analysis showed that eliminating
every study one by one does not impact overall results.

Conclusion: This meta-analysis showed that MRI-based radiomics has a good diagnostic accuracy in differentiating breast cancer
patients with high Ki-67 expression from low-expressing groups. However, the sensitivity and specificity of these methods still do not
surpass 90%, restricting them from being used as a supplement to current pathological assessments (e.g., biopsy or surgery) to predict
Ki-67 expression accurately.
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INTRODUCTION

reast cancer is the most common cancer in women

and the fifth leading cause of cancer death, with

more than 2 million new cases annually worldwide
(1). Certain immunohistochemical (IHC) biomarkers, such as
ER, PR, HER2, and Ki-67 have been used for the molecular
classification of breast cancer for many years (2). Among them,
the Ki-67 protein is a marker of cell proliferation and can be
used to provide information about the proliferation of cancer
Ki-67 activity level is
strongly correlated with cancer aggressiveness (4), complete

cells, especially breast cancer (3).

pathological response to treatment (5), and prognosis of pa-
tients (6). Thus, it is considered an important factor in se-
lecting treatment options and determining the need for
follow-up in clinical settings (7). Preoperative analysis of Ki-
67 expression using IHC requires tissue specimens that are
typically obtained by needle biopsy. Alongside its invasiveness,
this method has some disadvantages due to the heterogeneity
of breast tumors and the small tissue sample obtained via this
route compared to surgical excision (8). Therefore, in-
vestigating the applicability of less invasive techniques such as
imaging technologies 1s necessary. The link between pa-
thology and radiology has become much stronger with the
rapid development of artificial intelligence (AI) in medical
imaging (9). Al techniques, including machine learning (ML)
and deep learning (DL), have shown promising potential in
various medical applications, particularly medical imaging.
These Al-driven approaches can automatically analyze com-
plex patterns within images, offering a powerful means to
extract valuable information from medical data (10). One such
application is radiomics, an emerging field that involves the
high-throughput extraction and analysis of quantitative fea-
tures from medical images and converting these features into
decision support tools. Likewise, radiogenomics is a devel-
oping branch of radiomics that involves computational
methods and combines the fields of radiology and genomics.
The term "radiogenomics" is a compound word created by
merging "radiology" and "genomics" (11,12). Radiomics ap-
proach can utilize both hand-crafted texture analysis and ML/
DL techniques to generate robust and reproducible features.
Hand-crafted texture analysis involves manually extracting
predefined features, such as shape, intensity, and texture,
which are then used as input for ML algorithms. In contrast,
DL methods, such as convolutional neural networks (CNNs),
can automatically learn to identify relevant features directly
from the image data without requiring manual feature ex-
traction (13,14).

Magnetic resonance imaging (MRI) provides detailed
images of soft tissues, allowing for more accurate identifi-
cation of imaging features linked to molecular alterations (15)
since it provides both functional and anatomical information
on breast tissue, such as blood flow, tissue perfusion, and
tissue composition, all of which can be related to underlying
genetic and molecular dysregulation (16,17). In addition,
breast MRI is also useful for predicting Ki-67 discordance
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between core-needle biopsy and surgical samples (18).
Radiogenomic prediction of biomarkers has paved a long
way to reach its current developed form (19). MRI-based
radiomics, which combines the advantages of MRI with
radiomics, is an attractive tool for predicting Ki-67 expres-
sion levels in solid tumors such as brain tumors (20), cho-
langiocarcinoma (20), soft tissue sarcoma (21), hepatocellular
carcinoma (22), and bladder cancer (23). Previous meta-
analyses have revealed that MRI-based radiomics approaches
have an excellent diagnostic performance in predicting
lymph node metastasis of breast cancer (24), pathological
complete response to neoadjuvant chemotherapy (25), di-
agnosis of triple-negative breast cancer (26) as well as dif-
ferentiation of breast cancer molecular subtypes (27).
However, a systematic review and meta-analysis evaluating
the diagnostic performance of MRI-based radiomics for
predicting Ki-67 is still lacking. Thus, this study aims to
systematically review MRI-based radiomics methods for
predicting Ki-67 in breast cancer and provide a pooled result
of their diagnostic accuracy.

MATERIALS AND METHODS
Statement of Design

The Preterred Reporting Items for Systematic Reviews and
Meta-Analyses of Diagnostic Test Accuracy Studies
(PRISMA-DTA) guidelines were followed for conducting
this systematic review (28) (Table S1). There was no over-
lapping systematic review related to the topic of this study in
the Cochrane library.

Population, Intervention, Comparison, Outcomes (PICO)

* Population: Patients with breast cancer who had a pre-
operative MRI and subsequent histological and im-
munohistochemical evaluation of their Ki-67 expression
following surgical resection or biopsy.

Intervention: Preoperative MRI imaging of tumors was
used in radiomics analysis to categorize tumors into
groups based on high and low Ki-67 expression.

e Comparison: Assessing the discriminative ability of
radiomics approaches compared to conventional mole-
cular subtype testing (IHC).

Outcomes: Evaluating the utility of radiomics to classify

tumoral lesions into the correct molecular subgroups with
a diagnostic test accuracy study design (e.g., providing
receiver operating characteristic (ROC) curve analysis).

Search Strategy

Two independent authors (both experts in radiomics analysis
for more than 2 years) electronically searched the PubMed,
Web of Science, and EMBASE databases on March 10,
2023, for studies relating to our research questions. The
following search terms were used: (Breast Cancer) AND
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((Radiomics) OR (Machine Learning) OR (Deep Learning))
AND (Ki-67) AND (MRI). A detailed search strategy is
presented in Tables S2-5 (Supplementary Materials). There
was no restriction on the year of publication, and only re-
search published in the English language was considered. All
records were imported to Mendeley Reference Manager,
and duplicates were removed. First, two reviewers screened
the titles and abstracts of articles and removed irrelevant
studies. The full text of each removed study was also re-
viewed by the other author. Then, a thorough full-text
reading was performed by both authors to include studies
relevant to our research questions. Disagreements were
solved by reaching a consensus. An additional search was also
conducted by another author (with more than ten years of
experience in conducting systematic reviews) in Google
Scholar as our supplementary database to identify missing
publications.

Inclusion and Exclusion Criteria

The following inclusion criteria applied to study enrollment
in qualitative synthesis: (1) studies involving patients diag-
nosed with breast cancer histopathologically and their Ki-67
expression status was determined by IHC staining, (2) studies
that performed conventional breast MRI of tumors before
surgery, (3) studies that aimed to assess diagnostic test ac-
curacy of MRI-based radiomics for predicting Ki-67 at least
by reporting values of area under the ROC curve (AUC).
However, for quantitative synthesis (meta-analysis), only
studies with sufficient data to reconstruct the 2 X 2 con-
tingency table were included (at least by providing an ROC
plot). The following exclusion criteria applied to study en-
rollment in qualitative synthesis: (1) reviews, (2) case reports,
(3) animal studies, (4) comments, (5) editorials, (6) abstracts,
(7) meeting reports, (8) book chapters, and (9) articles which
their languages were not English. For studies with cohort
overlap, the most recent study or the one with a larger
sample size was included in the quantitative synthesis.

Data Extraction

Following general data were extracted from the included stu-
dies: (1) first author's name, (2) year of publication, (3) number
of institutions, (4) number of lesions (for available Ki-67 status),
(5) age of patients, (6) route of specimen sampling, (7) cut-oft’
value for Ki-67, (8) scanner manufacturer, (9) scanner magnetic
field, and (10) imaging sequences. Detailed extracted data from
the included studies were as follows: (1) ROI structure (e.g.,
3D vs. 2D), (2) ROI segmentation (e.g., automatic vs. manual),
(3) number of extracted features, (4) number of selected fea-
tures, (5) feature extraction software, (6) imaging features, (7)
feature processing algorithm, (8) modeling algorithm, (9) type
of cross-validation, and (10) use of independent validation.
Following quantitative data were extracted for meta-analysis:
(1) the number of positive and negative cases, (2) 2 X 2 tables
with true positive, true negative, false positive, and false nega-
tive values. When comparing the diagnostic performance of

various algorithms on the same sample, the algorithm that
produced the best classification results was chosen. If a study
only provided a ROC plot without the sensitivity (SEN) and
specificity (SPEC) values in the text, we adopted the top-left
method for extracting SEN and SPEC according to the ROC
curve. If a study integrated MRI with another imaging mod-
ality (e.g., PET or ultrasound), the data for the MRI modality
was included in the meta-analysis.

Methodological Quality Assessment

QUADAS-2
Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) tool for quality assessment of all studies was
used with modified signaling questions by two independent
reviewers (28). The risk of bias in each section was assessed
using the following questions in the RevMan software,
version 5.3.

Patient selection questions:

Were the inclusion/exclusion criteria specified?

Was the type of study specified (retrospective vs. pro-
spective)?

Were the patients' characteristics specified?

a) Index test questions:
Where imaging acquisition protocols and segmentation
methods detailed?
Was the image processing approach detailed?
Was a validation technique used?

b) Reference standard question:
Is the reference standard likely to correctly classify the
target condition?

c) Flow and timing question:

Did all patients receive the same reference standard?
Was biopsy performed after MRI acquisition?

RQS

RQS (Radiomic Quality Score) was employed to ensure the
rigor and reproducibility of radiomic studies. This metric
comprises a set of criteria a radiomic study must meet to be
considered high quality.

The RQS 1s comprised of 16 components in the radiomics
workflow (Table S5). A total score ranging from — 8-36
points is produced by rating each of the 16 components of
the score, with — 8-0 points denoting 0% and 36 points
representing 100% of total points (29,30). Two reviewers
independently assessed the RQS of the articles, and any
disagreement was solved by discussion. Table S5
(Supplementary Materials) shows each RQS item with its
interpretation.

Statistical Analysis

We used the MIDAS module in STATA software, version
14.2, to conduct the meta-analysis. Using bivariate random
effects modeling, we calculated the pooled sensitivity and
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specificity along with their 95% confidence intervals (Cls).
Coupled forest plots and hierarchical summary receiver op-
erating characteristic curves were generated to display the
results visually. Meta-regression analyses were performed to
further investigate the sources of study heterogeneity by
including the covariates in a bivariate model. Heterogeneity
across the included studies was assessed using the Cochran Q
test, where a p-value < .05 indicated the presence of het-
erogeneity. Based on the Higgins I statistic, values above
50% indicated high heterogeneity (31). A random-effects
model was used to analyze pooling studies and effect size,
showing that heterogeneity is considered when predicting
the distribution of real effects across investigations. The
threshold effects were also evaluated in Meta-disc software,
version 1.4. The Deek's asymmetry test was used to establish
statistical significance, and a Deek's funnel plot was made to
assess publication bias (32). The trim-and-fill method was
used to calculate the publication bias when a significant
publication bias was found. To evaluate clinical utility, post-
test probability was calculated, and a Fagan plot was gener-
ated. All p-values under 0.05 were considered significant.

RESULTS
Literature Search

Our electronic search yielded a total of 782 studies. Following
the removal of 106 duplicate studies, the titles and abstracts of
the remaining articles were screened, and 578 articles were
excluded. Eventually, 68 articles were excluded due to a lack
of DTA design or not using Al models (Fig 1). After full-text
reviews, 31 articles (33—63) were deemed eligible for inclusion
in the systematic review. Due to cohort overlap
(36,42,46,53,61), random splitting (57), providing only AUCs
(62,63), or not providing sufficient data for drawing 2 X 2
tables (58,59),
analysis. Figure 1

10 studies were not included in the meta-
depicts the study selection flowchart.

Characteristics of Included Studies

Table 1 shows the general characteristics of the studies included
in the systematic review. Almost 80% of studies (25/31) were
published after 2020. Nearly two-thirds (21/31) of the studies
were conducted in China (36—40,42-48,51-55,59-61,63), and
the rest in Italy (33,35,41,56,58), Germany (34,50), South
Korea (49), Turkey (57), and the USA (62). While two studies
utilized multi-center data (35,63), the prediction of Ki-67 was
carried out using data from a single center in both studies. Most
studies had a retrospective design (28/31), while only one was
prospective (59), and two had no specified study design (33,41).
Only nine studies clearly mentioned that they used surgical
specimen as the unique route of tissue sampling for IHC eva-
luation (36,38,40,43,49,54,59,60,63), while seven studies used
biopsy (42,44,46,48,53,50,57), seven studies did not mention
clearly which method was used (33,35,37,47,51,55,62), and
eight studies used a combination of both surgical specimen and
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biopsy (varying between patients) (34,39,41,45,50,52,58,61). In
22 studies, the cut-off’ value for Ki-67 expression in IHC
staining was 14% (34-38,40-42,45-49,51-53,55,58-60,62,63),
and one study used two cut-off values (14% and 20%)(57). The
manufacturers of the scanners were Siemens (15/31) (33-35,
41,42,44,47,48,50,51,53,54,59,61,63), GE (9/31) (36,37,43,
45,55-58,60), Philips (5/31) (36,38,40,49,52), and a combi-
nation of Siemens and GE (2/31) (39,62). The magnetic field
strength of scanners was 3.0 T in 23 studies (33,35,37,
38,40-51,53-55,58,60,61,63), 1.5T in six studies (34,36,
52,56,57,59), and a combination of both in two studies (39,62).
Four studies utilized deep learning-based radiomics (38,39,
44,52). Dynamic contrast-enhanced (DCE) and T1W-contrast-
enhanced MRI were commonly utilized imaging techniques
for image acquisition (27/31) (33-37,39-46,48-59,62,63), fol-
lowed by diffusion-weighted imaging (DWI) (16/31) (33,35,
38,40,44,45,48-52,55,57,58,60,61). Only one study used DKI
and IVIM imaging methods (60). The previously mentioned
methods were also commonly used together. In combination
with MRUI, positron emission tomography (PET)(33,50), ul-
trasonography (US) (39), and digital mammography (DM)/di-
gital breast tomosynthesis (DBT) (45) were used as well.
Detailed characteristics of the included studies are mentioned in
Table 2. Regions of interest (ROI) structure was 3D (15/31)
(33-35,40-42,47,51,55-59,62,63), 2D (7/31) (36,37,43,44,
46,49,52), a combination of both (2/31)(39,40), or not men-
tioned explicitly (7/31) (38,45,48,50,54,60,61). ROI delinea-
tion was performed manually in almost half of the studies (15/
31)  (35,36,38,40,43-46,52,54,55,57,60,61,63), then semi-
automatically (10/31) (33,37,41,46,50,51,56,58,59,62), and
automatically (6/31) (39,42,47,48,53,62). PyRadiomics was the
most frequently used software (8/31) (34,35,40,44,45,55-57)
for feature extraction, followed by in-house MATLAB (5/31)
(36,41,46,58,62). For feature processing/reduction, LASSO
was a commonly utilized algorithm (12/31) (36,37,40,
45-48,50,54,55,57,63). Similarly, logistic regression (LR) was
frequently used for model construction (18/31) (34,36,40-49,
51,54,59-62), followed by random forest (RF) (10/31)
(33-35,40,49,53,56,58,62,63), support vector machine (SVM)
(9/31) (35,37,38,40,44,49,50,55,63), and naive Bayes (NB) (5/
31) (34,35,37,49,63).
model construction in more than two-thirds of the studies (23/
31) (33-35,37,40,42,44,46-58,61-63). Five studies (42,44,48,
53,61) used data from the First Affiliated Hospital of Zhejiang
Chinese Medical University. Among them, one was older (42);
therefore, an updated radiomic study that used a larger over-

Cross-validation was also utilized for

lapping cohort (48) was included in the meta-analysis. Two
studies (53,61) did not specify the period of patient enrollment,
and they were not included in the meta-analysis. Therefore,
only two studies from this cohort (44,48) were included in the
meta-analysis as the periods that patients enrolled in the study
were different (2007-2011 vs. 2013—-2017). Two studies used
data from Shengjing Hospital of China Medical University
(46,55), and the one with higher classification ability (55) was
included in the meta-analysis.
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Figure 1. PRISMA flow chart of the study selection procedure for this systematic review and meta-analysis.
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Table 1 (Continued)

Author/Year

~
~]
[}

MRI Technique/

Sequence

Tesla

Scanner

Ki-67
cut-off

14

Type of Specimen
Sampling
NM

Number of Age*
Lesions*

No of
922

Study

Country

Manufacturer

Centers

Design

DCE-MRI

15T

Siemens

52.25

Single

Retro

USA

Saha et al.

and
3T

3T

and GE

(21.75-89.49)

2018 (62)

T1-weighted

Siemens

Surgical 20

NM

246

Multi

NM

China

Ming et al.

DCE-MRI

specimens

2022 (63)

NM; not mentioned
2 Selected for meta-analysis based on the bolded sequence(s).

b Considered as 14 in meta-analysis.

Two additional studies, both conducted at Guangdong
Provincial People's Hospital, raised concerns about potential
cohort overlap (36,52). From these, the latest study (52),
distinguished by superior classification and a larger sample
size, was chosen for inclusion in the meta-analysis.

The study by Santucci et al. (58) analyzed data using a cut-
off of 14% for Ki-67 but reported the number of positives
and negatives with a cut-off of 20%. Therefore, it was
omitted from the meta-analysis. In addition, the study by
Sun et al. (59) was also not included in the meta-analysis due
to a lack of reporting the number of positive and negative
Ki-67 lesions. Likewise, the study by Kayadibi et al. (57) was
not considered in the meta-analysis due to randomly splitting
training and test groups without reporting the number of
positives and negatives in each set. One study (44) only
provided data for the validation cohort. Tables S6 and S7
provide detailed quantitative data extracted from the training
and validation cohorts.

Quality Assessment

QUADAS-2

Based on QUADAS-2, the risk of bias and applicability
concerns for the included studies are shown in Figure 2. In
the patient selection domain, the risk of bias was low overall
and high only in a few studies due to not mentioning study
design (retrospective vs. prospective) or inclusion/exclusion
criteria (Fig 2a). Also, overall applicability concern was low
in this domain (Fig 2b). Only one study included some pa-
tients receiving chemotherapy (Kayadibi et al.), and another
(Ma et al.) did not clearly mention inclusion and exclusion
criteria. Similarly, the overall risk of bias for the index test
was lower than 25% and only high in several studies due to
not using any validation method. Two studies that combined
MRI with other imaging modalities did not report separate
results for their radiomics analysis, leading to some applic-
ability concerns in the index test domain for matching with
review questions. Major concerns were raised in the re-
ference standards section since one-fourth of studies used
biopsy as the only route of tissue sampling, and almost half of
the studies either used both biopsy and surgical specimens
(different per patient) or did not mention the sampling route.
Since all studies matched with the review questions for the
reference standard section (histopathological evaluation), low
applicability concerns were detected for this domain. Simi-
larly, a high or unclear risk of bias was detected in the flow
and timing domain as some studies did perform biopsies
before MRI acquisition or used different types of sampling
per patient (surgical specimens or biopsy) for histopatholo-
gical evaluation of Ki-67. Taken together, the quality of the
included articles was almost acceptable according to the
QUADAS-2 assessment.

RQS
The 31 studies had a2 mean RQS of 5.90, corresponding to
16.6% of the total score, a median of 5, and a range of — 1
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Table 2 (Continued)

~
~J
[e)}

Cross

Modeling
Algorithm

No. of Selected Feature Imaging Features Feature
Feature (s)

No. of

ROI

ROI

Study

Validation

Processing
Algorithm

Extraction
Software

Extracted
Features
15,494

Segmentation

Structure

5-fold cross-

LASSO ENR, SVM, RF,

Histogram features,

PyRadiomics

3D Manual

Ming et al.

validation

and NB

texture features,
Laplacian of

2022 (63)

Gaussian (LoG) filter

features, and

wavelet features

AB; adaboost, DR; decision tree, EDSR; enhanced deep super-resolution network, ENR; elastic net regression, GLM; general linear model, KNN; k-nearest neighbors, LASSO; least absolute
shrinkage and selection operator, LDA; linear discriminant analysis, LR; logistic regression, MLP; multi-layer perceptron, MRMR; minimum redundancy maximum relevance, MUM-Ne; multi-

scale U-shape chained M-shape convolution network, NM; not mentioned, PCA; principal component analysis, RF; random forest, RFE; recursive feature elimination, SRGAN; super-

resolution generative adversarial networks, SVM; support vector machine, WLCX; Wilcoxon rank-sum test.

2 Selected data for meta-analysis was based on the bolded modeling algorithm.

(0%) to 12 (33%). Approximately 40 percent of the studies
received a score below 10% (Fig 3). "Well-documented
image acquisition protocols", "discrimination statistics", and
"biological correlation" were performed for all the included
studies. "Multiple segmentation" and "feature reduction"
were also performed in more than 75% and 90% of the
studies, respectively. One-fourth of studies provided cut-off
points for their models. None of the included studies con-
sidered "phantom study" and "cost-effectiveness analysis".
Only one study received the score for "imaging at multiple
time points" due to using a temporal validation cohort (52). In
addition, the items including "potential clinical application",
"open science reporting", and "multivariable analysis" re-
ceived scores in one (45), two (56,63), and two (58,62)
studies, respectively. Likewise, calibration statics were per-
formed in three studies (45,56,60), and only one (59) had a
prospective design. The overall low RQS score was due to
not using independent validation cohorts by most studies
(20/31), leading to a loss of 5 points in the "validation" item.
Regarding the "comparison to gold standard" item, a full
score was given only to studies that used surgery as the un-
ique route of tissue sampling for histopathological assessment.
Detailed scoring for all of the studies is provided in Table S8
(Supplementary Materials).

Meta-analysis

Diagnostic Test Accuracy Analysis

20 training cohorts and five independent validation cohorts
were pooled separately. In training and validation cohorts,
pooled sensitivity, specificity, positive likelihood ratio
(PLR), negative likelihood ratio (NLR), and diagnostic odds
ratio (DOR) were 0.80 [95% CI, 0.73-0.86] vs. 0.81 [95%
CI, 0.72-0.87], 0.82 [95% CI, 0.78-0.86] vs. 0.73 [95% CI,
0.62-0.82], 4.6 [95% CI, 3.4-6.1] vs. 3.0 [95% CI, 2.1-4.2],
0.24 [95% CI, 0.17-0.34] vs. 0.26 [95% CI, 0.18-0.37], and
19 [95% CI, 10-35] vs. 11 [95% CI, 7-19]. As expected, the
area under the curve (AUC) for the summary ROC plot of
validation cohorts 0.84 [95% CI, 0.80-0.87] was slightly
lower than training cohorts 0.88 [95% CI, 0.85-0.91]. The
coupled forest plots and SROC curves are represented in
Figures 4—6.

Heterogeneity Analysis

17 statistics did not reveal significant heterogeneity for
sensitivity (I> =44.2%) (p-value = 0.13) and specificity
(17 = 18.49%) (p-value = 0.30) in validation cohorts.
However, the heterogeneity for sensitivity (I° = 86.58%)
and specificity (I = 81.89%) in training cohorts was
severe (p-values = 0.00), making subgroup analysis ne-
cessary. In addition, the threshold analyses for both sets
were performed in Meta-DiSc software to calculate
Spearman's correlation coeflicient between the sensitivity
logit and the specificity logit. However, for both
cohorts, the estimated correlation was not significant
(p-value > 0.05).
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Figure 2. Risk of bias and applicability concerns according to
Quality Assessment of Diagnostic Accuracy Studies-2 tool: (a) per
study assessment (b) per domain summary.

Heterogeneity Exploration and Meta-regression

We used numerous covariates to investigate their contribution to
study heterogeneity (Table 3). We found out that the following
factors caused significant heterogeneity in the meta-analysis ac-
cording to the joint model analysis using meta-regression: mag-
netic field strength of scanner (3.0 T vs. 1.5 T) (p-value = 0.00),
scanner manufacturer (p-value = 0.00), ROI structure (2D vs.
3D) (p-value = 0.00), MRI imaging method (contrast-
enhanced vs. diffusion-weighted imaging) (p-value = 0.00),
reference standard for measuring Ki-67 (biopsy vs. surgery)
(p-value = 0.00), Ki-67 cutoff (<14 vs. > 14)
(p-value = 0.04), type of radiomics algorithm (deep learning vs.
conventional) (p-value = 0.02), type of modeling algorithm
(logistic regression vs. other) (p-value = 0.05), feature extraction
software (PyRadiomics vs. other) (p-value = 0.00), and feature
reduction algorithm (LASSO vs. other) (p-value = 0.00).

Subgroup Analysis

According to the subgroup analysis, studies with sample sizes
smaller than 150 had a higher pooled sensitivity (85% vs.
78%)(p-value = 0.20, not significant) and specificity (86%
vs. 80%) (p-value = 0.00). In addition, in studies in which
we used the top left method for calculating the 2 * 2 table,
pooled specificity (86% vs. 81%) (p-value = 0.06) was
higher. In comparison, sensitivity was significantly lower
(78% vs. 81%) (p-value = 0.02) than those studies that re-
ported enough data. Our subgroup analysis also revealed
interesting findings. We found that studies that used Philips
scanners had a significantly higher specificity compared to
other scanners (87% vs. 80%) (p-value = 0.05). In addition,
combining features derived from contrast-enhanced MRI
with  DWI could sensitivity (from 76% to
84%) (p-value = 0.18, not significant) and specificity (from
82% to 83%) (p-value = 0.05). Likewise, studies that used
LR for model construction had a significantly lower sensi-
tivity (75% vs. 84%) (p-value = 0.00) and specificity (76%
vs. 84%) (p-value = 0.00) than those that used other algo-
rithms (e.g., LDA, MLP, SVM, AB, or RF instead).
Similarly, those studies that used LASSO for feature reduc-
tion had a significantly lower specificity (78% vs. 86%) (p-
value = 0.00). Studies that tissue sampling was performed
only via the surgical route had a lower sensitivity (77% vs.
81%) (p-value = 0.12, not significant) and specificity (83%
vs. 84%) (p-value = 0.00) compared to those that used
biopsy alone or in combination with surgery. Although deep

increase

learning-based radiomics had a higher pooled sensitivity
(93% vs. 77%) (p-value = 0.83) and specificity (90% vs.
80%)(p-value = 0.10) compared to conventional radiomics
methods, due to the small number of deep learning-based
studies (n=3 vs. n=17), these differences were not statisti-
cally significant (p-value > 0.05). The results of the
subgroup analysis are summarized in Table 3.

Sensitivity Analysis

We removed every study individually and pooled the re-
maining studies to investigate whether it could impact meta-
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Figure 4. Forest plots of the sensitivity and specificity of MRI radiomics for prediction of Ki-67 in breast cancer (training cohorts).
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analysis. However, no significant change in AUC, sensitivity,
specificity, PLR, NLR, and DOR was observed when each
study was excluded.

Publication Bias

Deeks's test was used to investigate potential publication bias
in the included studies; however, the funnel plot asymmetry
test did not reveal a significant publication bias in both va-
lidation (Fig7a, p-value = 0.50) or training cohorts (Fig 7b,
P-value = 0.40).

Clinical Utility

According to the Fagan plot for training cohorts (Fig 82), when
the pretest was positive, MR I-based radiomics could boost the
post-test probability to 53% from 20% with a PLR of 5 for
predicting Ki-67. When the pretest was negative, it could re-
duce the post-test probability to 6% with an NLR of 0.24.
Similar results were observed in the validation cohorts (Fig 8b).

DISCUSSION

Ki-67, serving as a proliferation index, provides valuable
information regarding tumor aggressiveness. Therefore, ac-
curate estimation of Ki-67 is essential for both tumor clas-
prediction (3). At
conventional core needle biopsies are employed to acquire

sification and prognosis present,
breast tissues necessary for immunohistochemical analysis (8).
While Ki-67 heterogeneity exists in breast cancer, ranging
from 1% to 90% within different intratumoral regions, it is
crucial to assess the entire tumor for a comprehensive analysis
(36,64). Imaging approaches can be beneficial as they pro-
vide much more information about tumor heterogeneity. In
addition, recent studies reveal that pre-operative core needle
biopsy can significantly elevate the Ki-67 index (65-67),
subsequently worsening disease outcomes in HER 2-negative
patients (60,67). Thus, utilizing less invasive methods such as
MRI appears promising. Another advantage of imaging over
the biopsy is its ability to evaluate surrounding tumor en-
vironments (peri-tumoral regions) that reflect lymphatic in-
vasion and infiltration (45).

Radiomics is a specialized field in medical imaging that
entails extracting and analyzing quantitative features from
medical images. This process holds the potential to offer
supplementary insights into Ki-67 expression in breast cancer
by scrutinizing the distinctive characteristics of breast tumors
depicted in medical images. (44). Constructing models using
machine learning (60) or deep learning (36) algorithms can
provide key information about Ki-67 expression in breast
cancer. This could complement traditional pathology
methods, potentially reduce the need for invasive biopsies,
and guide treatment decisions.

This systematic review and meta-analysis explored whe-
ther MRI-based radiomics can predict Ki-67 expression in
patients with breast cancer. By pooling the results of 20
training cohorts, we observed that MRI-based radiomics

methods are promising for Ki-67 prediction, with a pooled
sensitivity, specificity, and AUC of 0.80, 0.82, and 0.88,
respectively. The corresponding values for five independent
validation cohorts were 0.81, 0.73, and 0.84, respectively.

In training cohorts, significant heterogeneity was ob-
served, which made heterogeneity exploration necessary.
Initially, we assessed Spearman's correlation coefficient to
eliminate the possibility of a threshold effect. The results
indicated that a threshold effect is unlikely to cause hetero-
geneity (p-value > 0.05). Then, we investigated other po-
tential sources of heterogeneity using univariable meta-
regression and identified numerous implicated variables.

As mentioned in previous systematic reviews (68,69),
magnetic field strength and manufacturer of scanners are two
crucial factors that influence algorithm performance, two
factors that also contributed to the heterogeneity of our re-
sults based on meta-regression. We found that using deep
learning radiomic methods is a great cause of between-study
heterogeneity. Recently, in a meta-analysis by Liang
et al. (70), the performance of deep learning-based MRI
radiomics was higher than conventional radiomcis with
machine learning for prediction of response to neoadjuvant
chemotherapy in breast cancer. In contrast, a meta-analysis
by Zhang et al. (71) showed that conventional MRI radio-
mcis with machine learning methods could act slightly better
than deep learning based-studies for predicting axillary
lymph node metastasis. Similar to our study, the number of
deep learning-based articles was few in both meta-analyses.
Therefore, whether deep learning radiomics are superior to
conventional radiomics for predicting Ki-67 expression re-
quires more investigation.

Different ROI segmentation methods (2D vs. 3D) were
also detected as a possible source of heterogeneity.
Unfortunately, some included studies did not clearly men-
tion ROI structure, forcing us to exclude them while doing
subgroup analysis. Whole tumor analysis is only possible
when 3D tumor segmentation is applied. This method also
has the advantage of assessing tumor heterogeneity compared
to 2D segmentation (72). In our subgroup analysis, only
three studies used 2D segmentation, and surprisingly, their
pooled specificity was significantly higher than 3D methods.
Thus, evaluating the performance of different segmentation
structures should be investigated in future studies.

LR is a widely applied machine-learning modeling algo-
rithm for constructing radiomics signatures. However, it has
disadvantages like lower classification accuracy (73). This
factor contributed to interstudy heterogeneity, and based on
subgroup analysis, we found that studies that used LR for
model construction had a significantly lower sensitivity and
specificity than newer algorithms such as SVM and AdaBoost.
A similar finding was observed for studies that also used the
LASSO algorithm for feature reduction. These findings must
be taken into consideration in future studies for a more ac-
curate classification ability of radiomics signatures.

Single-parameter MRI features derived from ADC maps
(e.g., ADC mean) and DCE-MRI parametric maps (e.g.,
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Figure 7. Deeks’ funnel plot with superimposed regression line. In both training (a) and validation cohorts (b), the funnel plot asymmetry test
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Ktrans, Kep, Ve, and Vp) are strongly correlated with Ki-67
expression in breast cancer (73). Therefore, these features
have frequently been utilized in radiomics studies to detect
breast tumors with high Ki-67 expression (41,47,54). Pre-
vious meta-analyses have shown that combined DCE-MRI
and DWI have superior diagnostic accuracy than either
DCE-MRI or DWTI alone for differentiating malignant and
benign breast lesions (74). In line with this, our subgroup
analysis also yielded similar results for combined DCE-MRI
and DWI radiomics analysis for predicting Ki-67 in breast
cancer. Our investigation comparing DWI and DCE-MRI
for distinguishing highly expressing Ki-67 lesions yielded
noteworthy findings. Notably, ADC demonstrated superior
efficacy in this context, suggesting that it could stand alone as
a reliable modality when circumstances limit the use of
multiple MRI techniques. The observed advantage of ADC
may be attributed to its sensitivity to tissue microstructure
and cellularity, aligning with the characteristics of highly
expressing Ki-67 lesions. While acknowledging the study's
limitations, including small number of studies using DWI
alone compared to DCE-MRUI alone, our results imply that,
under certain conditions, prioritizing ADC in clinical pro-
tocols may offer a pragmatic and practical approach. These
findings contribute valuable insights for researchers, opening
avenues for further investigations into refining imaging
strategies for lesions with high Ki-67 expression.

We highlighted the role of various feature extraction soft-
ware, including PyRadiomics, in contributing to the observed
heterogeneity of results. The variability stems from diverse
algorithmic approaches and parameter settings across different
software. This diversity, rather than being inherently detri-
mental, underscores the nuanced impact of the choice of
feature extraction software on study outcomes. Recognizing
this variability, we emphasize the importance of understanding
and transparently reporting the software employed, as it sig-
nificantly influences the radiomic landscape.

Our meta-regression analysis underscores the multifaceted
nature of inter-study heterogeneity, revealing influential
factors such as the route of tissue sampling (biopsy vs. sur-
of Ki-67 cut-off.
Importantly, existing evidence suggests that the biopsy pro-

gery) and the choice expression
cess may dynamically impact Ki-67 expression in breast le-
sions over time. Simultaneously, the variability introduced
by employing a specific Ki-67 cut-off emphasizes the im-
portance of standardization in defining high expression. The
interplay of these factors significantly contributes to the
observed heterogeneity in radiomic analyses. Acknowledging
these influences, our findings highlight the nuanced con-
siderations associated with both sample acquisition methods
and the chosen Ki-67 cut-off. Transparent reporting and
thoughtful consideration of these variables are essential steps
toward enhancing result interpretation and comparability
across radiomics studies.

We also evaluated the quality of the included studies in
this review using QUADAS-2 and RQS, which are routi-

nely used for quality assessment in diagnostic test accuracy

and radiomic studies, respectively. According to QUADAS-
2, there were some risks of bias in reference standards as well
as flow and timing domains. First, one-fourth of studies used
biopsy as the method of tissue sampling, and more than half
of the studies either did not mention the sampling method or
used biopsy or surgery, different per patient. Second, the
overall risk of bias in the flow and timing domain remained
unclear as many studies did not mention whether MRI was
performed before biopsy. In addition, if all patients do not
receive a standard reference method for IHC evaluation
(e.g., biopsy used in one and surgery in another), a bias
occurs in the flow and timing domain. For this reason, some
studies were detected with high risks of bias in the flow of
timing domain. Overall, low applicability concern was de-
tected in patient selection, index test, and reference standard
domains, making the quality of the included articles accep-
table. Unfortunately, the mean RQS point of the included
studies was near 6, equivalent to 16.6% of the total score (6/
36). Generally, most systematic review articles receive more
overall RQS scores than this value. One cause of this sig-
nificant difference was that in many of the included studies in
our review, an independent validation cohort was not used
for testing models' reproducibility, leading to a loss of at least
5 points in this section as the minimum score of this item in
studies that have a validation cohort is + 2. According to the
R QS checklist, validation should be performed without re-
training; therefore, studies that only use cross-validation
methods lost seven points compared to studies with an in-
dependent validation cohort.

Compared to cross-validation methods, employing an
independent validation cohort reduces the likelihood of
overfitting, provides a more precise estimation of real-world
performance, allows a more thorough assessment of the
model's performance, and offers more generalizability. An
independent validation cohort ensures that the model is as-
sessed using entirely new data, which is more unbiased and
enables a more precise estimation of the model's perfor-
mance. That is why the "validation" item of the RQS tool is
misinterpreted in systematic review articles (75). Our in-
vestigation did not find a significant link between RQS
(Radiomics Quality Score) and the heterogeneity of results.
While acknowledging the importance of study quality me-
trics, our study suggests that factors other than RQS played
more substantial roles in shaping the observed variability
across studies. This highlights the complexity of sources
contributing to the heterogeneity of the results. Although
RQS is adopted frequently in systematic review articles of
radiomic studies, and it has been about five years since this
tool was introduced, many newer checklists are emerging,
indicating that the RQS might not be a completely ideal tool
for assessing the quality of radiomics studies.

Limitations

This systematic review and meta-analysis has several limita-
tions that are necessary to mention:
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a) Almost all of the included studies were retrospectively
designed. Prospective studies are generally regarded as
superior to retrospective studies due to standardized
imaging protocols, timely and relevant radiomic feature
extraction, standardized and blinded data collection, and
optimized study design. These factors can all enhance the
quality and relevance of the study results.

b) Unfortunately, some studies were excluded from the
meta-analysis due to probable or definitive cohort overlap
and insufficient data reporting. Cohort overlap can lead to
biased and inaccurate estimates in meta-analysis and
should be carefully considered during study selection and
analysis to ensure the validity and accuracy of the results.

¢) The lack of validation cohorts in most of the included
studies caused a significant drop in the overall RQS score
and hindered subgroup analysis in validation cohorts due
to the small number of included studies.

d) Many of the included studies did not mention the route of
tissue sampling that subsequently caused unclear risks of
bias in reference standard and flow and timing sections of
the QUADAS-2 tool.

e) Only a small number of studies used deep learning
methods for model establishment. DL and CNN offer a
more automated and efficient approach to feature ex-
traction, allowing for extracting high-level features from
images. This makes them particularly suitable for radio-
mics studies, where the complexity and volume of med-
ical imaging data can be high.

Future Perspectives

In the future, researchers should consider these points:

a) Further studies should use independent validation cohorts,
especially external validation, as it is an essential step in
developing radiomics models and helps to ensure their
generalizability, robustness, clinical applicability, and
regulatory approval.

b) It is recommended to conduct an MRI before any inter-
vention, as there is evidence indicating an increase in Ki-67
levels following core needle biopsy. This alteration in Ki-
67 levels has been shown to impact patients' prognosis.

¢) Authors conducting radiomics studies are encouraged to
design their research protocol according to current stan-
dards for scientific rigor, consistency, transparency, and
clinical relevance. This can help increase the reliability
and generalizability of the findings, ultimately leading to
better patient care.

d) Combining radiomic features with non-radiomic features
(e.g., age and other clinical indicators) can lead to more
comprehensive and accurate diagnostic performance.

e) Transparent reporting of the diagnostic performance of
radiomics models is essential since these data are necessary
for conducting a DTA-type meta-analysis.

f) Making code and data publicly available can significantly
improve knowledge transfer and reproducibility of radiomics
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studies according to RQS guidelines. Thus, radiomics re-
searchers are encouraged to share their code and scans.

CONCLUSION

This systematic review and meta-analysis showed that MRI-
based radiomics have a robust potential utility for predicting
Ki-67 in breast cancer. However, in line with a previous
meta-analysis that evaluated the diagnostic performance of
radiomics for differentiating breast cancer subtypes (27), the
pooled AUCs of existing studies in both validation and
training cohorts were less than 0.90, indicating that these
studies are currently in their early phases and restricting the
possibility of using these tools as a supplement to current
pathological assessments (e.g., biopsy or surgery) to predict
Ki-67 expression very accurately. Therefore, more research
is required to improve the diagnostic ability of radiomics for
predicting Ki-67 in breast cancer.
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