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Rationale and Objectives: The purpose of this systematic review and meta-analysis was to assess the quality and diagnostic accuracy 
of MRI-based radiomics for predicting Ki-67 expression in breast cancer. 

Materials and Methods: A systematic literature search was performed to find relevant studies published in different databases, in-
cluding PubMed, Web of Science, and Embase up until March 10, 2023. All papers were independently evaluated for eligibility by two 
reviewers. Studies that matched research questions and provided sufficient data for quantitative synthesis were included in the sys-
tematic review and meta-analysis, respectively. The quality of the articles was assessed using Quality Assessment of Diagnostic 
Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools. The predictive value of MRI-based radiomics for Ki-67 
antigen in patients with breast cancer was assessed using pooled sensitivity (SEN), specificity, and area under the curve (AUC). Meta- 
regression was performed to explore the cause of heterogeneity. Different covariates were used for subgroup analysis. 

Results: 31 studies were included in the systematic review; among them, 21 reported sufficient data for meta-analysis. 20 training 
cohorts and five validation cohorts were pooled separately. The pooled sensitivity, specificity, and AUC of MRI-based radiomics for 
predicting Ki-67 expression in training cohorts were 0.80 [95% CI, 0.73–0.86], 0.82 [95% CI, 0.78–0.86], and 0.88 [95%CI, 0.85–0.91], 
respectively. The corresponding values for validation cohorts were 0.81 [95% CI, 0.72–0.87], 0.73 [95% CI, 0.62–0.82], and 0.84 [95%CI, 
0.80–0.87], respectively. Based on QUADAS-2, some risks of bias were detected for reference standard and flow and timing domains. 
However, the quality of the included article was acceptable. The mean RQS score of the included articles was close to 6, corresponding 
to 16.6% of the maximum possible score. Significant heterogeneity was observed in pooled sensitivity and specificity of training cohorts 
(I2 > 75%). We found that using deep learning radiomic methods, magnetic field strength (3 T vs. 1.5 T), scanner manufacturer, region of 
interest structure (2D vs. 3D), route of tissue sampling, Ki-67 cut-off, logistic regression for model construction, and LASSO for feature 
reduction as well as PyRadiomics software for feature extraction had a great impact on heterogeneity according to our joint model 
analysis. Diagnostic performance in studies that used deep learning-based radiomics and multiple MRI sequences (e.g., DWI+DCE) was 
slightly higher. In addition, radiomic features derived from DWI sequences performed better than contrast-enhanced sequences in terms 
of specificity and sensitivity. No publication bias was found based on Deeks’ funnel plot. Sensitivity analysis showed that eliminating 
every study one by one does not impact overall results. 

Conclusion: This meta-analysis showed that MRI-based radiomics has a good diagnostic accuracy in differentiating breast cancer 
patients with high Ki-67 expression from low-expressing groups. However, the sensitivity and specificity of these methods still do not 
surpass 90%, restricting them from being used as a supplement to current pathological assessments (e.g., biopsy or surgery) to predict 
Ki-67 expression accurately.   
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INTRODUCTION 

B reast cancer is the most common cancer in women 
and the fifth leading cause of cancer death, with 
more than 2 million new cases annually worldwide  

(1). Certain immunohistochemical (IHC) biomarkers, such as 
ER, PR, HER2, and Ki-67 have been used for the molecular 
classification of breast cancer for many years (2). Among them, 
the Ki-67 protein is a marker of cell proliferation and can be 
used to provide information about the proliferation of cancer 
cells, especially breast cancer (3). Ki-67 activity level is 
strongly correlated with cancer aggressiveness (4), complete 
pathological response to treatment (5), and prognosis of pa-
tients (6). Thus, it is considered an important factor in se-
lecting treatment options and determining the need for 
follow-up in clinical settings (7). Preoperative analysis of Ki- 
67 expression using IHC requires tissue specimens that are 
typically obtained by needle biopsy. Alongside its invasiveness, 
this method has some disadvantages due to the heterogeneity 
of breast tumors and the small tissue sample obtained via this 
route compared to surgical excision (8). Therefore, in-
vestigating the applicability of less invasive techniques such as 
imaging technologies is necessary. The link between pa-
thology and radiology has become much stronger with the 
rapid development of artificial intelligence (AI) in medical 
imaging (9). AI techniques, including machine learning (ML) 
and deep learning (DL), have shown promising potential in 
various medical applications, particularly medical imaging. 
These AI-driven approaches can automatically analyze com-
plex patterns within images, offering a powerful means to 
extract valuable information from medical data (10). One such 
application is radiomics, an emerging field that involves the 
high-throughput extraction and analysis of quantitative fea-
tures from medical images and converting these features into 
decision support tools. Likewise, radiogenomics is a devel-
oping branch of radiomics that involves computational 
methods and combines the fields of radiology and genomics. 
The term "radiogenomics" is a compound word created by 
merging "radiology" and "genomics" (11,12). Radiomics ap-
proach can utilize both hand-crafted texture analysis and ML/ 
DL techniques to generate robust and reproducible features. 
Hand-crafted texture analysis involves manually extracting 
predefined features, such as shape, intensity, and texture, 
which are then used as input for ML algorithms. In contrast, 
DL methods, such as convolutional neural networks (CNNs), 
can automatically learn to identify relevant features directly 
from the image data without requiring manual feature ex-
traction (13,14). 

Magnetic resonance imaging (MRI) provides detailed 
images of soft tissues, allowing for more accurate identifi-
cation of imaging features linked to molecular alterations (15) 
since it provides both functional and anatomical information 
on breast tissue, such as blood flow, tissue perfusion, and 
tissue composition, all of which can be related to underlying 
genetic and molecular dysregulation (16,17). In addition, 
breast MRI is also useful for predicting Ki-67 discordance 

between core-needle biopsy and surgical samples (18). 
Radiogenomic prediction of biomarkers has paved a long 
way to reach its current developed form (19). MRI-based 
radiomics, which combines the advantages of MRI with 
radiomics, is an attractive tool for predicting Ki-67 expres-
sion levels in solid tumors such as brain tumors (20), cho-
langiocarcinoma (20), soft tissue sarcoma (21), hepatocellular 
carcinoma (22), and bladder cancer (23). Previous meta- 
analyses have revealed that MRI-based radiomics approaches 
have an excellent diagnostic performance in predicting 
lymph node metastasis of breast cancer (24), pathological 
complete response to neoadjuvant chemotherapy (25), di-
agnosis of triple-negative breast cancer (26) as well as dif-
ferentiation of breast cancer molecular subtypes (27). 
However, a systematic review and meta-analysis evaluating 
the diagnostic performance of MRI-based radiomics for 
predicting Ki-67 is still lacking. Thus, this study aims to 
systematically review MRI-based radiomics methods for 
predicting Ki-67 in breast cancer and provide a pooled result 
of their diagnostic accuracy. 

MATERIALS AND METHODS 

Statement of Design 

The Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses of Diagnostic Test Accuracy Studies 
(PRISMA-DTA) guidelines were followed for conducting 
this systematic review (28) (Table S1). There was no over-
lapping systematic review related to the topic of this study in 
the Cochrane library. 

Population, Intervention, Comparison, Outcomes (PICO)  

• Population: Patients with breast cancer who had a pre-
operative MRI and subsequent histological and im-
munohistochemical evaluation of their Ki-67 expression 
following surgical resection or biopsy.  

• Intervention: Preoperative MRI imaging of tumors was 
used in radiomics analysis to categorize tumors into 
groups based on high and low Ki-67 expression.  

• Comparison: Assessing the discriminative ability of 
radiomics approaches compared to conventional mole-
cular subtype testing (IHC).  

• Outcomes: Evaluating the utility of radiomics to classify 
tumoral lesions into the correct molecular subgroups with 
a diagnostic test accuracy study design (e.g., providing 
receiver operating characteristic (ROC) curve analysis). 

Search Strategy 

Two independent authors (both experts in radiomics analysis 
for more than 2 years) electronically searched the PubMed, 
Web of Science, and EMBASE databases on March 10, 
2023, for studies relating to our research questions. The 
following search terms were used: (Breast Cancer) AND 
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((Radiomics) OR (Machine Learning) OR (Deep Learning)) 
AND (Ki-67) AND (MRI). A detailed search strategy is 
presented in Tables S2–5 (Supplementary Materials). There 
was no restriction on the year of publication, and only re-
search published in the English language was considered. All 
records were imported to Mendeley Reference Manager, 
and duplicates were removed. First, two reviewers screened 
the titles and abstracts of articles and removed irrelevant 
studies. The full text of each removed study was also re-
viewed by the other author. Then, a thorough full-text 
reading was performed by both authors to include studies 
relevant to our research questions. Disagreements were 
solved by reaching a consensus. An additional search was also 
conducted by another author (with more than ten years of 
experience in conducting systematic reviews) in Google 
Scholar as our supplementary database to identify missing 
publications. 

Inclusion and Exclusion Criteria 

The following inclusion criteria applied to study enrollment 
in qualitative synthesis: (1) studies involving patients diag-
nosed with breast cancer histopathologically and their Ki-67 
expression status was determined by IHC staining, (2) studies 
that performed conventional breast MRI of tumors before 
surgery, (3) studies that aimed to assess diagnostic test ac-
curacy of MRI-based radiomics for predicting Ki-67 at least 
by reporting values of area under the ROC curve (AUC). 
However, for quantitative synthesis (meta-analysis), only 
studies with sufficient data to reconstruct the 2 × 2 con-
tingency table were included (at least by providing an ROC 
plot). The following exclusion criteria applied to study en-
rollment in qualitative synthesis: (1) reviews, (2) case reports, 
(3) animal studies, (4) comments, (5) editorials, (6) abstracts, 
(7) meeting reports, (8) book chapters, and (9) articles which 
their languages were not English. For studies with cohort 
overlap, the most recent study or the one with a larger 
sample size was included in the quantitative synthesis. 

Data Extraction 

Following general data were extracted from the included stu-
dies: (1) first author's name, (2) year of publication, (3) number 
of institutions, (4) number of lesions (for available Ki-67 status), 
(5) age of patients, (6) route of specimen sampling, (7) cut-off 
value for Ki-67, (8) scanner manufacturer, (9) scanner magnetic 
field, and (10) imaging sequences. Detailed extracted data from 
the included studies were as follows: (1) ROI structure (e.g., 
3D vs. 2D), (2) ROI segmentation (e.g., automatic vs. manual), 
(3) number of extracted features, (4) number of selected fea-
tures, (5) feature extraction software, (6) imaging features, (7) 
feature processing algorithm, (8) modeling algorithm, (9) type 
of cross-validation, and (10) use of independent validation. 
Following quantitative data were extracted for meta-analysis: 
(1) the number of positive and negative cases, (2) 2 × 2 tables 
with true positive, true negative, false positive, and false nega-
tive values. When comparing the diagnostic performance of 

various algorithms on the same sample, the algorithm that 
produced the best classification results was chosen. If a study 
only provided a ROC plot without the sensitivity (SEN) and 
specificity (SPEC) values in the text, we adopted the top-left 
method for extracting SEN and SPEC according to the ROC 
curve. If a study integrated MRI with another imaging mod-
ality (e.g., PET or ultrasound), the data for the MRI modality 
was included in the meta-analysis. 

Methodological Quality Assessment 

QUADAS-2 
Quality Assessment of Diagnostic Accuracy Studies-2 
(QUADAS-2) tool for quality assessment of all studies was 
used with modified signaling questions by two independent 
reviewers (28). The risk of bias in each section was assessed 
using the following questions in the RevMan software, 
version 5.3. 

Patient selection questions: 
Were the inclusion/exclusion criteria specified? 
Was the type of study specified (retrospective vs. pro-

spective)? 
Were the patients' characteristics specified?  

a) Index test questions: 
Where imaging acquisition protocols and segmentation 
methods detailed? 
Was the image processing approach detailed? 
Was a validation technique used?  

b) Reference standard question: 
Is the reference standard likely to correctly classify the 
target condition?  

c) Flow and timing question: 

Did all patients receive the same reference standard? 
Was biopsy performed after MRI acquisition? 

RQS 
RQS (Radiomic Quality Score) was employed to ensure the 
rigor and reproducibility of radiomic studies. This metric 
comprises a set of criteria a radiomic study must meet to be 
considered high quality. 

The RQS is comprised of 16 components in the radiomics 
workflow (Table S5). A total score ranging from − 8–36 
points is produced by rating each of the 16 components of 
the score, with − 8–0 points denoting 0% and 36 points 
representing 100% of total points (29,30). Two reviewers 
independently assessed the RQS of the articles, and any 
disagreement was solved by discussion. Table S5 
(Supplementary Materials) shows each RQS item with its 
interpretation. 

Statistical Analysis 

We used the MIDAS module in STATA software, version 
14.2, to conduct the meta-analysis. Using bivariate random 
effects modeling, we calculated the pooled sensitivity and 

Academic Radiology, Vol 31, No 3, March 2024 MRI-RADIOMICS AND KI-67 IN BREAST CANCER  

765 Descargado para Biblioteca Medica Hospital México (bibliomexico@gmail.com) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en 
marzo 20, 2024. Para uso personal exclusivamente. No se permiten otros usos sin autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.



specificity along with their 95% confidence intervals (CIs). 
Coupled forest plots and hierarchical summary receiver op-
erating characteristic curves were generated to display the 
results visually. Meta-regression analyses were performed to 
further investigate the sources of study heterogeneity by 
including the covariates in a bivariate model. Heterogeneity 
across the included studies was assessed using the Cochran Q 
test, where a p-value <  .05 indicated the presence of het-
erogeneity. Based on the Higgins I2 statistic, values above 
50% indicated high heterogeneity (31). A random-effects 
model was used to analyze pooling studies and effect size, 
showing that heterogeneity is considered when predicting 
the distribution of real effects across investigations. The 
threshold effects were also evaluated in Meta-disc software, 
version 1.4. The Deek's asymmetry test was used to establish 
statistical significance, and a Deek's funnel plot was made to 
assess publication bias (32). The trim-and-fill method was 
used to calculate the publication bias when a significant 
publication bias was found. To evaluate clinical utility, post- 
test probability was calculated, and a Fagan plot was gener-
ated. All p-values under 0.05 were considered significant. 

RESULTS 

Literature Search 

Our electronic search yielded a total of 782 studies. Following 
the removal of 106 duplicate studies, the titles and abstracts of 
the remaining articles were screened, and 578 articles were 
excluded. Eventually, 68 articles were excluded due to a lack 
of DTA design or not using AI models (Fig 1). After full-text 
reviews, 31 articles (33–63) were deemed eligible for inclusion 
in the systematic review. Due to cohort overlap  
(36,42,46,53,61), random splitting (57), providing only AUCs  
(62,63), or not providing sufficient data for drawing 2 × 2 
tables (58,59), 10 studies were not included in the meta- 
analysis. Figure 1 depicts the study selection flowchart. 

Characteristics of Included Studies 

Table 1 shows the general characteristics of the studies included 
in the systematic review. Almost 80% of studies (25/31) were 
published after 2020. Nearly two-thirds (21/31) of the studies 
were conducted in China (36–40,42–48,51–55,59–61,63), and 
the rest in Italy (33,35,41,56,58), Germany (34,50), South 
Korea (49), Turkey (57), and the USA (62). While two studies 
utilized multi-center data (35,63), the prediction of Ki-67 was 
carried out using data from a single center in both studies. Most 
studies had a retrospective design (28/31), while only one was 
prospective (59), and two had no specified study design (33,41). 
Only nine studies clearly mentioned that they used surgical 
specimen as the unique route of tissue sampling for IHC eva-
luation (36,38,40,43,49,54,59,60,63), while seven studies used 
biopsy (42,44,46,48,53,56,57), seven studies did not mention 
clearly which method was used (33,35,37,47,51,55,62), and 
eight studies used a combination of both surgical specimen and 

biopsy (varying between patients) (34,39,41,45,50,52,58,61). In 
22 studies, the cut-off value for Ki-67 expression in IHC 
staining was 14% (34–38,40–42,45–49,51–53,55,58–60,62,63), 
and one study used two cut-off values (14% and 20%)(57). The 
manufacturers of the scanners were Siemens (15/31) (33–35, 
41,42,44,47,48,50,51,53,54,59,61,63), GE (9/31) (36,37,43, 
45,55–58,60), Philips (5/31) (36,38,40,49,52), and a combi-
nation of Siemens and GE (2/31) (39,62). The magnetic field 
strength of scanners was 3.0 T in 23 studies (33,35,37, 
38,40–51,53–55,58,60,61,63), 1.5 T in six studies (34,36, 
52,56,57,59), and a combination of both in two studies (39,62). 
Four studies utilized deep learning-based radiomics (38,39, 
44,52). Dynamic contrast-enhanced (DCE) and T1W-contrast- 
enhanced MRI were commonly utilized imaging techniques 
for image acquisition (27/31) (33–37,39–46,48–59,62,63), fol-
lowed by diffusion-weighted imaging (DWI) (16/31) (33,35, 
38,40,44,45,48–52,55,57,58,60,61). Only one study used DKI 
and IVIM imaging methods (60). The previously mentioned 
methods were also commonly used together. In combination 
with MRI, positron emission tomography (PET)(33,50), ul-
trasonography (US) (39), and digital mammography (DM)/di-
gital breast tomosynthesis (DBT) (45) were used as well. 
Detailed characteristics of the included studies are mentioned in  
Table 2. Regions of interest (ROI) structure was 3D (15/31)  
(33–35,40–42,47,51,55–59,62,63), 2D (7/31) (36,37,43,44, 
46,49,52), a combination of both (2/31)(39,40), or not men-
tioned explicitly (7/31) (38,45,48,50,54,60,61). ROI delinea-
tion was performed manually in almost half of the studies (15/ 
31) (35,36,38,40,43–46,52,54,55,57,60,61,63), then semi-
automatically (10/31) (33,37,41,46,50,51,56,58,59,62), and 
automatically (6/31) (39,42,47,48,53,62). PyRadiomics was the 
most frequently used software (8/31) (34,35,40,44,45,55–57) 
for feature extraction, followed by in-house MATLAB (5/31)  
(36,41,46,58,62). For feature processing/reduction, LASSO 
was a commonly utilized algorithm (12/31) (36,37,40, 
45–48,50,54,55,57,63). Similarly, logistic regression (LR) was 
frequently used for model construction (18/31) (34,36,40–49, 
51,54,59–62), followed by random forest (RF) (10/31)  
(33–35,40,49,53,56,58,62,63), support vector machine (SVM) 
(9/31) (35,37,38,40,44,49,50,55,63), and naive Bayes (NB) (5/ 
31) (34,35,37,49,63). Cross-validation was also utilized for 
model construction in more than two-thirds of the studies (23/ 
31) (33–35,37,40,42,44,46–58,61–63). Five studies (42,44,48, 
53,61) used data from the First Affiliated Hospital of Zhejiang 
Chinese Medical University. Among them, one was older (42); 
therefore, an updated radiomic study that used a larger over-
lapping cohort (48) was included in the meta-analysis. Two 
studies (53,61) did not specify the period of patient enrollment, 
and they were not included in the meta-analysis. Therefore, 
only two studies from this cohort (44,48) were included in the 
meta-analysis as the periods that patients enrolled in the study 
were different (2007–2011 vs. 2013–2017). Two studies used 
data from Shengjing Hospital of China Medical University  
(46,55), and the one with higher classification ability (55) was 
included in the meta-analysis. 
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Figure 1. PRISMA flow chart of the study selection procedure for this systematic review and meta-analysis. 
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Two additional studies, both conducted at Guangdong 
Provincial People's Hospital, raised concerns about potential 
cohort overlap (36,52). From these, the latest study (52), 
distinguished by superior classification and a larger sample 
size, was chosen for inclusion in the meta-analysis. 

The study by Santucci et al. (58) analyzed data using a cut- 
off of 14% for Ki-67 but reported the number of positives 
and negatives with a cut-off of 20%. Therefore, it was 
omitted from the meta-analysis. In addition, the study by 
Sun et al. (59) was also not included in the meta-analysis due 
to a lack of reporting the number of positive and negative 
Ki-67 lesions. Likewise, the study by Kayadibi et al. (57) was 
not considered in the meta-analysis due to randomly splitting 
training and test groups without reporting the number of 
positives and negatives in each set. One study (44) only 
provided data for the validation cohort. Tables S6 and S7 
provide detailed quantitative data extracted from the training 
and validation cohorts. 

Quality Assessment 

QUADAS-2 
Based on QUADAS-2, the risk of bias and applicability 
concerns for the included studies are shown in Figure 2. In 
the patient selection domain, the risk of bias was low overall 
and high only in a few studies due to not mentioning study 
design (retrospective vs. prospective) or inclusion/exclusion 
criteria (Fig 2a). Also, overall applicability concern was low 
in this domain (Fig 2b). Only one study included some pa-
tients receiving chemotherapy (Kayadibi et al.), and another 
(Ma et al.) did not clearly mention inclusion and exclusion 
criteria. Similarly, the overall risk of bias for the index test 
was lower than 25% and only high in several studies due to 
not using any validation method. Two studies that combined 
MRI with other imaging modalities did not report separate 
results for their radiomics analysis, leading to some applic-
ability concerns in the index test domain for matching with 
review questions. Major concerns were raised in the re-
ference standards section since one-fourth of studies used 
biopsy as the only route of tissue sampling, and almost half of 
the studies either used both biopsy and surgical specimens 
(different per patient) or did not mention the sampling route. 
Since all studies matched with the review questions for the 
reference standard section (histopathological evaluation), low 
applicability concerns were detected for this domain. Simi-
larly, a high or unclear risk of bias was detected in the flow 
and timing domain as some studies did perform biopsies 
before MRI acquisition or used different types of sampling 
per patient (surgical specimens or biopsy) for histopatholo-
gical evaluation of Ki-67. Taken together, the quality of the 
included articles was almost acceptable according to the 
QUADAS-2 assessment. 

RQS 
The 31 studies had a mean RQS of 5.90, corresponding to 
16.6% of the total score, a median of 5, and a range of − 1 Ta
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(0%) to 12 (33%). Approximately 40 percent of the studies 
received a score below 10% (Fig 3). "Well-documented 
image acquisition protocols", "discrimination statistics", and 
"biological correlation" were performed for all the included 
studies. "Multiple segmentation" and "feature reduction" 
were also performed in more than 75% and 90% of the 
studies, respectively. One-fourth of studies provided cut-off 
points for their models. None of the included studies con-
sidered "phantom study" and "cost-effectiveness analysis". 
Only one study received the score for "imaging at multiple 
time points" due to using a temporal validation cohort (52). In 
addition, the items including "potential clinical application", 
"open science reporting", and "multivariable analysis" re-
ceived scores in one (45), two (56,63), and two (58,62) 
studies, respectively. Likewise, calibration statics were per-
formed in three studies (45,56,60), and only one (59) had a 
prospective design. The overall low RQS score was due to 
not using independent validation cohorts by most studies 
(20/31), leading to a loss of 5 points in the "validation" item. 
Regarding the "comparison to gold standard" item, a full 
score was given only to studies that used surgery as the un-
ique route of tissue sampling for histopathological assessment. 
Detailed scoring for all of the studies is provided in Table S8 
(Supplementary Materials). 

Meta-analysis 

Diagnostic Test Accuracy Analysis 
20 training cohorts and five independent validation cohorts 
were pooled separately. In training and validation cohorts, 
pooled sensitivity, specificity, positive likelihood ratio 
(PLR), negative likelihood ratio (NLR), and diagnostic odds 
ratio (DOR) were 0.80 [95% CI, 0.73–0.86] vs. 0.81 [95% 
CI, 0.72–0.87], 0.82 [95% CI, 0.78–0.86] vs. 0.73 [95% CI, 
0.62–0.82], 4.6 [95% CI, 3.4–6.1] vs. 3.0 [95% CI, 2.1–4.2], 
0.24 [95% CI, 0.17–0.34] vs. 0.26 [95% CI, 0.18–0.37], and 
19 [95% CI, 10–35] vs. 11 [95% CI, 7–19]. As expected, the 
area under the curve (AUC) for the summary ROC plot of 
validation cohorts 0.84 [95% CI, 0.80–0.87] was slightly 
lower than training cohorts 0.88 [95% CI, 0.85–0.91]. The 
coupled forest plots and SROC curves are represented in  
Figures 4–6. 

Heterogeneity Analysis 
I2 statistics did not reveal significant heterogeneity for 
sensitivity (I2 =44.2%) (p-value = 0.13) and specificity 
(I2 = 18.49%) (p-value = 0.30) in validation cohorts. 
However, the heterogeneity for sensitivity (I2 = 86.58%) 
and specificity (I2 = 81.89%) in training cohorts was 
severe (p-values = 0.00), making subgroup analysis ne-
cessary. In addition, the threshold analyses for both sets 
were performed in Meta-DiSc software to calculate 
Spearman's correlation coefficient between the sensitivity 
logit and the specificity logit. However, for both 
cohorts, the estimated correlation was not significant 
(p-value > 0.05). Ta
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Heterogeneity Exploration and Meta-regression 
We used numerous covariates to investigate their contribution to 
study heterogeneity (Table 3). We found out that the following 
factors caused significant heterogeneity in the meta-analysis ac-
cording to the joint model analysis using meta-regression: mag-
netic field strength of scanner (3.0 T vs. 1.5 T) (p-value = 0.00), 
scanner manufacturer (p-value = 0.00), ROI structure (2D vs. 
3D) (p-value = 0.00), MRI imaging method (contrast- 
enhanced vs. diffusion-weighted imaging) (p-value = 0.00), 
reference standard for measuring Ki-67 (biopsy vs. surgery) 
(p-value = 0.00), Ki-67 cut-off (≤ 14 vs. > 14) 
(p-value = 0.04), type of radiomics algorithm (deep learning vs. 
conventional) (p-value = 0.02), type of modeling algorithm 
(logistic regression vs. other) (p-value = 0.05), feature extraction 
software (PyRadiomics vs. other) (p-value = 0.00), and feature 
reduction algorithm (LASSO vs. other) (p-value = 0.00). 

Subgroup Analysis 
According to the subgroup analysis, studies with sample sizes 
smaller than 150 had a higher pooled sensitivity (85% vs. 
78%)(p-value = 0.20, not significant) and specificity (86% 
vs. 80%) (p-value = 0.00). In addition, in studies in which 
we used the top left method for calculating the 2 * 2 table, 
pooled specificity (86% vs. 81%) (p-value = 0.06) was 
higher. In comparison, sensitivity was significantly lower 
(78% vs. 81%) (p-value = 0.02) than those studies that re-
ported enough data. Our subgroup analysis also revealed 
interesting findings. We found that studies that used Philips 
scanners had a significantly higher specificity compared to 
other scanners (87% vs. 80%) (p-value = 0.05). In addition, 
combining features derived from contrast-enhanced MRI 
with DWI could increase sensitivity (from 76% to 
84%) (p-value = 0.18, not significant) and specificity (from 
82% to 83%) (p-value = 0.05). Likewise, studies that used 
LR for model construction had a significantly lower sensi-
tivity (75% vs. 84%) (p-value = 0.00) and specificity (76% 
vs. 84%) (p-value = 0.00) than those that used other algo-
rithms (e.g., LDA, MLP, SVM, AB, or RF instead). 
Similarly, those studies that used LASSO for feature reduc-
tion had a significantly lower specificity (78% vs. 86%) (p- 
value = 0.00). Studies that tissue sampling was performed 
only via the surgical route had a lower sensitivity (77% vs. 
81%) (p-value = 0.12, not significant) and specificity (83% 
vs. 84%) (p-value = 0.00) compared to those that used 
biopsy alone or in combination with surgery. Although deep 
learning-based radiomics had a higher pooled sensitivity 
(93% vs. 77%) (p-value = 0.83) and specificity (90% vs. 
80%)(p-value = 0.10) compared to conventional radiomics 
methods, due to the small number of deep learning-based 
studies (n = 3 vs. n = 17), these differences were not statisti-
cally significant (p-value > 0.05). The results of the 
subgroup analysis are summarized in Table 3. 

Sensitivity Analysis 
We removed every study individually and pooled the re-
maining studies to investigate whether it could impact meta- 

Figure 2. Risk of bias and applicability concerns according to 
Quality Assessment of Diagnostic Accuracy Studies-2 tool: (a) per 
study assessment (b) per domain summary. 
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Figure 3. Methodological quality assessment based on the RQS tool. (a) Proportion of studies per different RQS range percentages. (b) 
Average points per each RQS item. RQS, radiomics quality score. 

Figure 4. Forest plots of the sensitivity and specificity of MRI radiomics for prediction of Ki-67 in breast cancer (training cohorts). 
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Figure 5. Forest plots of the sensitivity and specificity of MRI radiomics for prediction of Ki-67 in breast cancer (validation cohorts). 

Figure 6. Summary receiver operating characteristic curves of MRI radiomics for predicting Ki-67 in training (a) cohorts and validation (b) 
cohorts. 
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analysis. However, no significant change in AUC, sensitivity, 
specificity, PLR, NLR, and DOR was observed when each 
study was excluded. 

Publication Bias 
Deeks's test was used to investigate potential publication bias 
in the included studies; however, the funnel plot asymmetry 
test did not reveal a significant publication bias in both va-
lidation (Fig7a, p-value = 0.50) or training cohorts (Fig 7b, 
P-value = 0.40). 

Clinical Utility 
According to the Fagan plot for training cohorts (Fig 8a), when 
the pretest was positive, MRI-based radiomics could boost the 
post-test probability to 53% from 20% with a PLR of 5 for 
predicting Ki-67. When the pretest was negative, it could re-
duce the post-test probability to 6% with an NLR of 0.24. 
Similar results were observed in the validation cohorts (Fig 8b). 

DISCUSSION 

Ki-67, serving as a proliferation index, provides valuable 
information regarding tumor aggressiveness. Therefore, ac-
curate estimation of Ki-67 is essential for both tumor clas-
sification and prognosis prediction (3). At present, 
conventional core needle biopsies are employed to acquire 
breast tissues necessary for immunohistochemical analysis (8). 
While Ki-67 heterogeneity exists in breast cancer, ranging 
from 1% to 90% within different intratumoral regions, it is 
crucial to assess the entire tumor for a comprehensive analysis  
(36,64). Imaging approaches can be beneficial as they pro-
vide much more information about tumor heterogeneity. In 
addition, recent studies reveal that pre-operative core needle 
biopsy can significantly elevate the Ki-67 index (65–67), 
subsequently worsening disease outcomes in HER2-negative 
patients (66,67). Thus, utilizing less invasive methods such as 
MRI appears promising. Another advantage of imaging over 
the biopsy is its ability to evaluate surrounding tumor en-
vironments (peri-tumoral regions) that reflect lymphatic in-
vasion and infiltration (45). 

Radiomics is a specialized field in medical imaging that 
entails extracting and analyzing quantitative features from 
medical images. This process holds the potential to offer 
supplementary insights into Ki-67 expression in breast cancer 
by scrutinizing the distinctive characteristics of breast tumors 
depicted in medical images. (44). Constructing models using 
machine learning (60) or deep learning (36) algorithms can 
provide key information about Ki-67 expression in breast 
cancer. This could complement traditional pathology 
methods, potentially reduce the need for invasive biopsies, 
and guide treatment decisions. 

This systematic review and meta-analysis explored whe-
ther MRI-based radiomics can predict Ki-67 expression in 
patients with breast cancer. By pooling the results of 20 
training cohorts, we observed that MRI-based radiomics 

methods are promising for Ki-67 prediction, with a pooled 
sensitivity, specificity, and AUC of 0.80, 0.82, and 0.88, 
respectively. The corresponding values for five independent 
validation cohorts were 0.81, 0.73, and 0.84, respectively. 

In training cohorts, significant heterogeneity was ob-
served, which made heterogeneity exploration necessary. 
Initially, we assessed Spearman's correlation coefficient to 
eliminate the possibility of a threshold effect. The results 
indicated that a threshold effect is unlikely to cause hetero-
geneity (p-value > 0.05). Then, we investigated other po-
tential sources of heterogeneity using univariable meta- 
regression and identified numerous implicated variables. 

As mentioned in previous systematic reviews (68,69), 
magnetic field strength and manufacturer of scanners are two 
crucial factors that influence algorithm performance, two 
factors that also contributed to the heterogeneity of our re-
sults based on meta-regression. We found that using deep 
learning radiomic methods is a great cause of between-study 
heterogeneity. Recently, in a meta-analysis by Liang 
et al. (70), the performance of deep learning-based MRI 
radiomics was higher than conventional radiomcis with 
machine learning for prediction of response to neoadjuvant 
chemotherapy in breast cancer. In contrast, a meta-analysis 
by Zhang et al. (71) showed that conventional MRI radio-
mcis with machine learning methods could act slightly better 
than deep learning based-studies for predicting axillary 
lymph node metastasis. Similar to our study, the number of 
deep learning-based articles was few in both meta-analyses. 
Therefore, whether deep learning radiomics are superior to 
conventional radiomics for predicting Ki-67 expression re-
quires more investigation. 

Different ROI segmentation methods (2D vs. 3D) were 
also detected as a possible source of heterogeneity. 
Unfortunately, some included studies did not clearly men-
tion ROI structure, forcing us to exclude them while doing 
subgroup analysis. Whole tumor analysis is only possible 
when 3D tumor segmentation is applied. This method also 
has the advantage of assessing tumor heterogeneity compared 
to 2D segmentation (72). In our subgroup analysis, only 
three studies used 2D segmentation, and surprisingly, their 
pooled specificity was significantly higher than 3D methods. 
Thus, evaluating the performance of different segmentation 
structures should be investigated in future studies. 

LR is a widely applied machine-learning modeling algo-
rithm for constructing radiomics signatures. However, it has 
disadvantages like lower classification accuracy (73). This 
factor contributed to interstudy heterogeneity, and based on 
subgroup analysis, we found that studies that used LR for 
model construction had a significantly lower sensitivity and 
specificity than newer algorithms such as SVM and AdaBoost. 
A similar finding was observed for studies that also used the 
LASSO algorithm for feature reduction. These findings must 
be taken into consideration in future studies for a more ac-
curate classification ability of radiomics signatures. 

Single-parameter MRI features derived from ADC maps 
(e.g., ADC mean) and DCE-MRI parametric maps (e.g., 
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Figure 7. Deeks’ funnel plot with superimposed regression line. In both training (a) and validation cohorts (b), the funnel plot asymmetry test 
revealed no publication bias (P-values > 0.10). 

Figure 8. Fagan plots for assessing the clinical utility in training (a) and validation (b) cohorts. 
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Ktrans, Kep, Ve, and Vp) are strongly correlated with Ki-67 
expression in breast cancer (73). Therefore, these features 
have frequently been utilized in radiomics studies to detect 
breast tumors with high Ki-67 expression (41,47,54). Pre-
vious meta-analyses have shown that combined DCE-MRI 
and DWI have superior diagnostic accuracy than either 
DCE-MRI or DWI alone for differentiating malignant and 
benign breast lesions (74). In line with this, our subgroup 
analysis also yielded similar results for combined DCE-MRI 
and DWI radiomics analysis for predicting Ki-67 in breast 
cancer. Our investigation comparing DWI and DCE-MRI 
for distinguishing highly expressing Ki-67 lesions yielded 
noteworthy findings. Notably, ADC demonstrated superior 
efficacy in this context, suggesting that it could stand alone as 
a reliable modality when circumstances limit the use of 
multiple MRI techniques. The observed advantage of ADC 
may be attributed to its sensitivity to tissue microstructure 
and cellularity, aligning with the characteristics of highly 
expressing Ki-67 lesions. While acknowledging the study's 
limitations, including small number of studies using DWI 
alone compared to DCE-MRI alone, our results imply that, 
under certain conditions, prioritizing ADC in clinical pro-
tocols may offer a pragmatic and practical approach. These 
findings contribute valuable insights for researchers, opening 
avenues for further investigations into refining imaging 
strategies for lesions with high Ki-67 expression. 

We highlighted the role of various feature extraction soft-
ware, including PyRadiomics, in contributing to the observed 
heterogeneity of results. The variability stems from diverse 
algorithmic approaches and parameter settings across different 
software. This diversity, rather than being inherently detri-
mental, underscores the nuanced impact of the choice of 
feature extraction software on study outcomes. Recognizing 
this variability, we emphasize the importance of understanding 
and transparently reporting the software employed, as it sig-
nificantly influences the radiomic landscape. 

Our meta-regression analysis underscores the multifaceted 
nature of inter-study heterogeneity, revealing influential 
factors such as the route of tissue sampling (biopsy vs. sur-
gery) and the choice of Ki-67 expression cut-off. 
Importantly, existing evidence suggests that the biopsy pro-
cess may dynamically impact Ki-67 expression in breast le-
sions over time. Simultaneously, the variability introduced 
by employing a specific Ki-67 cut-off emphasizes the im-
portance of standardization in defining high expression. The 
interplay of these factors significantly contributes to the 
observed heterogeneity in radiomic analyses. Acknowledging 
these influences, our findings highlight the nuanced con-
siderations associated with both sample acquisition methods 
and the chosen Ki-67 cut-off. Transparent reporting and 
thoughtful consideration of these variables are essential steps 
toward enhancing result interpretation and comparability 
across radiomics studies. 

We also evaluated the quality of the included studies in 
this review using QUADAS-2 and RQS, which are routi-
nely used for quality assessment in diagnostic test accuracy 

and radiomic studies, respectively. According to QUADAS- 
2, there were some risks of bias in reference standards as well 
as flow and timing domains. First, one-fourth of studies used 
biopsy as the method of tissue sampling, and more than half 
of the studies either did not mention the sampling method or 
used biopsy or surgery, different per patient. Second, the 
overall risk of bias in the flow and timing domain remained 
unclear as many studies did not mention whether MRI was 
performed before biopsy. In addition, if all patients do not 
receive a standard reference method for IHC evaluation 
(e.g., biopsy used in one and surgery in another), a bias 
occurs in the flow and timing domain. For this reason, some 
studies were detected with high risks of bias in the flow of 
timing domain. Overall, low applicability concern was de-
tected in patient selection, index test, and reference standard 
domains, making the quality of the included articles accep-
table. Unfortunately, the mean RQS point of the included 
studies was near 6, equivalent to 16.6% of the total score (6/ 
36). Generally, most systematic review articles receive more 
overall RQS scores than this value. One cause of this sig-
nificant difference was that in many of the included studies in 
our review, an independent validation cohort was not used 
for testing models' reproducibility, leading to a loss of at least 
5 points in this section as the minimum score of this item in 
studies that have a validation cohort is + 2. According to the 
RQS checklist, validation should be performed without re-
training; therefore, studies that only use cross-validation 
methods lost seven points compared to studies with an in-
dependent validation cohort. 

Compared to cross-validation methods, employing an 
independent validation cohort reduces the likelihood of 
overfitting, provides a more precise estimation of real-world 
performance, allows a more thorough assessment of the 
model's performance, and offers more generalizability. An 
independent validation cohort ensures that the model is as-
sessed using entirely new data, which is more unbiased and 
enables a more precise estimation of the model's perfor-
mance. That is why the "validation" item of the RQS tool is 
misinterpreted in systematic review articles (75). Our in-
vestigation did not find a significant link between RQS 
(Radiomics Quality Score) and the heterogeneity of results. 
While acknowledging the importance of study quality me-
trics, our study suggests that factors other than RQS played 
more substantial roles in shaping the observed variability 
across studies. This highlights the complexity of sources 
contributing to the heterogeneity of the results. Although 
RQS is adopted frequently in systematic review articles of 
radiomic studies, and it has been about five years since this 
tool was introduced, many newer checklists are emerging, 
indicating that the RQS might not be a completely ideal tool 
for assessing the quality of radiomics studies. 

Limitations 

This systematic review and meta-analysis has several limita-
tions that are necessary to mention: 
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a) Almost all of the included studies were retrospectively 
designed. Prospective studies are generally regarded as 
superior to retrospective studies due to standardized 
imaging protocols, timely and relevant radiomic feature 
extraction, standardized and blinded data collection, and 
optimized study design. These factors can all enhance the 
quality and relevance of the study results.  

b) Unfortunately, some studies were excluded from the 
meta-analysis due to probable or definitive cohort overlap 
and insufficient data reporting. Cohort overlap can lead to 
biased and inaccurate estimates in meta-analysis and 
should be carefully considered during study selection and 
analysis to ensure the validity and accuracy of the results.  

c) The lack of validation cohorts in most of the included 
studies caused a significant drop in the overall RQS score 
and hindered subgroup analysis in validation cohorts due 
to the small number of included studies.  

d) Many of the included studies did not mention the route of 
tissue sampling that subsequently caused unclear risks of 
bias in reference standard and flow and timing sections of 
the QUADAS-2 tool.  

e) Only a small number of studies used deep learning 
methods for model establishment. DL and CNN offer a 
more automated and efficient approach to feature ex-
traction, allowing for extracting high-level features from 
images. This makes them particularly suitable for radio-
mics studies, where the complexity and volume of med-
ical imaging data can be high. 

Future Perspectives 

In the future, researchers should consider these points:  

a) Further studies should use independent validation cohorts, 
especially external validation, as it is an essential step in 
developing radiomics models and helps to ensure their 
generalizability, robustness, clinical applicability, and 
regulatory approval. 

b) It is recommended to conduct an MRI before any inter-
vention, as there is evidence indicating an increase in Ki-67 
levels following core needle biopsy. This alteration in Ki- 
67 levels has been shown to impact patients' prognosis.  

c) Authors conducting radiomics studies are encouraged to 
design their research protocol according to current stan-
dards for scientific rigor, consistency, transparency, and 
clinical relevance. This can help increase the reliability 
and generalizability of the findings, ultimately leading to 
better patient care.  

d) Combining radiomic features with non-radiomic features 
(e.g., age and other clinical indicators) can lead to more 
comprehensive and accurate diagnostic performance.  

e) Transparent reporting of the diagnostic performance of 
radiomics models is essential since these data are necessary 
for conducting a DTA-type meta-analysis.  

f) Making code and data publicly available can significantly 
improve knowledge transfer and reproducibility of radiomics 

studies according to RQS guidelines. Thus, radiomics re-
searchers are encouraged to share their code and scans. 

CONCLUSION 

This systematic review and meta-analysis showed that MRI- 
based radiomics have a robust potential utility for predicting 
Ki-67 in breast cancer. However, in line with a previous 
meta-analysis that evaluated the diagnostic performance of 
radiomics for differentiating breast cancer subtypes (27), the 
pooled AUCs of existing studies in both validation and 
training cohorts were less than 0.90, indicating that these 
studies are currently in their early phases and restricting the 
possibility of using these tools as a supplement to current 
pathological assessments (e.g., biopsy or surgery) to predict 
Ki-67 expression very accurately. Therefore, more research 
is required to improve the diagnostic ability of radiomics for 
predicting Ki-67 in breast cancer. 
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