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KEY POINTS

� Artificial intelligence (AI) tools enable automated vertebral, disc, neuroforamen, canal, and facet
segmentation.

� AI may enhance spine imaging reconstruction improving image quality, acquisition time, and
reduced radiation dose.

� AI may assist characterizing common spine conditions: degeneration; infection; inflammation;
trauma; metastatic disease; and deformity.

� AI clinical deployment may assist semiautomated reporting under radiologist supervision to provide
more consistent, objective, and efficient reporting.
INTRODUCTION radiologists’ efficiency with end-to-end tools for
Recent artificial intelligence (AI) advances may
potentially transform all aspects of radiology
including acquisition, interpretation, and radiology
report generation, enhancing accuracy, efficiency,
and clinical utility.1–6

AI enables automated vertebral, disc, and canal
segmentation even with noise, artifacts, and
anatomic variations.7,8 Models for training large
data sets can identify complex features, enhancing
diagnosis and classification of fractures, tumors, or
degeneration.9 Specialized algorithms and varia-
tional autoencoders may reconstruct images from
undersampled/noisydata, resulting in faster acquisi-
tion timeswhile preserving diagnostic accuracy.10,11

AI capabilities present opportunities for clinical
applications in spine imaging: early detection
improving patient outcomes, enhanced diagnosis
and surgical planning, improved patient experi-
ence with faster acquisition times, and assisting
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With exponential increased publications on
novel imaging AI, assessing a particular
approach’s practical utility and clinical relevance
is challenging. This review presents an AI overview
for practical spine imaging and potential clinical
adoption.

OVERVIEW OF ARTIFICIAL INTELLIGENCE

AI broadly encompasses techniques enabling
computer systems to perform tasks typically
requiring human intelligence.13 AI algorithms
enable computers to learn and perceive, through
problem-solving, pattern recognition, decision-
making, and natural language understanding.

AI can be classified into two main categories:
narrow AI and general AI. Narrow AI systems
perform specific tasks: image recognition, lan-
guage translation, or playing chess and cannot
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generalize beyond their specific expertise.14 Gen-
eral AI represents autonomous systems that learn
and apply knowledge across various domains.
General AI, while a goal for future research and
development, is largely a theoretic discipline.
Although AI, “machine learning” (ML), and “deep

learning” (DL) are sometimes used interchange-
ably, there are major differences between each
of these related terms (Fig. 1).

Machine Learning

ML, the foundation of AI, is a subset focusing on
algorithms and statistical models enabling com-
puters to automatically learn andmake predictions
or decisions based on data. ML can be broadly
categorized into supervised, unsupervised, and
reinforcement learning.15

Supervised learning involves training a model on
labeled data, the input data and corresponding
output or target labels are provided. The model
learns to generalize from the training data and
make predictions or decisions on new, unseen
data. This approach is commonly used for classifi-
cation, regression, and object detection tasks in
medical imaging applications.16

Unsupervised learning trains models on unla-
beled data, discovering hidden patterns, structures,
or relationships. Clustering, dimensionality reduc-
tion, and anomaly detection are some common ap-
plications of unsupervised learning. In medical
Fig. 1. AI taxonomywithassociated learningparadigms.
(https://www.researchgate.net/figure/Taxonomy-of-AI-
and-its-sub-fields_fig1_352189762.) Khan, F.H.; Pasha,
M.A.; Masud, S. Advancements inMicroprocessor Archi-
tecture for Ubiquitous AI—AnOverview onHistory, Evo-
lution, and Upcoming Challenges in AI Implementation.
Micromachines 2021, 12, 665. https://doi.org/10.3390/
mi12060665.
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imaging, unsupervised learning techniques can
aid in tasks such as data exploration, grouping
similar images, or identifying outliers.17,18

In reinforcement learning, an agent interacts
with an environment and improves its performance
by receiving feedback (rewards or penalties). This
approach, used in robotics and control systems,
learns optimal actions through trial and error. It
has limited practical use in medical imaging but
has potential for future applications such as opti-
mizing imaging protocols or designing personal-
ized treatment plans.19
Deep Learning

DL, a subset of ML, has recently gained tremen-
dous success.1,20 It involves training artificial neu-
ral networks with multiple layers, allowing the
model to learn complex hierarchical representa-
tions directly from raw data. Neural networks,
mathematical or computer models mimicking the
structure and function of biological neural net-
works (the central nervous system—the brain),
consist of a large number of artificial neurons
made using a variety of connection techniques:
convolutional neural network (CNN), generative
adversarial networks (GANs), and recurrent neural
networks are examples.21

CNN, a widely used DL medical imaging archi-
tecture, excels in image reconstruction, segmen-
tation, and classification.22–25 AI’s success in
medical imaging is driven by the availability of
large, labeled data sets, advancements in compu-
tational power, and development of DL models.26
APPLICATIONS IN SPINE IMAGING
Image Reconstruction and Acquisition

AI may enhance spine imaging reconstruction,
improve image quality, acquisition time, and
reduce radiation dose.
AI can reduce MR imaging (MRI) and CT image

noise, using DL techniques learning noise patterns
in data. DL noise reduction algorithm improved
signal-to-noise ratio (SNR) of lumbar spine (LS)
MRI scans up to 30%.27 DL reconstruction algo-
rithms can enhance MR image resolution by
learning relationships between different coordi-
nates in the image, significantly improving LS MR
image quality.28,29

LS CT studies show DL-enhanced images have
significantly lower noise compared with the orig-
inal scan.30 Reducing radiation dose in LS CT
scans is an important direction in image recon-
struction from fewer data points with high-quality
images acquired at doses up to 72% lower than
standard of care (SOC).31
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Fast MR Acquisition

Reconstruction and noise reduction techniques
can also reduce LS MR imaging acquisition times.
A rapid LS MR imaging protocol, 3D imaging with
DL reconstruction, yielded 54% acquisition time
reduction.32

Fast MR acquisitions modify conventional imag-
ing protocol parameters, decreasing scan times
while maintaining resolution at the cost of
increased image noise (reduced SNR). Common
strategies shortening acquisition times exploit
k-space data redundancy or spatial correlation.
Modifications include reducing excitations, raising
bandwidth, and increasing parallel imaging fac-
tors. These acceleration approaches inherently
suffer from reduced SNR, blurring, resulting in
insufficient imaging quality. DL-based image
denoising methods applied to compromised fast
scan data can restore SNR, maintaining image
sharpness and SOC quality.33

Using a DL reconstruction method to improve
SNR and reduce artifacts (commercially available
AIR Recon DL, GE Healthcare) on LS MR images,
Han and colleagues demonstrated DL recon-
struction combined with fast acquisitions has po-
tential for diagnostic image quality noninferior to
SOC LS MRIs. The LS MR imaging protocol was
52% faster and able to provide scores noninferior
to the standard protocol for apparent SNR,
anatomic structure visualization, and diagnostic
confidence as evaluated in a blinded fashion by
one junior and two senior subspecialty radiolo-
gists34 (Fig. 2).

A prospective, randomized, multicenter study
assessed DL enhancement to preserve perceived
spine MR imaging quality despite 40% scan time
Descargado para Biblioteca Medica Hospital México (b
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reduction. Three experienced neuroradiologists
rated perceived superiority of 61 spine MR images
for SNR; spatial resolution; imaging artifacts; cord
delineation; cord/cerebrospinal fluid (CSF) contrast;
disc pathology; bone lesions; and facet/ligamen-
tous pathology. The readers assessed image con-
sistency for anatomy and pathology and found
overall diagnostic quality of DL-enhanced MR im-
ages statistically equivalent or subjectively better
(perceived benefits in SNR and artifact reduction)
than SOC across all assessed features, suggesting
potential for clinical practice utility.35

Synthetic Artificial Intelligence

Synthesizing new images from available images is
an active MR imaging research area. DL recon-
struction can create synthetic images from exist-
ing data sets. Virtually generated MR imaging
may make the physical acquisition of particular se-
quences no longer necessary. GANs can generate
synthetic images from different MR contrasts as
input. A GAN (generator network and discriminator
network) learns to synthesize realistic images
(generator) and distinguish real from fake (synthe-
sized) images (discriminator). During the learning
process, these networks compete against each
other, resulting in the generator network progres-
sively learning to synthesize images with more
and more realistic appearances.36

T2-weighted (T2W) fat sat (FS) spine sequences
are important, requiring significant scan time. Us-
ing GAN-generated T2WFS images from conven-
tional T1W and non-FS T2W images, Schlaeger
and colleagues compared synthetic T2WFS im-
ages to their true counterparts for image quality,
FS quality, and diagnostic agreement.
Fig. 2. Comparison of standard versus
fast versus fast DL50 imaging on sag
T1 axial T2 sequences. (A) L5–S1 transi-
tional anatomy, moderate NF stenosis
(solid arrow), severe L4–L5 facet
arthropathy (dashed arrows). (B) Cen-
tral annular fissure (solid arrow). These
features are well delineated on fast
DL50 images.34
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Apparent signal- and contrast-to-noise ratios
measured in true and synthetic T2WFS sequences
by two neuroradiologists were not significantly
different. Subjective image quality was graded
higher for synthetic T2WFS (P5.023). In a Turing
test, synthetic and true T2WFS could not be distin-
guished from each other. The inter-method agree-
ment between synthetic and original protocol
ranged from substantial to almost perfect agree-
ment for six evaluated spine pathologies. Overall
scan time was reduced approximately 40%
compared with conventional spine examinations.37

A multicenter, multireader study evaluated syn-
thetically created short tau inversion recovery
(STIR) spine MR images compared with acquired
STIR. A digital imaging and communications in
medicine (DICOM)-based DL application gener-
ated a synthetically created STIR series from
sagittal T1 and T2 images. Three neuroradiolo-
gists, one musculoskeletal (MSK) radiologist, and
one general radiologist rated STIR quality and
classified disease pathology; assessed presence/
absence of findings typically evaluated with STIR
in trauma. The radiologists evaluated either ac-
quired STIR or synthetically created STIR in a
blinded and randomized fashion with a 1-month
washout period. The interchangeability of ac-
quired and synthetically created STIR was
assessed using a noninferiority threshold of 10%.
For classification, there was a decrease in inter-

reader agreement expected by randomly intro-
ducing synthetically created STIR of 3.23%. For
trauma, there was an overall increase in inter-
reader agreement by 11.9%. The lower bound of
confidence for both exceeded the noninferiority
threshold, indicating interchangeability of synthet-
ically created with acquired STIR. Results showed
higher image quality scores for synthetic STIR over
acquired STIR (P<.0001). The investigators
concluded synthetic STIR spine MR images were
diagnostically interchangeable with acquired
STIR while providing significantly higher image
quality, suggesting routine clinical practice poten-
tial. The investigators also avoided the use of
GANs, which can be prone to introducing struc-
tures in synthesized images that are not present
in the source images.38

CT and MR imaging are complimentary,
routinely obtained for evaluation and surgical plan-
ning in spine patients. Roberts and colleagues
developed a DL algorithm producing 3D LS CT im-
ages from MR imaging data using a supervised 3D
cycle-GAN model, thus the potential to reduce pa-
tient radiation.36

They evaluated the accuracy of synthetic LS
CTs by comparing 24 clinically relevant measure-
ments on 20 matched synthetic CTs and true
Descargado para Biblioteca Medica Hospital México (bibliom
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CTs by four clinical evaluators (neurosurgeons
and radiologists). The outcome measured was
the mean difference in measurements performed
by the group of evaluators between real CT and
synthetic CTs. Measurements in the sagittal plane
had a10% relative error and pedicle measure-
ments in the axial plane were considerably less ac-
curate (relative error up to 34%). The investigators
concluded that computer-generated synthetic
CTs demonstrated a high level of accuracy when
performed in-plane to original MR images used
for synthesis. Measurements performed on axial
reconstructed images were less accurate, attribut-
able to the images being synthesized from nonvo-
lumetric sagittal T1W MR images.36
LOCALIZATION OF SPINAL STRUCTURES

Localization of spinal structures on imaging is
essential for accurate diagnosis and treat-
ment.7,8,39,40 They are used to enhance the perfor-
mance of end-to-end DL systems and also as
intermediate visualization tools that can assist
diagnosis. The finest form of localization is seg-
mentation, structural delineation from images.
Similarity of various vertebrae, curvature, hard-
ware artifacts, and transitional vertebrae are
some challenges developing and implementing
AI solutions for automatic labeling.41,42

Before DL, segmented structures were tradition-
ally processed with thresholding (classifying pixels
as foreground or background based on intensity,
texture features). More sophisticated techniques
such as contour modeling and watershed trans-
form group pixels iteratively based on image gradi-
ents improved performance.43

DL, a powerful tool for segmentation, can iden-
tify different structures from large data sets of
labeled images, without necessitating manual
feature engineering8 (Fig. 3).
DL models require relatively large, labeled data

sets, because as more labeled images become
available, the models tend to be more accurate.44

New DL architectures specifically for spine seg-
mentation tend to be more efficient and accurate
than standard DL architectures. Transfer learning,
a technique allowing DL models to be trained on
one task and subsequently applied to another
task, has been effective for spine segmentation.
Models trained on labeled images of other struc-
tures have shown significant performance im-
provements to spine segmentation.45

The U-Net architecture with skip connections
has been the de facto model to precisely localize
spinal structures using the encoder–decoder ar-
chitecture.46 Several improvements, such as
DeepLab that uses dilated convolutions and
exico@gmail.com) en National Library of Health 
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Fig. 3. Vertebral, disc, and paraspinal muscle segmentation results (first, second, and third columns,
respectively).8
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atrous spatial pyramid pooling, have become pop-
ular given their overall performance and ability to
capture multiscale contextual information for ac-
curate spine segmentation.47 A recent study using
U-Net achieved a dice score of 0.85 for segment-
ing discs on spine MR images.7,8,48,49 Using Deep-
Lab achieved a Jaccard index of 0.82 for vertebral
CT segmentation. Three-dimensional (3D) CNNs
have shown superior performance in segmenting
complex spine structures, achieving dice scores
over 0.90 for various structures.7,8
CLASSIFYING AND DIAGNOSING SPINE
PATHOLOGIES
Degenerative Spine

Given the increasing prevalence of spinal degener-
ative disease, there is great potential for AI-assisted
MLMR imaging interpretation to streamline care for
these patients. In providing rapid automated anal-
ysis of MR imaging scans, ML technology may
also assist in reducing radiologist workloads. ML
models can generate quantitative parameters
Descargado para Biblioteca Medica Hospital México (b
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from imaging data, which are time-consuming for
a radiologist to produce.
Spinal Stenosis

Clinically, spinal stenosis (SS) diagnosis relies on
subjective evaluation, and spine MRIs are essen-
tial for accurate evaluation. DL is promising in
automatically learning representative imaging fea-
tures to perform classifications. Initially focused on
automating vertebral numbering and disk classifi-
cation, DL more recently has assessed automated
SS grading. Studies have looked at individual
ordinal/multiclass (normal, mild, moderate, severe)
and binary/dichotomous stenosis grading (steno-
sis vs no stenosis; normal–mild vs moderate–se-
vere; normal-mild-moderate vs severe).

Lu and colleagues developed a DL model (Deep
Spine) to grade central canal (CC) and neural fora-
men (NF) stenosis using axial and sagittal T2W im-
ages. A large data set of LS MRIs was used but
relied on natural language processing labels from
existing radiology reports. Average class accuracy
ibliomexico@gmail.com) en National Library of Health 
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(normal, mild, moderate, or severe stenoses) was
70.6% CC and 67.1% NF stenosis.49

SpineNet,42 a multitask architecture, developed
automated classification of several spinal condi-
tions, including CC stenosis on sagittal and axial
T2W images.50 SpineNet achieved agreement of
65.7% for ordinal gradings (normal, mild, moder-
ate, or severe) compared with an expert radiologist
and 94% (k 5 0.75) for binary/dichotomous
grading of normal-mild-moderate versus severe
stenosis compared with an experienced orthope-
dic surgeon.51

Lateral Recess Stenosis

Hallinan and colleagues showed comparable
agreement with subspecialist radiologists for clas-
sifying CC and lateral recess stenosis, with slightly
lower agreement for NF stenosis on LS MR imag-
ing. Dichotomous classification (normal/mild vs
moderate/severe) showed good agreement for
both radiologists and DL model: k values 0.98,
0.98, and 0.96 CC; 0.92, 0.95, and 0.92 lateral re-
cesses; and 0.94, 0.95, and 0.89 NF (P < .001) for
an MSK radiologist, subspecialist radiologists 1
and 2, (31, 5 and 9 year experience, respectively).
The DL model also showed good agreement for
dichotomous classification of NF stenosis
(k 5 0.89; P < .001), which was slightly reduced
compared with subspecialist radiologists
(k 5 0.94, 0.95; P < .001). These results compare
favorably with the average DL model from the
SpineNet study, which had k values 0.82, 0.96
for ordinal and dichotomous classification of CC
stenosis, respectively (P < .001).40

Facet Arthropathy

Bharadwaj and colleagues proposed a two-staged
learning system that automatically evaluated T2W
axial LS MR images classifying CC and NF steno-
sis and for the first time facet arthropathy (Fig. 4).
Descargado para Biblioteca Medica Hospital México (bibliom
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The first stage—localization of anatomic regions—
was performant with excellent volumetric Dice
scores (well above 0.90) for the dural sac and
disk, and with no additional training or fine-
tuning, localization of the foramen and facet was
also favorable. In the second stage, the interpret-
able approach to multiclass grading (normal,
mild, moderate, severe) of CC stenosis was in
line with pairwise agreements between three radi-
ologists (two senior subspecialty radiologists each
with greater than 20 year experience; one junior
radiologist with 3 year experience) and signifi-
cantly outperformed a black-box CNN. Models
also showed accurate binary classification
(normal/mild vs moderate/severe) of both NF ste-
nosis and facet arthropathy with area under the
receiver operating characteristic (AUROC) curves
0.92 and 0.93, respectively (Fig. 5).
Facet arthropathy, prevalent in 15% to 45% of

patients presenting with chronic low back pain, is
a very important underdiagnosed etiology. In clin-
ical practice, MR imaging is used to identify disc
herniation, NF stenosis, and CC stenosis, whereas
facet arthropathy is often omitted as a descriptor
in radiology MR imaging reports. This approach
targets a more comprehensive evaluation of LS
MR imaging and assessment of features associ-
ated with back pain.7

Modic Changes

Modic changes (MCs), endplate–adjacent marrow
signal abnormalities representing sequela of struc-
tural and inflammatory changes, are hypothesized
to be potentially associated with pain. MC type 1:
edema or fibrovascular changes (hypointense
T1W, hyperintense T2W images); MC type 2: fatty
marrow (hyperintense T1W, iso-hyperintense
T2WFS, and non-FS T2W sequences, respectively);
MC type 3: sclerotic (hypointense on both se-
quences). The semiquantitative nature of MC clas-
sification is highly susceptible to variability in
Fig. 4. Overview of DL-pipeline. Axial
T2-weighted slices passed into V-Net
segmentation models obtain masks
for disc and dural sac (DDS). Geometric
rules based on DDS localize foramen
and facet bounding boxes and passes
into its corresponding classifier: Big
Transfer (BiT) CNN classifies lumbar SS,
foraminal stenosis, and facet arthrop-
athy. Lumbar SS interpretable classifi-
cation (decision tree) relies on
additional quantitative metrics ex-
tracted from the DDS segmentations.7
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Fig. 5. Second stage: landmark detec-
tion (facet localization) and binary
classification (facet arthropathy). Land-
mark coordinate regression system
uses a DSNT (differentiable spatial-to-
numerical transform) layer on the top
of a DenseNet–CNN backbone architec-
ture to predict two coordinates per
slice, corresponding to right and left
facet. Crop patches of facets
(36 mm � 36 mm bounding boxes) cen-
ter around predicted facet landmarks.
Green, ground truth; Red, model pre-
diction. Binary classification model
(BiT) with a ResNet-50 backbone archi-
tecture classifies the patches from first

stage as normal/mild versus moderate/severe arthropathy.7.
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non-standardized imaging.52 Wang and colleagues
extracted morphologic and signal intensity-based
metrics from contours of MCs, reporting improved
inter- and intra-rater agreement compared with
unassisted MC classification.53 The need for
labor-intensive manual demarcation of MCs is a
significant limitation.

Gao and colleagues used DL-based models to
automatically map MCs. Overall, these results
demonstrate substantial agreement of the detec-
tion model with radiologist-annotated grading
and a novel Modic mapping technique providing
grading assistance. MCs are often transitional
(27.2% regarded as mixed, comprising character-
istics of multiple Modic types).54 Capturing this
granularity of mixed MCs is challenging for the hu-
man eye. A voxel-wise MC segmentation method
was therefore implemented due to its key capa-
bility of visualizing the heterogeneity of mixed
MCs. In addition, the segmentation methodology
offers higher degree of supervision, retaining
context of the neighboring tissue and improving la-
bel specificity. Further works using this approach
can unravel attributes of progressive or transitional
MCs that may interact with pain, as heterogeneous
tissues are often correlated with degeneration9

(Fig. 6).
In the MC detection component, the distribu-

tion of predicted MCs across the LS was pre-
dominantly in the L4–S1 range (74.4%),
matching well with the radiologist annotations
(78.8%) and past work (75.5%).54 MC voxel-
wise classification yielded high predictive value
of MC types 1 and 2, the groups most important
to classify due to their prevalence and strong as-
sociation of MC 1 with nonspecific low back pain
(LBP).55 The additional utility of the model predic-
tions improved agreement of the junior radiologist
(3 year experience) grading the MCs with the two
senior (each >25 year experience) subspecialty
Descargado para Biblioteca Medica Hospital México (b
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radiologists (Dk 5 10.06 and Dk 5 10.03 reader
1 and reader 2, respectively).9
Spine Infection and Inflammation

Modic changes versus pyogenic spondylitis
Spinal infection diagnosis is difficult due to
nonspecific clinical and laboratory findings. Nonin-
fectious conditions can mimic the imaging findings
of spondylodiscitis and it can be difficult to distin-
guish between degenerative and infectious end-
plate abnormalities.

MC type 1 can mimic infection on MR imaging.
Differences between inflammatory, degenerative,
and infectious pathologies have a significant
impact on prognosis. Many imaging techniques,
including conventional plain radiography, CT, MR
imaging, and radionuclide studies, have been
used to diagnose spinal infections.

A retrospective study evaluated the perfor-
mance of a CNN to differentiate pyogenic spondy-
litis fromMC onMR imaging. Fifty MRIs, each from
pyogenic spondylitis and MC patients, were
reviewed, comparing the performance of the
CNN to four clinicians: a radiologist, spine sur-
geon, and two orthopedic surgeons (17, 20, 5–
6 year experience, respectively).

The CNN-based AUROC curve from the T1
weighted image (T1W), T2W, and STIR images
was 0.95, 0.94, and 0.95, respectively. The accu-
racy of the CNN was significantly greater than
that of the four clinicians on T1W and STIR
(P < .05), and better than a radiologist and one or-
thopedic surgeon on the T2W (P < .05). The sensi-
tivity was significantly better than the four
clinicians on T1W and STIR (P < .05) and better
than a radiologist and one orthopedic surgeon on
the T2W (P < .05). The specificity was significantly
better than one orthopedic surgeon on T1W and
T2W (P < .05) and better than both orthopedic
ibliomexico@gmail.com) en National Library of Health 
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Fig. 6. Modic maps. Representative examples of inputs (T1 and T2 images), radiologist-annotated ground truth
segmentations, predicted Modic maps. Model is advantageous for visualizing heterogeneity and transitional pa-
thology: top row: model detects MC type 3 in anterior inferior endplate; second row: small MC type1 region in
anterior superior endplate, unmarked by the radiologist and annotated by the model.9
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surgeons on STIR (P < .05). The investigators
concluded that the CNN model was able to differ-
entiate between MCs and pyogenic spondylitis
and the model performance was comparable to,
or better than, that of the radiologist, spine sur-
geon, and two orthopedic surgeons.56

Multiple sclerosis
The spinal cord (SC) is frequently affected by
demyelinating lesions and atrophy in multiple scle-
rosis (MS) patients. Spinal cord and lesion seg-
mentation may provide diagnosis, prognosis, and
Descargado para Biblioteca Medica Hospital México (bibliom
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longitudinal monitoring in MS. Automating seg-
mentation may assist in decreasing inter-rater vari-
ability and increase efficiency of large-throughput
analysis pipelines. Precise outlining of lesions is
challenging due to their heterogeneity, and reliable
segmentation across multisite SC data is difficult
due to variability related to acquisition parameters
and image artifacts.
Gros and colleagues created an original auto-

mated SC and MS lesion segmentation method
based on two CNNs (Spinal Cord Toolbox [SCT],
open-source readily available). When compared
exico@gmail.com) en National Library of Health 
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against manual segmentation, the investigators
demonstrated this CNN-based approach showed
a median Dice of 95% versus 88% compared
with PropSeg (P < .05), a state-of-the-art SC seg-
mentation method. On MS data, the framework
provided a Dice of 60%, a relative volume differ-
ence of 15%, and a lesion-wise detection sensi-
tivity and precision of 83% and 77%,
respectively. Their SC segmentation results out-
performed a state-of-the-art method on a multisite
and highly heterogeneous clinical data set. Lesion
segmentation results were generally within range
of manual segmentations, although the false-
positive rate (FP) warrants further investigations.57

Spine Trauma

Fracture
AI has been studied for detecting both osteopo-
rotic and traumatic spinal fractures. The clinical
management of these patients requires timely
and accurate interpretation of volumetric imaging.
Automated image analysis has the potential to
streamline care of patient with spinal fractures.

Osteoporotic Tomita and colleagues compared a
CNN model detecting osteoporotic vertebral frac-
tures (VFs) to the radiologists’ diagnoses from
1432 CT scan radiology reports. The CNN
achieved an accuracy of 89.2% and F1 score of
90.8% on the test/validation data set (F1 score:
ML metric measuring model accuracy). Although
the F1 score for the model matched the perfor-
mance of practicing radiologists on the test set,
the radiologists’ diagnoses were more precise
and had higher specificity relative to the model.
The investigators proposed the model could be
used to assist and improve the diagnosis of oste-
oporotic VFs in clinical settings by pre-screening
routine CT examinations and flagging suspicious
cases before review by radiologists.58

Bush and colleagues created an automated ML
system to detect and classify osteoporotic VFs ac-
cording to Genant standards and to measure bone
density of thoracic and lumbar vertebral bodies on
CT using 3D CT images. They retrospectively
analyzed 210 thoracic and lumbar vertebrae with
VFs that were electronically marked and classified
by a radiologist.

The sensitivity for detection/localization was
95.7% with a FP of 0.29 per patient. Sensitivity
was 98.7% and specificity was 77.3% at
case-based ROC curve analysis. Accuracy for
classification by Genant type (anterior, middle,
or posterior height loss) was 0.95 with weighted
k 5 0.90. Accuracy for categorization by Genant
height loss grade was 0.68, with a weighted
k 5 0.59. The average bone attenuation for
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T12–L4 vertebrae was 146 HU�29 (standard de-
viation) in patients versus 173 HU�42 in controls
(P < .001).59

Traumatic thoracic lumbar Murata and colleagues
used a CNN on anteroposterior and lateral thora-
columbar radiographs of 300 patients to detect
VFs with accuracy 86% and sensitivity 84.7%.
They compared model performance with orthope-
dic surgeons and residents and determined it was
non-inferior to orthopedic surgeons and had supe-
rior sensitivity compared with orthopedic resi-
dents. The model did not reveal which vertebra
was fractured.60

Burns and colleagues also designed an auto-
mated system for retrospective detection/localiza-
tion of traumatic thoracic and lumbar VFs on CT in
104 patients compared with the localizations and
classifications marked by a radiologist according
to Denis column involvement.

Testing set sensitivity for the detection and
localization of fractures within each vertebra was
0.81, with an FP of 2.7. The most common cause
of FPs was nutrient foramina (39%).

Origins of false-negative (FN) findings (misses)
and FP fracture line detections were decided in a
consensus review by two board-certified fellow-
ship-trained radiologists (19 years of experience).
Most of FNs were fracture lines paralleling in close
proximity to vertebral end plates and to degenera-
tive joint disease.

The investigators concluded their fully auto-
mated computer system detected and anatomi-
cally localized thoracic and lumbar VFs on CT
with a high sensitivity and a low FP rate.61

Traumatic cervical Cervical spine injury can be
associated with high morbidity and mortality. Mul-
tidetector CT has emerged as a critical SOC imag-
ing technique to evaluate cervical spine trauma for
rapid diagnosis and intervention.

An FDA-approved CNN by Aidoc (www. aidoc.
com) to detect cervical VFs on CT was used to
analyze 665 examinations. Ground truth was estab-
lished by retrospective visualization of VFs on CT
using all available CTs, MRIs and CNN output infor-
mation. The finalized cervical spine CT reports were
simultaneously independently reviewed by two
fellowship-trained neuroradiologists.

The CNN sensitivity (79%) was lower than the
radiologists (93%) and CNN accuracy of 92%
compared with 96% for the radiologists. Time
from image acquisition to CNN analysis was
shorter than time from image acquisition to radiol-
ogist report finalization emphasizing the value of
the CNN in worklist prioritization. CNN false-
negative examinations demonstrated that the
ibliomexico@gmail.com) en National Library of Health 
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locations of CNN misses closely matched those of
radiologists, similar by level and location. Frac-
tures the CNN missed included severe fracture–
dislocation, distractions, distal spinous processes,
and lower cervical spine where fine bony detail
was obscured by CT beam attenuation. There
were a few instances in which the CNN detected
a fracture that the radiologist missed, underscor-
ing the ability of the CNN to function as a useful
complementary tool in fracture detection that radi-
ologists would review before report finalization.62
Spinal Cord Injury

The degree of abnormal T2 signal on sagittal and
axial MR imaging has strongly correlated with
diagnostic and prognostic value after SC injury
(SCI). The intramedullary lesion length (IMLL) and
the Brain and Spinal Injury Center (BASIC) score
are two metrics based on single two-dimensional
(2D) images that are approximations for true 3D
size and distribution of injured SC.
The SCT63 is an open-source anatomic atlas

allowing quantitative volumetric injury analysis.
Using a semiautomated image processing pipeline
Fig. 7. Whole SC and lesion SC segmentation performance
tative axial slices compared with manual ground truth segm
1: conventional axial T2; columns 2 to 5: whole SC segment
tesy of JF Talbott, San Francisco, CA.64)
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incorporating many tools available freely as part of
the open-source SCT, volumetric injury measures
were extracted from preoperative MR images in
47 patients who underwent 3T MR imaging within
24 hours of SCI. This customized image analysis
and processing pipeline integrated three different
novel 2D-CNN architectures for both whole SC
and traumatic lesion segmentation. Segmentation
results from CNNs were compared with each other
and with standard manual segmentation as well as
with two current state-of-the-art SC segmentation
algorithms (PropSeg; DeepSeg). Compared with
manual labeling, the average test set Dice coeffi-
cient for the BASIC segmentation model was
0.93 for SC segmentation versus 0.80 for PropSeg
and 0.90 for DeepSeg (both SCT components).
These segmented volumetric measures pre-

dicted lower extremity motor function at discharge
from the hospital more strongly than standard 2D
radiographic parameters including BASIC score
and IMLL. The investigators concluded that the
volume of the T2 lesion after SCI was a more accu-
rate imaging biomarker of injury severity than con-
ventional 2D MR imaging measures of injury64

(Fig. 7).
: BASICseg algorithms in five SCI patients at represen-
entation (GS), PropSeg and DeepSeg models: column

ation; columns 6 to 7: cord lesion segmentation. (Cour-
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Spine oncology
Radiomics-based feature analysis and CNNs are
two popular ML imaging techniques used in
oncology. Radiomics-based techniques extract
first and higher order statistical features from radio-
logical images. Interpretability of radiomic features
has been a major limitation of radiomics as the fea-
tures are not standardized and there is difficulty
relating them to the underlying biology of the tissue
of interest. As the features are limited to the knowl-
edge of the radiologist or clinician, the accuracy of
the developed algorithm could be reduced.65,66

Differentiating Benign Versus Metastatic
Vertebral Fractures

Differentiating benign VFs from pathologic/malig-
nant VFs is critically important for treatment deci-
sions. A novel Two-Stream Compare and Contrast
Network (TSCCN: three-classclassification:normal,
benign, and malignant VFs)67 model was tested on
239 VFs on median sagittal T1W, T2WFS, and a
combination T1W/T2WFS sequences.

Three radiologists (11, 15, and 8 year experi-
ence) assessed the same MR images twice at
different times within 1 month and were blinded
to patient history, treatment details for fair com-
parison with the TSCCN.

The model achieved average sensitivity, speci-
ficity, and accuracy of 92.6%, 96.3%, and
95.2%, respectively. The sensitivity of the model
overlapped or was less than the sensitivity of the
most experienced radiologist; the accuracy and
specificity of the model was higher than achieved
by the radiologists. The investigators concluded
that the model had the potential to enhance VF
diagnostic accuracy, sensitivity, and specificity.68

Deformity
ML has also analyzed spinal deformity. Spinal pa-
rameters are time-consuming to manually anno-
tate and inter-rater reliability can vary. Research
has focused on automated quantitative spinal pa-
rameters localizing various landmarks: endplates,
hip joints, S1 angle, T4–T12 kyphosis, L1–L5
lordosis, Cobb angle, pelvic incidence, sacral
slope, and pelvic tilt. Although model-generated
parameters can show good correlation to
radiologist-derived values, the standard errors of
the estimated parameters can range from 2.7 for
pelvic tilt to 11.5 for L1–5 lordosis.69,70

Landmark annotations are not feasible within
the clinical workflow as they require significant
user input and are vulnerable to user error. Severe
spinal deformity, overlapping soft tissues, lead
shields, body habitus, osteoporosis, transitional
anatomy, and variable skeletal maturities are
several factors reducing visibility and reliable
Descargado para Biblioteca Medica Hospital México (b
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manual identification. Iriondo and colleagues
developed a new method for automatic extraction
of vertebral midline from biplanar radiographs and
3D spine shape models. The developed landmark
extraction algorithms demonstrated robust perfor-
mance across the tested data sets, are fully auto-
matic, and may integrate into the clinical workflow,
allowing temporal evaluation of deformity progres-
sion (Figs. 8 and 9).

A surprising finding was the range in actual
sagittal and coronal imbalance among images
linked to radiology reports stating “no imbalance”
with true measurements of approximately�2.5 cm
of coronal imbalance and �5 cm sagittal imbal-
ance. This has important implications, when no
exact measurement was provided, qualitative de-
scriptions of spinal alignment were subjective.71
CLINICAL IMPLEMENTATION

Many AI models discussed can be integrated into
automated reading workflow. Reporting individual
spinal CC and NF stenoses, disc, and facet degen-
eration is time-consuming. Clinically deploying DL
models could assist in semiautomated reporting
under radiologist supervision to provide more
consistent, objective, and efficient reporting.

A published DL algorithm, Spine AI, automatically
classifies LS CC, lateral recess, and NF stenoses
on LS MRIs.72 Eight radiologists (2–13 year experi-
ence), retrospectively reviewed studies with and
without DL assistance with a 1-month washout
were compared with test data labeled by an
external MSK radiologist (32 year experience) as
standard. Interpretation time reduced 62% to
74% for DL-assisted radiologists: mean 124-274
to 47-71 seconds (P < .001) with greatest time sav-
ings for in-training radiologists: mean 274 (unas-
sisted) to 71 seconds (assisted) (P < .001).

DL-assisted radiologists had superior or equiva-
lent interobserver agreement for all stenosis
gradings compared with unassisted radiologists.
DL-assisted general and in-training radiologists
improved their interobserver agreement for four-
class NF stenosis, k 5 0.71 and 0.70 (DL) versus
0.39 without DL, respectively (both P < .001).73

DL assistance can streamline report generation,
which involves image review and a separate text
input into a reporting module. DL assistance can
detect regions of interest (ROIs), grade stenosis,
and automatically generate a sentence directly into
the reporting module. The radiologist can change
and control the DL-assisted predictions before a
report is generated, important for safety and patient
preference.74 Strategic “one-click” solutions inte-
grated within the normal radiologist workflow will
be prerequisite for successful implementation.75
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Fig. 8. Frontal spinal radiographs show accurate spine midline identification: model predicted curves (magenta)
closely correlate with ground truth curves (blue). Paired dashed lines (—): spine contour curves; Center solid lines
(—): midline curves.
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CHALLENGES AND FUTURE DIRECTIONS

Most of the AI spine imaging studies are retro-
spective, single-center with small sample sizes.
Randomized, controlled, multicenter studies will
be required to validate applications, facilitating
clinical practice.66,73 Future work will test pooled,
publicly available data sets from collaborating in-
stitutions by multidisciplinary teams, comparing
results with published work.71 Increasing high-
quality competitions (ie, 2022 RSNA cervical spine
AI fracture challenge) may further research toward
novel AI spine algorithms.
Required trained human input limits practical

clinical implementation. Manual radiologist image
labeling, most accurate for model training, is
labor-intensive. Many models also require trained
human post-processing (placing ROIs for segmen-
tation).40 Hardware and innovative data processing
developing robust ML models with human-level
performance will be needed.75

Cultural challenges are also barriers. ML tools
requiring large, tens of thousands, annotated
data sets face systemic data privacy concerns
Descargado para Biblioteca Medica Hospital México (bibliom
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(storage, transmission, usage) subject to strict reg-
ulations despite standard data anonymization.70

Another cultural challenge, AI perceived as a
“black box,” relates to the opaque nature of DL
systems. We see the input and output; however,
the system’s code or logic producing the output
is not inherently transparent. Explainable AI is a
branch attempting to make the methodology
transparent to users.
Medical accountability is another challenge.

Would the clinician using the ML system or its
manufacturer be responsible for an AI-generated
misdiagnosis? This also affects marketing
approval and cost of novel AI tools, requiring
deeper testing and verification relative to other
technologies and longer time to market.76

Potential biases are concerning with unintended
biases resulting from scarce data sets (rare pathol-
ogies, ethnicities) and privileged easier-accessed
data sets.77 Efforts toward governing AI aim to build
robust public trust.78 The European Union’s Gen-
eral Data Protection Regulation expanded patient
rights considerably with an explicit opt-in policy
regarding data processing permission. Open
exico@gmail.com) en National Library of Health 
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Fig. 9. Sagittal and coronal views of spine midlines in a 12-year-old boy monitored over 6.5 years allow overall
comparisons demonstrating progressive levoscoliotic deformity over time.71

� Artificial intelligence (AI) models can assist in
diagnosing spine pathologies such as degen-
erative disease, tumor, infection, fracture,

Practical Applications of AI in Spine Imaging 367
access to ML models and training data may
improve public trust, accountability, and prediction
bias. As models improve and clinicians more heavi-
ly rely on automated diagnoses, continuedmultidis-
ciplinary collaboration involving radiologists,
clinicians, engineers, data scientists, ethicists, and
policy makers is mandatory globally.76,75
with increasing sensitivity and specificity
when used in parallel with radiologists’ input
and supervision.

� AImodels integrated into automated reading
workflow can significantly decrease interpre-
tation time. This is most evident for radiolo-
gists in training.

� AI models can improve SNR and reduce arti-
facts inherent in rapid spine imaging protocols
resulting in diagnostic quality imaging with
40-50% reduction in image acquisition time.

� AI models may assist in ’pre-screening’
routine imaging examinations and flagging
suspicious cases before review by radiologists.
This allows added value through worklist
prioritization.
SUMMARY

AI potentially increases efficiency, reducing time-
consuming tasks and assisting radiologists in
specific diagnoses with a goal to provide compre-
hensive automated image analysis. Characterizing
lesions and identifying lesions that might be missed
are of great benefit, allowing earlier diagnoses,
reporting, and treatment.75 Combining clinical
data with image analysis may permit improved
and more personalized treatment decision-
making. Although challenges remain, AI technology
continues to rapidly progress with great potential to
improve patient care and outcomes.70
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� Clinically deploying AI models may assist in
semiautomated reporting under radiologist
supervision to provide more consistent and
objective reporting.
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