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Purpose of review
Disruption of the precious ecosystem of micro-organisms that reside in the gut – the gut microbiota – is rapidly
emerging as a key driver of the adverse side effects/toxicities caused by numerous anti-cancer agents.
Although the contribution of the gut microbiota to these toxicities is understood with ever increasing precision,
the cause of microbial disruption (dysbiosis) remains poorly understood. Here, we discuss current evidence on
the cause(s) of dysbiosis after cancer therapy, positioning breakdown of the intestinal mucosa (mucositis) as
a central cause.

Recent findings
Dysbiosis in people with cancer has historically been attributed to extensive antibiotic use. However, evidence
now suggests that certain antibiotics have minimal impacts on the microbiota. Indeed, recent evidence
shows that the type of cancer therapy predicts microbiota composition independently of antibiotics. Given
most anti-cancer drugs have modest effects on microbes directly, this suggests that their impact on the gut
microenvironment, in particular the mucosa, which is highly vulnerable to cytotoxicity, is a likely cause of
dysbiosis. Here, we outline evidence that support this hypothesis, and discuss the associated clinical
implications/opportunities.

Summary
The concept that mucositis dictates microbiota compositions provides two important implications for clinical
practice. Firstly, it reiterates the importance of prioritising the development of novel mucoprotectants that
preserve mucosal integrity, and indirectly support microbial stability. Secondly, it provides an opportunity to
identify dysbiotic events and associated consequences using readily accessible, minimally invasive
biomarkers of mucositis such as plasma citrulline.
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INTRODUCTION

The gastrointestinal tract is inhabited by a diverse
ecosystem of micro-organisms – collectively referred
to as the gut microbiota – comprising bacteria,
viruses, fungi and the lesser known anchea and hel-
minths. Over the past decades, an immense surge in
research activity has focused on characterizing and
understanding this unique ecosystem and its impact
on host health and disease [1▪]. Certainly, in the early
stages of our understanding, the gut microbiota was
surrounded by exceptional hype and hyperbole, with
astronomical estimates on the number of micro-
organisms present in the human body suggesting
they outnumber human cells by ~10-fold [1▪]. More
recently, this hype has been replaced with more rea-
listic insights and it is now considered that the
human colon houses ~500 g of microbial material
with bacterial cells outnumbering human cells by

~30% [2▪]. Despite this re-evaluation, the contribu-
tion of the gut microbiota to host health is profound
and, because of the highly dynamic nature of the gut
microbiota, alterations in its composition are increas-
ingly recognized to contribute to numerous diseases
affecting both the gastrointestinal tract and distant
sites such as the brain [3,4].
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In the context of cancer and its treatment, the
gutmicrobiota has been an area of intense focus and
growth [5,6]. A growing body of evidence from both
preclinical and clinical studies has shown various
anti-cancer therapies, namely radiotherapy and che-
motherapy, alter the composition of the gut micro-
biota [7,8▪▪]. Although these changes differ and
reflect the nuances of the specific clinical context
under investigation, they are generally characterized
by a decrease in microbial richness and diversity
compared with healthy controls and pre-therapy
samples. These changes are ultimately driven by
a loss in key commensals, especially those more vul-
nerable to oxidative stress, and the subsequent
expansion of more virulent enteric pathogens [9].
These pathogen ‘blooms’ are enabled by the physical
loss of commensals, thus decreasing colonization
resistance, as well as a decrease in luminal short
chain fatty acids which serve to acidify the luminal
environment and in turn, restrict pathogen growth
[10▪▪,11]. The consequence of these changes is
a microbial ecosystem that produces higher levels of
endotoxin (lipopolysaccharide) – a potent immune
stimulant capable of triggering the production of
damaging proinflammatory cytokines [12,13].

Given the ability of these microbial changes to
create a proinflammatory microenvironment, they
have been increasingly investigated for their role in
adverse treatment side effects. Data now show that
dysbiotic changes in the gut microbiota after cancer
therapy coincide with side effects such as diarrhoea
[14] and blood stream infection (BSI) [15–17], as well
as systemic complications such as graft versus host
disease (GvHD) [18–23]. Although only emerging in
the literature, it is also suggested that the gut micro-
biota may also contribute to neuropsychological
symptoms [24], including cognitive dysfunction [25],

pain [26] and fatigue [27] and other undesirable treat-
ment outcomes such as fear of recurrence [28] and
relapse [29]. With this new knowledge at hand, atten-
tion has shifted into understanding how the
gut microbiota can be exploited or targeted to
improve outcomes of cancer therapy. Numerous
interventional strategies have since emerged,withpre-
biotics [30,31▪▪,32], probiotics [33–35] and other
microbial therapeutics (e.g. faecal microbiota trans-
plantation, FMT [36,37▪▪,38]) all under investigation
for their ability to protect or restore the gutmicrobiota
and improve treatment outcomes. However, interven-
tions targeting the gutmicrobiota are inherently chal-
lenging, particularly when used in the context of
supportive care. This reflects not only the complexity
of the gut microbiota but also the extensive list of
variables that must be considered when designing
effective microbial interventions [1▪,39]. Ultimately,
when designing a microbial intervention, the myriad
of variables that influence the gut microbiota, the
uptake of exogenous microbes and presence of micro-
bial fuels (i.e. dietary fibre) must be considered to
maximize the efficacy of these interventions. Not
only should the candidate strain be carefully selected,
but also the totalmicrobial load and diversity, route of
administration to target the most appropriate region
of the gastrointestinal tract (e.g. oral vs rectal) and
relevant/context specific contraindications (i.e. is per
oral administration feasible in people with oral muco-
sitis?). Further to this, one must consider the actual
cause of microbial injury in the first place, particularly
when delivering live microbes (e.g. probiotics or FMT)
to ensure the microbes remain viable in their new
environment. Here, we provide a rationale, evidence-
based perspective that the intestinal mucosa is critical
in shaping the composition of the gut microbiota in
people undergoing cancer therapy, positioningmuco-
sitis (mucosal barrier injury [MBI]) as a catalyst for
microbial disruption.

MUCOSAL-MICROBIAL CROSS TALK
Although dysbiosis is commonly observed in people
undergoing cancer therapy, in particular chemother-
apy, current evidence suggests that chemotherapy
itself is minimally impactful to microbes [40]. This
suggests that either secondarybiological eventsor con-
current factors/variables are responsible for driving
dysbiosis in people with cancer. Naturally, dysbiosis
in people undergoing cancer therapy has been attrib-
uted to the widespread and routine use of antibiotics
[41]. However, increasingly it is recognized that not all
antibiotics are damaging to the gutmicrobiota. In fact,
recent evidence suggests that microbial changes occur
independently of antibiotics in the context of haemato-
poietic stem cell transplantation (HSCT) [42,43].

KEY POINTS
● The gut microbiota is dynamic and subject to exceptional

modification from a variety of factors.

● Anti–cancer therapies disrupt the gut microbiota,
increasing toxicity risk and severity.

● The intestinal mucosa provides physical niches and
nutrients to support resident gut microbes.

● Intestinal mucositis and mucosal barrier injury is
emerging as a key driver of gut microbiota disruption.

● Interventions targeting the gut microbiota may be
enhanced with paralleled efforts to protect the intestinal
mucosa.

Gastrointestinal symptoms
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When considering the gut microbiota and drivers
of dysbiosis in the context of cancer therapy, the
bidirectional interaction between resident microbes
and the intestinal mucosa is critical. Recently,
Rashidi and colleagues explored this interaction and
identified that the microbial genera, Blautia, was cri-
tical in dictating the integrity of the intestinal
mucosa, proposing a model of microbe-to-mucosa
communication [44]. Certainly, microbes have the
capacity to influence the mucosa, particularly via
their ability to produce beneficial metabolites such as
short chain fatty acids [45]. These compounds are
a major energy source for colonocytes, promoting
epithelial proliferation and regeneration, whilst also
promoting barrier integrity via their influence on
tight junction assembly. However, as recently dis-
cussed [46,47], this direction of communication may
be more relevant in the context of mucosal/microbial
recovery, and not necessarily the initial disruption of the
microbial community. In this context, the influence
of themucosa on gut microbes may be more relevant.

Microbes rely on the mucosa to provide physi-
cal niches within which they reside as well as the
provision of nutrients [48]. As such, when consid-
ering the widespread destruction of the intestinal
mucosa caused by many anticancer therapies,
clinically referred to as (gastro)intestinal mucositis
or MBI, the concept that the integrity of the
mucosa dictates microbial composition is compel-
ling. Complementary to this concept is the evi-
dence generated by Shouval and Peeled, each of
which show that loss in microbial diversity is
dependent on the intensity of the conditioning
regimens [42,49▪▪,50]. Varying conditioning regi-
mens induce varying levels of MBI, and thus micro-
bial phenotypes and their associated clinical
implications. Of interest, the recent trial con-
ducted by Rahsidi et al. investigating FMT for BSI
prevention in HSCT recipients did not reach its
primary endpoint, that is, FMT did not signifi-
cantly reduce the incidence of BSI [36]. This may
reflect the fact that although microbes were suc-
cessfully delivered to recipients, their ability to
durably colonize the gut may be impacted by per-
sistent mucosal damage. The concept of mucosal-
to-microbe disruption is further supported by
recent preclinical data which show the gut micro-
biota can be stabilized after high-dose melphalan
(HDM) using anakinra, an interleukin-1 receptor
antagonist [9]. Rats treated with HDM and ana-
kinra had a less pronounced citrulline nadir, indi-
cating less severe MBI. Presumably, this results in
less mucosal hostility for resident microbes,
reduced oxidative stress and thus less severe dys-
biosis. Of interest, rats receiving anakinra had

fewer febrile events suggesting a lower rate of infec-
tion. This reinforces the emerging concept that,
contrary to historical belief, BSIs in people with
cancer originate in the gut as a result of pathogens
translocating across the damaged mucosa. It also
adds further strength to this concept by suggesting
that the damaged mucosa not only allows the
translocation of these pathogens, but also facili-
tates their initial expansion [10▪▪].

CLINICAL IMPLICATIONS AND
OPPORTUNITIES
The clinical implications for this knowledge are signifi-
cant for a number of reasons. Firstly, if indeed the
mucosa is the most influential factor shaping the gut
microbiota in people with cancer, this approach sug-
gests that much more consideration should be placed
on protecting the mucosa from cytotoxic therapy.
Unfortunately, intestinal mucositis is ubiquitous to
many anti-cancer drugs due to their affinity for the
highly proliferative cells that populate the intestinal
mucosa. Currently, there are no universally accepted
methods toprevent intestinalmucositis,withonly one
narrow indication for Lactobacillus containing probio-
tics for pelvic radiotherapy (± chemotherapy) [51,52].
Thismay reflect the practical challengeswith accessing
the intestinal mucosa as well as difficulties in develop-
ing interventions that protect the mucosa without
impairing the intended cytotoxic properties of che-
motherapy. However, it may also reflect the fact that
intestinal mucositis has fallen victim to low visibility
and priority. Given the surge of activity and attention
the consequences ofmicrobial dysbiosis have received,
especially in HSCT recipients, this may be an opportu-
nity to direct research efforts to intestinal mucositis
with the goal of not only reducing its associated
symptoms (e.g. malnutrition, diarrhoea), but also the
secondary complications of mucositis-associated dys-
biosis. Whether this be in the form of purely muco-
sally-targeted interventions such as anakinra, which
has since transitioned into Phase IIB trial [53], or com-
bined therapies that target both the microbes and
mucosa simultaneously is yet to be determined.

Combinedmicrobial andmucosal targeting strate-
gies have not been directly investigated to date, how-
ever, comparable strategies inwhichFMTispairedwith
oral supplementations to improve its efficacy have
been explored. For example, a proof-of-concept study
showed that FMT paired with oral intake of low-fer-
mentable fibre can increase engraftment of donor
microbes to improve insulin sensitivity and metabolic
syndromemoreeffectively thanFMTalone [54▪]. In the
context of cancer and HSCT, complications such as
nausea/vomiting, oral mucositis and low appetite
reduce food intake and often necessitate intravenous/
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parenteral nutrition (TPN) [55,56]. TPN deprives the
gastrointestinal system of important dietary input to
maintain the gastrointestinal microenvironment, and
hence, evidence shows enteral nutrition promotes
microbial recovery in paediatric HSCT recipients com-
pared with standard of care [57], with a recent meta-
analysis showing EN reduces GvHD incidence in adult
cohorts [58]. To extend the concept of mucosa-
initiated dysbiosis and realize the clinical benefits of
this concept, the use of excipients/adjuvant drugs that
enable the mucosa to regain its ability to regulate and
support its associatedmicrobiota should be considered
in combinationwithnutritional ormicrobial interven-
tions. For example, paneth cells – which secrete anti-
microbials to maintainmicrobiota homeostasis – have
been found to decrease in number following condi-
tioning and its deficiency has been observed in GvHD
[59]. Both R-spondin [60] and GLP-2 analogues [61]
have been shown to accelerate paneth cell recovery
and indirectly support microbial composition in the
context of GvHD. This reiterates that the microbiota
can bemodulated by targeting themucosa, and under-
scores the potential for mucosal strengthening to
enhance efforts aiming to promote eubiosis in people
with cancer.

The other major implication, or opportunity,
associated with the idea that the mucosa dictates dys-
biosis in cancer therapy is the ability to more easily
predict events associated with dysbiosis (e.g. BSI).
Serial sequencing of the gut microbiota is not feasible
to perform in routine clinical practice, with practical
obstacles related to sample collection, processing and
sequencing. In contrast, there are numerous biomar-
kers of intestinal mucositis which could be used as
surrogate markers to identify or predict. Plasma citrul-
line is an amino acid exclusively produced by enter-
ocytes, and is commonly used in clinical practice as
a biomarker of (gastro)intestinal mucositis [44,62–64].
It can be easily measured in small quantities of blood,
or even dry blood spots, allowing rapid and highly
accurate insights into the insight of the mucosa and
the likely composition of the gut microbiota. In fact,
deMooij et al. [65] have shown that citrulline predicts
BSI with greater accuracy compared with conven-
tional predictors such as neutrophil counts. Plasma
citrulline has also been shown to predict GvHD [66]
and other transplant outcomes such as mortality,
mucositis and nutritional requirements [67].

CONCLUSION
In summary, there is a complex interplay between
themucosa and resident microbes in the gut.Whilst
it is simplistic to assume a single, linear relationship
exists between these components of the gut micro-
environment, the collateral damage caused to the

mucosa cannot be overlooked as a predictor of
dysbiosis. This emerging concept therefore high-
lights the need to consider mucosal strengthening
strategies in parallel to microbial interventions,
ensuring the mucosa is optimally primed to receive
and support donor microbes in a manner that cre-
ates durable colonization. Similarly, given the avail-
ability of mucositis biomarkers such as citrulline,
this approach provides a novel opportunity to iden-
tify dysbiosis-associated consequences early in their
sequelae with adequate time to intervene.
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