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A B S T R A C T   

Background: Among neurological pathologies, cerebral palsy and stroke are the main contributors to walking 
disorders. Machine learning methods have been proposed in the recent literature to analyze gait data from these 
patients. However, machine learning methods still fail to translate effectively into clinical applications. This 
systematic review addressed the gaps hindering the use of machine learning data analysis in the clinical 
assessment of cerebral palsy and stroke patients. 
Research Question: What are the main challenges in transferring proposed machine learning methods to clinical 
applications? 
Methods: PubMed, Web of Science, Scopus, and IEEE databases were searched for relevant publications on 
machine learning methods applied to gait analysis data from stroke and cerebral palsy patients until February the 
23rd, 2023. Information related to the suitability, feasibility, and reliability of the proposed methods for their 
effective translation to clinical use was extracted, and quality was assessed based on a set of predefined 
questions. 
Results: From 4120 resulting references, 63 met the inclusion criteria. Thirty-one studies used supervised, and 32 
used unsupervised machine learning methods. Artificial neural networks and k-means clustering were the most 
used methods in each category. The lack of rationale for features and algorithm selection, the use of unrepre
sentative datasets, and the lack of clinical interpretability of the clustering outputs were the main factors hin
dering the clinical reliability and applicability of these methods. 
Significance: The literature offers numerous machine learning methods for clustering gait data from cerebral palsy 
and stroke patients. However, the clinical significance of the proposed methods is still lacking, limiting their 
translation to real-world applications. The design of future studies must take into account clinical question, 
dataset significance, feature and model selection, and interpretability of the results, given their criticality for 
clinical translation.   

1. Introduction 

Neurological conditions account for two-thirds of mobility limita
tions in individuals with walking disorders [1]. Among the neurological 
pathologies, Cerebral Palsy (CP), with a prevalence of 1.5 to 3 cases per 
1000 live births in Europe, is recognized as the predominant cause of 
movement disorders in children [2], while stroke stands as the primary 
contributor to disability among older adults, estimated to reach from 1.1 

in 2000 to 1.5 million per year in 2025 [3]. Due to the prevalence of 
these pathologies, most literature on gait analysis (GA) clinical appli
cations [4,5] refers to CP and stroke, comprising more than 17% of total 
publications in clinical GA over the past decade, as per PubMed search 
results. 

In assessing walking impairments of CP and stroke patients, GA holds 
significant clinical relevance, providing a quantitative description of 
gait functional alterations and retaining the potential to support clinical 
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assessment effectively [6]. Functional diagnosis, disease progression 
monitoring, treatment plan, and pre- and post-operative evaluation are 
among the current applications of GA in clinical settings [5,7–9]. 
Mainly, GA-based support to clinical decision-making can be of utmost 
relevance when non-conservative treatments are designed, such as se
lective neurotomies and neuro-orthopedic surgery in these pathologies 
[10,11]. 

The huge volume and diversity of GA data, including kinematics, 
spatio-temporal parameters, dynamics, and muscle activation patterns, 
poses significant challenges for clinicians in terms of time required for 
interpretation and consensus in clinical decision-making [12,13]. To 
overcome these challenges, data analysis techniques have been devel
oped to analyse [14,15], summarize [16–18], and cluster [19,20] GA 
data. Beyond the efficacy of the traditional data analysis techniques in 
clinical GA, the difficulties in capturing complex non-linear relation
ships within multi-dimensional and highly variable gait data, reducing 
the amount of data and the time-consuming process of manual key 
features selection, which is also prone to biases, suggests the necessity 
for more effective approaches [21,22]. The ability of machine learning 
(ML) algorithms to capture nonlinear patterns, handle vast amounts of 
data, engineering features, and generalize makes them potentially 
beneficial in the analysis of gait data [23]. Supervised and unsupervised 
methods are two primary classes of ML algorithms. Supervised methods 
involve training a model on labeled data, where the algorithm learns to 
predict outcomes based on input features and corresponding target 
variables. In contrast, unsupervised methods deal with unlabeled data, 
where the algorithm seeks to uncover hidden patterns or structures 
within the data without explicit guidance on the output. 

In the literature on the use of GA data acquired from individuals with 
CP and stroke, ML algorithms have been introduced for a wide range of 
clinical applications, such as distinguishing between healthy and path
ological gait [24–27], discriminating between different pathologies 
[28–31], identifying distinct patterns within the same disorder [32–36], 
assessing the effectiveness of interventions [37–39], and recommending 
appropriate treatment strategies [40]. However, the translation of ML 
methods into clinical applications poses three significant challenges: i) 
suitability, as the appropriateness of the algorithm to meet clinical 
application requirements and the ability to extract clinically relevant 
and usable information; ii) feasibility, as the practicality of these methods 
in real-world clinical settings, considering available resources and 
technical supports; iii) reliability, as the consistency and the robustness 
of ML algorithms when applied to the specific gait data [41]. These 
challenges must be properly addressed to support the application of the 
proposed models in the clinical setting. 

To analyse this issue, we designed and implemented a systematic 
review of the available literature on ML methods applied to GA data 
from CP and stroke individuals. We focused on samples and dataset 
quality, feature engineering, method selection, algorithm design, vali
dation, and clinical relevance of findings, and identified the strengths 
and limitations of the study designs. This will provide a reference 
framework for researchers in the design of future studies on the use of 
ML techniques on GA data when targeting clinical applications. 

2. Methods 

The present systematic review follows the guidelines of the PRISMA 
statement [42]. 

2.1. Study selection and research criteria 

The search was performed in 4 databases (i.e., PubMed, Web of 
Science, Scopus, and IEEE) and was completed on February the 23rd, 
2023. The search string was adapted to align with each database’s 
specific search protocols and syntax requirements (Table 1). The search 
results from the different databases were combined into a single list after 
removing duplicate articles. In addition to the systematic searching, 

Table 1 
Search Strings per database.  

Database Research String 

PubMed ("cerebral palsy"[MeSH Terms] OR ("cerebral"[All Fields] AND 
"palsy"[All Fields]) OR "cerebral palsy"[All Fields] OR 
("stroke"[MeSH Terms] OR "stroke"[All Fields] OR "strokes"[All 
Fields] OR "stroke s"[All Fields]) OR "poststroke"[All Fields]) AND 
("gait"[MeSH Terms] OR "gait"[All Fields] OR (("lower 
extremity"[MeSH Terms] OR ("lower"[All Fields] AND 
"extremity"[All Fields]) OR "lower extremity"[All Fields] OR 
("lower"[All Fields] AND "limb"[All Fields]) OR "lower limb"[All 
Fields]) AND ("muscle s"[All Fields] OR "muscles"[MeSH Terms] OR 
"muscles"[All Fields] OR "muscle"[All Fields]))) AND ("machine 
learning"[MeSH Terms] OR ("machine"[All Fields] AND 
"learning"[All Fields]) OR "machine learning"[All Fields] OR "data- 
driven"[All Fields] OR ("deep learning"[MeSH Terms] OR 
("deep"[All Fields] AND "learning"[All Fields]) OR "deep 
learning"[All Fields]) OR ("classification"[MeSH Terms] OR 
"classification"[All Fields] OR "classifications"[All Fields] OR 
"classification"[MeSH Subheading] OR "classification s"[All Fields] 
OR "classificator"[All Fields] OR "classificators"[All Fields]) OR 
("classifiable"[All Fields] OR "classification"[MeSH Terms] OR 
"classification"[All Fields] OR "classified"[All Fields] OR 
"classify"[All Fields] OR "classifying"[All Fields] OR "classifier"[All 
Fields] OR "classifier s"[All Fields] OR "classifiers"[All Fields] OR 
"classifies"[All Fields]) OR ("cluster analysis"[MeSH Terms] OR 
("cluster"[All Fields] AND "analysis"[All Fields]) OR "cluster 
analysis"[All Fields]) OR ("cluster analysis"[MeSH Terms] OR 
("cluster"[All Fields] AND "analysis"[All Fields]) OR "cluster 
analysis"[All Fields] OR "clustering"[All Fields] OR "clusterings"[All 
Fields] OR "cluster"[All Fields] OR "cluster s"[All Fields] OR 
"clustered"[All Fields] OR "clusterization"[All Fields] OR 
"clusters"[All Fields]) OR ("proc iapr int conf pattern 
recogn"[Journal] OR "pattern recognit"[Journal] OR "pattern 
recognit dagm"[Journal] OR "pattern recognit 2021"[Journal] OR 
("pattern"[All Fields] AND "recognition"[All Fields]) OR "pattern 
recognition"[All Fields]) OR ("categoric"[All Fields] OR 
"categorical"[All Fields] OR "categorically"[All Fields] OR 
"categorisation"[All Fields] OR "categorisations"[All Fields] OR 
"categorise"[All Fields] OR "categorised"[All Fields] OR 
"categorises"[All Fields] OR "categorising"[All Fields] OR 
"categorizations"[All Fields] OR "categorize"[All Fields] OR 
"categorized"[All Fields] OR "categorizer"[All Fields] OR 
"categorizers"[All Fields] OR "categorizes"[All Fields] OR 
"categorizing"[All Fields] OR "classification"[MeSH Terms] OR 
"classification"[All Fields] OR "categorization"[All Fields]) OR 
(("feature s"[All Fields] OR "featured"[All Fields] OR "features"[All 
Fields] OR "featuring"[All Fields] OR "protein domains"[MeSH 
Terms] OR ("protein"[All Fields] AND "domains"[All Fields]) OR 
"protein domains"[All Fields] OR "feature"[All Fields]) AND 
("extract"[All Fields] OR "extract s"[All Fields] OR 
"extractabilities"[All Fields] OR "extractability"[All Fields] OR 
"extractable"[All Fields] OR "extractables"[All Fields] OR 
"extractant"[All Fields] OR "extractants"[All Fields] OR 
"extracted"[All Fields] OR "extractibility"[All Fields] OR 
"extractible"[All Fields] OR "extracting"[All Fields] OR 
"extraction"[All Fields] OR "extractions"[All Fields] OR 
"extractive"[All Fields] OR "extractives"[All Fields] OR "extracts"[All 
Fields]))) 

Web of 
Science 

((ALL=(“cerebral palsy” OR Stroke OR poststroke)) AND ALL=(Gait 
OR “Lower limb muscle$”)) AND ALL=(“machine learning” OR 
“data driven” OR “deep learning” OR Classification OR Classifying 
OR “cluster analysis” OR clustering OR “pattern recognition” OR 
categorization OR “feature extraction”) 

Scopus TITLE-ABS-KEY ("cerebral palsy" OR stroke OR poststroke) AND 
(gait OR "Lower limb muscle*") AND ("machine learning" OR "data- 
driven" OR "deep learning" OR classification OR classifying OR 
"cluster analysis" OR clustering OR "pattern recognition" OR 
categorization OR "feature extraction")) AND (LIMIT-TO (DOCTYPE, 
"ar")) AND (LIMIT-TO (LANGUAGE, "English")) AND (LIMIT-TO 
(SRCTYPE, "j")) AND (LIMIT-TO (PUBSTAGE, "final")) 

IEEE Explore (("All Metadata": "Cerebral palsy" OR "All Metadata": Stroke OR "All 
Metadata": Poststroke) AND ("All Metadata": Gait OR "All Metadata": 
“Lower limb muscle*”) AND ("All Metadata":“machine learning” OR 
"All Metadata": “data-driven” OR "All Metadata": “deep learning” OR 
"All Metadata": Classification OR "All Metadata": Classifying OR "All 
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hand searching was also conducted using the selected databases and 
reference list of included studies to further enhance the comprehen
siveness of the review. 

Specific inclusion and exclusion criteria were applied to identify 
studies that are directly relevant to the research objectives of this 
review. 

The inclusion criteria were:  

1. Studies classifying gait impairment(s)/deviation(s) and describing or 
allocating gait variables into categories, groups, or clusters;  

2. Studies using ML for processing data;  
3. Studies involving human participants with CP or stroke;  
4. Full papers;  
5. Articles published in the English language. 

The exclusion criteria were:  

1. Studies analyzing upper limb motion; 
2. Studies focusing on other neurological diseases (e.g., neurodegen

erative diseases);  
3. Studies involving the classification of walking-related conditions or 

events not directly related to clinical GA (e.g., actigraphy, risk of fall, 

identification of events, sport biomechanics, gait for biometrics, se
curity, etc.);  

4. Studies related to robotic-aided rehabilitation systems. 

During study selection, titles and abstracts of all retrieved papers 
were screened independently by two reviewers. To decrease the risk of 
bias, the Rayyan software, a web-based tool specifically designed for this 
purpose, was used. Articles meeting the inclusion criteria were retrieved 
for full-text analysis. 

2.2. Data extraction 

One reviewer performed the data extraction using a structured table 
to extract all relevant features for the implementation of a clinically 
effective ML approach for analysing gait data: Reference; Pathologies; 
Main objective; Sample size; Measurement tool; Gait parameters; Ana
lysed planes; ML Algorithms; Group numbers; Assessment methods. 

2.3. Quality assessment 

One reviewer assessed the quality of the included studies responding 
to a set of quality questions. Due to the inherent methodological dif
ferences in the implementation and the evaluation of supervised and 
unsupervised methods, a specific set of quality questions was defined for 
each of the 2 sub-groups (i.e., 16 questions for supervised, and 15 for 
unsupervised methods). Supervised methods questions were organized 
into seven categories: i) study design, ii) sample representativeness, iii) 
data acquisition, iv) features, v) dataset, vi) ML algorithm, vii) results 
validation and limitations. For unsupervised methods, quality questions 

Table 1 (continued ) 

Database Research String 

Metadata":“cluster analysis” OR "All Metadata": clustering OR "All 
Metadata":“pattern recognition” OR "All Metadata": categorization 
OR "All Metadata":“feature extraction”))  

Table 2 
Quality Assessment Questions sets for supervised and unsupervised methods.  

Questionnaire for studies based on supervised methods: Questionnaire for studies based on unsupervised methods: 

Study 
Design 

QS1 Is the study design appropriate for the research 
question? 

Study 
Design 

QU1 Is the study design appropriate for the research 
question? 

QS2 Are the objectives and research questions clearly 
stated? 

QU2 Are the objectives and research questions clearly 
stated? 

Samples 
Representativeness 

QS3 Is the representativeness of the sample justified and 
outlined in the study? 

Samples 
Representativeness 

QU3 Is the representativeness of the sample justified and 
outlined in the study? 

Data 
Acquisition 

QS4 Are the details of the data collection method clearly 
described? 

Data 
Acquisition 

QU4 Are the details of the data collection method clearly 
described? 

Features QS5 Are the selected gait features well-defined and 
clearly described? 

Features QU5 Are the selected gait features well-defined and clearly 
described? 

QS6 Are justification or rationale provided regarding the 
selection of features? 

QU6 Are justification or rationale provided regarding the 
selection of features? 

Dataset QS7 Is there a clear description of data sets for the ML 
models? 

ML 
Algorithm 

QU7 Is there a justification for the selection of ML 
algorithms in the study? 

QS8 Are the models tested on external or independent 
datasets? 

QU8 Are the details of the ML models clearly reported? 

ML 
Algorithm 

QS9 Is there a justification for the selection of ML 
algorithms in the study? 

Results Validation, & 
Limitations 
& Clinical Relevance 

QU9 Were the appropriate validation methods applied to 
evaluate the proposed model? 

QS10 Are the details of the ML models clearly reported? QU10 Are the clinical explainability of the results 
addressed in the study? 

Results Validation & 
Limitations 

QS11 Were appropriate performance metrics used to 
evaluate the proposed model? 

QU11 Are the conclusions clearly supported by the results? 

QS12 Are the conclusions clearly supported by the 
results? 

QU12 Are the advantages and limitations of the chosen 
algorithms discussed? 

QS13 Are the advantages and limitations of the chosen 
algorithms discussed? 

QU13 Are the results compared to the clinical 
benchmarks? 

QS14 Are the results compared to state-of-the-art 
approaches or benchmarks? 

QU14 Are the limitations of the study clearly described? 

QS15 Are the limitations of the study clearly described? QU15 Does the study add value to the state-of-the-art? 

QS16 Does the study add value to the state-of-the-art?   
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were organized in six categories: i) study design, ii) samples represen
tativeness, iii) data acquisition, iv) features, v) ML algorithm, vi) results 
validation, limitations and clinical relevance. The two sets of quality 
questions are reported in Table 2. 

Each question was scored on a three-level basis: 1 for yes, 0.5 for 
limited details, and 0 for no [43,44]. The total score was computed per 
study to assess the overall quality and expressed as a percentage of the 
relative full score. Studies were classified into three categories: high 
quality (total score higher than 80%), medium quality (total score 
comprised between 51% and 79%), and low quality (total score lower 
than 50%) [43]. 

To offer a comprehensive overview of the challenges to the trans
lation of ML methods into clinical use, three properties were specifically 
analysed: i) suitability, ii) reliability, iii) feasibility. To grade how these 
properties are addressed in the different studies, specific quality ques
tions were associated with each property. 

Questions and aspects associated to the suitability are:  

• Feature selection (QS5, QS6, QU5, QU6)  
• ML algorithm selection (QS9, QU7)  
• Algorithms and Study limitations (QS13, QS15, QU12, QU14)  
• Clinical explainability of the results (QU10) 

Those linked to the feasibility:  

• Sample representativeness (QS3, QU3)  
• Data acquisition (QS4, QU4)  
• ML algorithm selection (QS9, QU7)  
• Algorithms and Study limitations (QS13, QS15, QU12, QU14) 

And, for reliability:  
• Sample representativeness (QS3, QU3)  

• Data acquisition (QS4, QU4)  
• Feature definition (QS5, QU5)  
• Dataset (QS7, QS8)  
• ML algorithm selection and details (QS9, QS10, QU7, QU8)  
• Evaluation indices (QS11, QS12, QS14, QU9, QU11, QU13)  
• Study limitations (QS15, QU14) 

Based on the percentage of the studies that provided full answers to 
each question, we categorized the questions into three levels. Questions 
fully addressed in over 80% of the studies were assigned a high-quality 
rating, those answered between 51% and 79% were categorized as 
medium quality, and questions addressed in less than 50% of the studies 
were classified as low-quality. 

For each property, we determined the ratio of questions at each level 
(low, medium, high) to the total number of questions linked to that 
property. These ratios are presented as percentages to evaluate the 
extent to which each property is addressed in studies. (For more details, 
please refer to the supplementary materials in Table S3). 

3. Results 

The initial search process yielded 4120 records through the defined 
search string and hand searching, which resulted in 2450 unique articles 
after removing duplicates. During the screening of titles and abstracts, 
conflicts were found in 45 papers. These conflicts were resolved through 
discussion, leading to a consensus for 40 articles, of which 20 were 
included in the review. For the 5 cases where an agreement could not be 
reached, a third reviewer was consulted for further assessment. 
Following this step, a total of 78 articles were included, and 77 articles 
were successfully retrieved for full-text screening. Sixteen studies were 
deemed ineligible based on the inclusion criteria and subsequently 

Fig. 1. PRISMA flow chart for paper selection.  
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excluded from the review. By adding 2 articles identified through hand 
searching, 63 unique articles were included in this review. Fig. 1 illus
trates the PRISMA flow chart for the study selection process. 

Out of the 63 included articles, 31 were evaluated using the ques
tionnaire designed for supervised-based studies, while the remaining 
articles were assessed using the questionnaire for unsupervised-based 
studies. Three studies employed both supervised and unsupervised 
methods [37,45,46] and were categorized as supervised based on the 
main contribution and the employed validation methods. 

3.1. Data extraction 

Out of the 63 included articles, 37 focused on CP and 25 focused on 
stroke. Notably, in a study by Luo et al. [47], the pathology of included 
participants was not stated. Regarding the data acquisition methods, 
optoelectronic systems [25,26,28,31,33,37–40,45–66] and wearable 
sensors [30,67–75] are the primary standalone data sources and inte
grating the optoelectronic systems with force plates is the prevailing 
hybrid method for collecting gait data [34,66,76–83]. The most 
frequently used supervised methods in the included studies were arti
ficial neural networks (ANN) (18 studies), support vector machine 
(SVM) (12 studies), and random forest (RF) (eight studies). Additionally, 
among unsupervised methods, k-means (19 studies), fuzzy clustering 
(six studies), and hierarchical clustering techniques (six studies) were 
commonly utilized (for more details, refer to the supplementary mate
rials in Fig. S2). These ML algorithms are employed to analyze diverse 
range of standalone parameters, including kinematics, spatio-temporal, 
kinetics, and muscle activation and integrated parameters in which 
integration of spatio-temporal and kinematics is the most frequent (gait 
parameters frequency is illustrated in Fig. 3 in the supplementary ma
terials). Table 3 summarizes relevant information extracted from the 
included studies. One of the most frequent objectives of applying these 
techniques was to investigate the different gait patterns within the same 
pathology [32–36,45,46,48,49,52–54,56,57,59–67,74–87]. This in
volves various applications, including severity classification of the dis
orders, classification of gait patterns based on established clinical 
benchmarks, and gait patterns clustering to uncover the significant pa
rameters. Distinguishing between healthy and pathological gait was the 
next frequent objective in these studies [24–27,47,50,51,58,69–73, 
88–90], which might contribute to the development of diagnostic tools 
and aids in the early detection and intervention of gait abnormalities in 
these individuals. Differentiating between various pathologies [28–31, 
55,68], evaluating the efficacy of treatment modalities [37–39], and 
prescribing optimal treatment interventions [40] were additional ap
plications of ML techniques in the analysis of gait patterns among in
dividuals with CP and stroke. These applications aimed to improve 
clinical decision-making by providing objective measures of treatment 
outcomes, assisting in treatment planning, and monitoring progress, and 
facilitating personalized interventions based on each patient’s specific 

needs and characteristics. 

3.2. Quality assessment 

3.2.1. Supervised ML methods 
Among the 31 studies implementing supervised ML algorithms, 7 

[30,51,57,66,68,82,83] were rated high-quality, 19 [24,25,27–29,37, 
40,46,50,67,69–71,73,75,80,84,85,91] medium-quality, and 5 [38,39, 
47,72,86] low-quality (Fig. 2a). All studies but 5 [38,39,50,70,85] 
demonstrated an appropriate study design and effectively communi
cated their research objectives (scoring details can be found in Table S1 
in the supplementary materials). 

3.2.1.1. Dataset. Information regarding the participants’ inclusion 
criteria, demographic details, and clinical profiles was sufficiently re
ported in all studies but 9 [25,27,40,47,50,51,69,84,85]. Regarding the 
dataset size, 14 studies [24,29,30,37,39,46,51,67,68,70,71,75,80,86] 
included fewer than 50 subjects, and in 10 studies only [25,28,50,57,66, 
69,82,84,85] participant count exceeded 100. The remaining studies 
included a number of subjects between 50 and 100 (for more details, 
refer to the supplementary materials in Fig. S4). 

Sixteen papers adequately reported the data acquisition process, 7 
studies [27,28,38–40,47,84] only a limited description, and 8 [39, 
45–47,71,72,75,86] unclear definitions of training and test sets. 

3.2.1.2. Feature engineering. Dimensionality reduction methods were 
used in 12 studies [24,30,40,51,57,67–70,73,80,84] to remove highly 
correlated features. All the studies except 7 [24,38,51,71,72,84,86] 
clearly explained the gait features selected as model input. Regarding 
providing explicit justification for the chosen features, only 1 research 
by Kim et al. [46] reported a convincing rationale. 

3.2.1.3. Algorithm selection. Out of 31 studies, only 6 [7,12–14,19,23] 
provided adequate rationale for their algorithm choices. Computational 
cost, generalization capability, interpretability, and automatic feature 
extraction constituted the most frequent justifications in these studies. 
Other 7 studies mentioned the advantages and limitations of the selected 
ML method [40,51,66,71,82,83,91]. The outcomes of multiple ML al
gorithms were assessed across 18 studies [25,27,28,30,45,47,51,57, 
66–69,71,80,82–85] to select the algorithm with the highest 
performance. 

3.2.1.4. Algorithm design and validation. Most studies, except 7 [25,28, 
38,69,72,80,86], detailed the design scheme. Notably, these explana
tions encompassed details such as the number of layers, neurons, acti
vation functions, and optimization methods in ANN [25,38,45,67, 
71–73,75,82,83,85]. Similarly, information about support vectors, ker
nels, and regularization parameters in SVM [30,37,47,50,51,69], as well 
as the number of trees in the RF methods [40,47,68] were among the 

Fig. 2. Quality Assessment Scores for included articles. (a) Scores for studies with supervised methods. (b) Scores for studies with unsupervised methods.  
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most frequently presented elements in the studies. All but 6 studies [24, 
39,45,66,73,86] used suitable performance metrics for evaluating the 
results. In relation to the use of the appropriate techniques to deal with 
overfitting problem and provide more reliable estimates, 19 out of 31 
employed cross-validation methods to evaluate their estimations [24,25, 
27–30,37,47,51,57,67–70,75,80,82,83,86] and the most of the studies 
except 10 [24,28,38,39,45–47,70,71,86] applied the independent test 
set to validate the generalization capacity of their proposed methods. In 
a broader context, it emerged that the findings derived from 12 studies 
[24,38,45,47,51,66,69,70,72,73,75,86] lacked sufficient support from 
the results. 

In addition to analysing the key aspects of implementing ML algo
rithms, it was observed that the research limitations were reported in 17 
studies [24,28,30,37,38,40,46,57,66,68–71,75,80,83,86]. Dataset size, 
diversity, and data quality were the most frequently addressed limita
tions. Lastly, regarding the contribution of the studies in adding value to 
the state of the art, 8 studies [27,30,67,68,71,82,83,85] received a full 
score. 

No question related to suitability or feasibility received a high rating, 
whereas 9% of the questions concerning reliability were rated as high 
quality. In general, suitability and reliability received the lowest and 
highest scores, respectively. It is worth noting that the lack of justifi
cation for feature selection and for choice of ML algorithm, with only 3% 
and 19% of the studies achieving a full score, respectively, contributed 
to lowering the suitability and feasibility of the proposed methods. A 
schematic comprehensive depiction of how the questions related to the 
suitability, feasibility, and reliability of the proposed supervised 
methods were addressed is reported in Fig. 3a. 

3.2.2. Unsupervised ML methods 
Out of the 32 studies utilizing unsupervised ML algorithms, 6 [32,34, 

48,49,76,88] received a high score, 19 [26,31,33,35,52–56,58,59,61, 
62,65,74,77,79,81,90] received a medium score, and 7 [36,60,63,64,78, 
87,89] were rated low quality (Fig. 2b) (for more details about scoring 
refer to Table S2 in the supplementary materials). 

All studies clearly defined the research objectives. However, the 
study design was not appropriately organized in 5 studies [49,59–61, 
89]. 

3.2.2.1. Dataset. All studies but 14 [33,35,36,56,58,60,61,63,64,74,78, 
79,87,89] presented detailed information regarding the characteristics 
and clinical profiles of the included participants. The number of subjects 
in the datasets ranged from 18 [78] to 2159 [36], and 23 studies [26,31, 
33–35,48,49,53–56,59,62–64,74,76–79,81,88,90] included fewer than 
100 subjects (for more details, refer to the supplementary materials in 
Fig. S4); Hu et al. [89] did not report the sample size, and 4 studies [36, 
61,87,89] did not adequately explain the data acquisition framework. 

3.2.2.2. Feature engineering. All papers but 3 [35,87,89] clearly 
explained the chosen gait features and pre-processing methods. Only 3 
studies [48,58,65] reported a convincing rationale for selecting gait 
parameters. Furthermore, 7 studies clearly reported the use of automatic 
feature extraction methods: principal component analysis (PCA) [26,33, 
36,49], analysis of variance (ANOVA) [54], factorial analysis [56], and 
Pearson correlation [62]. 

3.2.2.3. Algorithm selection. Ten out of 32 studies provided clear justi
fications for the chosen ML algorithms [32,33,49,58,61,65,74,77,88, 
89]: assigning multiple memberships to the group in fuzzy clustering 
methods [32,33,58,65], finding the optimal number of clusters [49,61, 
88], evaluating the performance of new algorithms [74,77,89]. How
ever, only 3 studies [48,53,54] discussed the advantages and drawbacks 
of the proposed algorithms, and none examined various methods to 
select the optimal one. 

3.2.2.4. Algorithm design and validation. All studies but 8 [31,33,56,59, 
60,63,65,87] provided detailed information about algorithm design. All 
studies but 2 [78,89] clearly explained the methodology for determining 
the optimal number of clusters, but adequate clinical interpretation of 
the clusters was found in only 14 papers [26,32,34,35,48,49,52,53,55, 
56,76,79,87,88]. The validity of the obtained clusters was adequately 
assessed in all studies but 4 [48,60,64,89], where authors did not report 
any statistical method for evaluating the clusters. 

In all studies but 11 [33,48,58,60,63–65,77,88–90], the results were 
reliable enough to support the conclusions. Moreover, only 4 studies 
demonstrated the efficacy of their findings to enhance clinical assess
ment [32,62,76,88]. 

Nineteen studies [26,31,34,35,48,49,52–56,58,60,61,63,76,79,88, 
90] addressed their limitations, small sample size and features limited to 
the sagittal plane motion being the most frequent. Nine studies [31,32, 
34,48,49,55,64,76,88] made significant contributions to the state of the 
art (see Table S2 in the supplementary material for more details). 

For unsupervised methods, 17% of the questions related to suitability 
resulted in high-quality scores, while the rates were 25% for feasibility 
and 22% for reliability (Fig. 3b). Like studies on supervised methods, 
studies on unsupervised exhibited the lowest and highest scores for 
suitability and reliability, respectively. Notably, in both supervised and 
unsupervised methods, the rationale behind feature selection emerged 
as the most critical factor contributing to the reduction in suitability and 
feasibility, with only four [46,48,58,65] of the studies achieving a full 
score. On the other hand, the results indicated that studies employing 
unsupervised methods had a higher average rating when compared to 
those utilizing supervised algorithms. 

Overall, from the quality assessment analysis, about 80% of the 
included studies were categorized as being of good quality (see Fig. 2). 
However, this positive rating primarily stemmed from high or very high 

Fig. 3. Quality of addressing the methods’ suitability, feasibility, and reliability. (a) Supervised algorithms. (b) Unsupervised algorithms.  
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Table 3 
Data extraction table for the 63 studies included in the review.  

Authors Pathologies Main Objective Sample 
Size 

Measurement 
Tool 

Gait 
Parameters 

Study 
Plane 

ML Algorithms Group 
Numbers 

Assessment 
Methods 

Abbasi et al. [48] Cerebral 
Palsy 

Defining existing 
clusters of 
crouch gait 
patterns in 
children with 
spastic diplegic 
cerebral palsy 

64 Eight infrared 
cameras of the 
Qualisys motion 
analysis system 

Kinematics Sagittal, 
Frontal, 
Transversal 

Spars K-means 5 Observational 
evaluation using 
predefined 
criteria 

Aguilera et al. [84] Cerebral 
Palsy 

Classification 
and discovery of 
gait patterns in 
children with 
spastic 
hemiplegia 

278 Vicon, EMG Kinematics, 
Kinetics, 
Muscle 
Activation 

Sagittal, 
Frontal 

Decision Tree, 
MLP Neural 
Networks, Via 
Regression, 
Adaptive 
Boosting 

4 Accuracy, 
Specificity, 
Sensitivity, ROC 

Amene et al. [49] Cerebral 
Palsy 

Identifying 
subgroups of 
children with 
pes planovalgus 
(PPV) secondary 
to CP 

47 14-camera 
Vicon 

Kinematics Sagittal, 
Frontal, 
Transversal 

K-means 6 ANOVA, post- 
hoc test 

Armand et al. [32] Cerebral 
Palsy 

Clustering of 
sagittal ankle 
kinematic 
patterns 

1376 Five-camera 
motion analysis 
system (Vicon1 
VX), EMG, 
Force plates 

Kinematics Sagittal Fuzzy c-means 3 ANOVA, post- 
hoc test 

Bravo et al. [50] Cerebral 
Palsy 

Classification of 
the Spastic 
hemiplegia (SH) 
based on 
contralateral 
unaffected limb 
kinematics to 
differentiate 
from normal 

933 Vicon 370 
Motion System 

Kinematics Sagittal Support Vector 
Machine 

2 Specificity, 
Sensitivity 

Burduk et al. [37] Stroke Clustering and 
classification of 
the stroke 
patients into 2 
clusters to 
evaluate the 
efficiency of the 
rehabilitation 
method 

50 Smartphone 
camera 

Spatio- 
temporal 

Not 
reported 

K-means, 
Support Vector 
Machine, 
Quadratic 
Discriminant 
Analysis 

2 Specificity, 
Sensitivity, ROC, 
Spearman’s 
correlation 
coefficient, T- 
test, Shapiro 
Wilk 

Carriero et al. [33] Cerebral 
Palsy 

Classifying 
spastic diplegic 
CP children into 
clinically 
recognizable 
groups 
according to 
their gait 
characteristics. 

40 Seven infra-red 
cameras (Vicon 
370) 

Spatio- 
temporal, 
Kinematics 

Sagittal, 
Frontal, 
Transversal 

Fuzzy c-means 9 Assessed by 
applying new 
data 

Chakraborty et al.  
[67] 

Cerebral 
Palsy 

Classification of 
pathological gait 
patterns using 
discrete wavelet 
and deep 
learning 

18 IMU sensors Kinematics Not 
reported 

Deep Neural 
Networks 

2 Accuracy, Loss, 
Sensitivity, 
Positive 
Predictive Value, 
Negative 
Predictive Value, 
ROC 

Chakraborty et al.  
[51] 

Cerebral 
Palsy 

Classification of 
CP and healthy 
subjects 

40 Multiple Kinect 
Sensors (Slik 
F153) 

Spatio- 
temporal 

Sagittal Extreme 
Learning 
Machine, MLP 
Neural 
Networks, K- 
Nearest 
Neighbor, 
Support Vector 
Machine 

2 Accuracy, 
Specificity, 
Sensitivity 

Chantraine et al.  
[52] 

Stroke Stiff knee 
severity 
classification in 
hemiparetic 
adults after 
stroke 

115 Ten 
optoelectronic 
cameras 
(OQUS4, 
Qualisys AB) 

Kinematics Sagittal K-means 5 ANOVA, post- 
hoc test, 
Kruskal-Wallis 
test 
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Table 3 (continued ) 

Authors Pathologies Main Objective Sample 
Size 

Measurement 
Tool 

Gait 
Parameters 

Study 
Plane 

ML Algorithms Group 
Numbers 

Assessment 
Methods 

Choisne et al. [53] Cerebral 
Palsy 

Classification of 
participants 
with cp and 
identifying the 
relation between 
orthotics type 
and gait pattern 

98 Qualisys motion 
capture system 
with nine 
cameras 
(Qualisys AB) 

Kinematics Sagittal, 
Frontal, 
Transversal 

Self-Organizing 
Map, K-means 

6 ANOVA, Levene 
test of 
homogeneity of 
variance, 
Normality test 

Cui et al. [24] Stroke Distinguishing 
the hemiparetic 
gait from normal 
gait and 
estimating the 
patient’s lower 
limb motor 
function by a 
novel 
probability- 
based gait score 

42 Six-Camera 
Qualisys motion 
capture system 
(Qualisys AB), 
EMG 
(Biomonitor 
ME6000, Mega 
Electronics), 
Bertec Force 
Plates 

Kinematics, 
Ground 
Reaction 
Forces, 
Muscle 
Activation 

Sagittal, 
Frontal, 
Transversal 

Support Vector 
Machine, 
Neural 
Network, 
Random Forest, 
Naive Bayes, K- 
Nearest 
Neighbor, 
Fusion 
Algorithms 
(Classification- 
Based and Rule- 
Based) 

2 Accuracy, 
Confusion 
Matrix 

Darbandi et al. [54] Cerebral 
Palsy 

Classification of 
gait patterns in 
cp patients 
based on Rodda 

84 Vicon Plug-in 
Gait 

Kinematics Sagittal Fuzzy 
clustering 

4 Accuracy, 
Specificity, 
Sensitivity, 
Positive 
Predictive Value, 
Negative 
Predictive Value 

Dolatabadi et al.  
[88] 

Stroke Mixture-model 
clustering to 
spatiotemporal 
gait parameters 
to characterize 
the pathological 
gait pattern 

88 GAITRite Force 
Plates 

Spatio- 
temporal 

Sagittal Gaussian 
Mixture Model 
Clustering 

3 Not Reported 

Domagalska et al.  
[55] 

Cerebral 
Palsy 

Discrimination 
between 
children with 
unilateral 
cerebral palsy 
and mild 
scoliosis 

96 3-D Real-time 
motion analysis 
system (CMS-HS 
3D) 

Spatio- 
temporal, 
Kinematics 

Sagittal K-means 3 ANOVA, post- 
hoc test 

Domagalska–Szopa 
et al. [56] 

Cerebral 
Palsy 

Clustering of the 
gait patterns 
based on posture 
forms 

58 3-D Real-time 
motion analysis 
system (CMS-HS 
3D) 

Spatio- 
temporal, 
Kinematics 

Sagittal, 
Frontal, 
Transversal 

K-means 4 ANOVA, post- 
hoc test 

Ferrari et al. [85] Cerebral 
Palsy 

Classification of 
diplegic gait 
patterns 

174 Optoelectronic 
cameras, EMG 
(No more info) 

Kinematics Sagittal, 
Frontal, 
Transversal 

MLP Neural 
Networks, 
Recurrent 
Neural 
Networks 
(LSTM) 

4 Accuracy, 
Confusion 
Matrix 

Gestel et al. [66] Cerebral 
Palsy 

Classification of 
children with CP 
based on knee 
and ankle 
parameters 

139 8 Infrared Vicon 
cameras, Force 
plates 

Kinetics Sagittal Bayesian 
Network 

4 Accuracy 

Hsu et al. [68] Stroke and 
other 
neurological 
disorders 

Classification of 
participants 
with 
neurological 
disorders based 
on different 
configurations of 
wearable sensors 

20 IMU sensors Spatio- 
temporal, 
Kinematics 

Not 
reported 

Random Forest, 
Classifier, 
Decision Tree, 
Gaussian naïve 
Bayes, MLP 
Neural 
Network, 
AdaBoost 

2 Accuracy, 
Sensitivity, 
Precision 

Hu et al. [89] Cerebral 
Palsy 

Clustering the 
children with 
and without CP 

Not 
reported 

Not Reported Not reported Not 
reported 

Mixture 
clustering 
Model 

Not 
reported 

Nor reported 

Hussain et al. [69] Stroke Classification of 
Healthy and 
Stroke 
Participants 
based on 
muscular 
activity using 
myoelectric 

123 EMG utilizing a 
Myoresearch 
DTS System 

Muscle 
Activation 

Not 
reported 

Logistic 
Regression, 
Support Vector 
Machine, 
Decision Tree, 
MLP Neural 
Network, 

2 Accuracy, 
Specificity, 
Sensitivity, 
Precision, 
Negative 
Predictive Value, 
ROC, Gini index 
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Table 3 (continued ) 

Authors Pathologies Main Objective Sample 
Size 

Measurement 
Tool 

Gait 
Parameters 

Study 
Plane 

ML Algorithms Group 
Numbers 

Assessment 
Methods 

biomarkers 
evaluation 

Discriminant 
Analysis Model 

Kaczmarczyk et al.  
[45] 

Stroke Classifying the 
gait patterns of 
post-stroke 
patients 

74 3-DGA (Ariel 
Performance 
Analysis System 
(APAS)) 

Kinematics Sagittal, 
Frontal 

MLP Neural 
Networks, K- 
means, 
Discriminant 
Function 
Analysis 

3 Accuracy, 
Coefficient of 
Determination, 
Confusion 
Matrix 

Kamruzzaman et al. 
[25] 

Cerebral 
Palsy 

Discrimination 
between normal 
and CP children 

156 Six-camera 
Vicon System 

Spatio- 
temporal 

Not 
reported 

Support Vector 
Machine, MLP 
Neural 
networks, 
Linear 
Discriminant 
Analysis 

2 Accuracy, 
Specificity, 
Sensitivity, ROC 

Kim et al. [46] Stroke Identifying gait 
types of post- 
stroke 
hemiplegic 
patients directly 
from joint-level 
kinematics 

36 Orthotrak 
motion capture 
system with 
eight cameras 

Kinematics Sagittal Mini-batch K- 
means, K- 
means, 
Gaussian 
Mixture Model, 
Logistic 
Regression, 
Support Vector 
Machine, 
Random Forest, 
Gaussian Naive 
Bayes classifier 

6 Accuracy, 
Sensitivity, 
Precision, F1- 
Score, ANOVA, 
Silhouette 
coefficient 

Kim et al. [90] Cerebral 
Palsy 

Classification of 
muscle synergies 
in cp and 
healthy 
participants 

28 Motion Capture 
Cameras (Vicon, 
Denver), EMG 

Muscle 
Activation 

Not 
reported 

K-means 10 ANOVA, 
Spearman’s 
Correlation 
coefficient, T- 
test 

Kinsella et al. [34] Stroke Discrimination 
between gait 
patterns of 
stroke patients 
with equines 
deformity 

23 Vicon Plug-in 
Gait Model, 
Force Plates 
(AMTI OR6–5) 

Kinematics Sagittal, 
Frontal 

Hierarchical 
cluster analysis 

3 ANOVA, post- 
hoc test 

Krechowicz et al.  
[86] 

Cerebral 
Palsy 

Prediction of 
gait deviation 
indexes using 
only data 
extracted from 
the BS4P exam 

29 BS4P, Isokinetic 
Dynamometer 

Kinematics, 
Kinetics 

Not 
reported 

K-nearest 
Neighbor, 
Decision Tree 
Regression, 
Random Forest 
Regression, 
Gradient Boost 
Regression, 
Adaptive 
Boosting 
Regression 

- Coefficient of 
Determination 

Krzak et al. [26] Cerebral 
Palsy 

Identifying 
clinically 
relevant 
subgroups 
among a sample 
of TD children 
and children 
with 
equinovarus due 
to hemiplegic CP 

44 3-D motion 
analysis system 
and Vicon 
Nexus software 

Kinematics Sagittal, 
Frontal, 
Transversal 

K-means 5 ANOVA, post- 
hoc test 

Kuntze et al. [76] Cerebral 
Palsy 

Determining 
clusters of 
participants 
with CP based on 
multi-joint gait 
kinematics 

37 8-camera 
optical motion 
analysis system 
(Motion 
Analysis), 
OR6–6 force 
plates (AMTI) 

Kinematics Sagittal, 
Frontal, 
Transversal 

K-means 4 Silhouette 
coefficient 

Laet et al. [57] Cerebral 
Palsy 

Classification of 
joint motion 
patterns for 
children with CP 
and studying the 
effect of expert 
knowledge in 
the supervised 

356 Vicon Motion 
Systems 

Kinematics Sagittal, 
Frontal, 
Transversal 

Naïve Bayes 
Classifier, 
Logestic 
Regression 

3 Accuracy, F1- 
score, 
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Table 3 (continued ) 

Authors Pathologies Main Objective Sample 
Size 

Measurement 
Tool 

Gait 
Parameters 

Study 
Plane 

ML Algorithms Group 
Numbers 

Assessment 
Methods 

classification 
system 

Lee et al. [70] Stroke Distinguish 
hemiplegic and 
normal gait 

40 IMU sensors Kinematics Not 
reported 

Random Forest 2 Accuracy, 
Specificity, 
Sensitivity, 
Positive 
Predictive Value 

Iosa et al. [71] Stroke Classifying 
Stroke and 
healthy 
participants and 
identifying if the 
patient can 
return to the 
work 

33 IMU sensors Spatio- 
temporal, 
Kinematics 

Sagittal, 
Frontal, 
Transversal 

MLP Neural 
networks 

2 Accuracy, 
Specificity, 
Sensitivity, ROC 

Luo et al. [47] Hemiplegia 
(The specific 
pathology 
was not 
reported) 

Classification of 
participants 
with and 
without 
hemiplegia 

60 Microsoft Kinect 
sensor 

Spatio- 
temporal 

Sagittal Random Forest 2 Accuracy, ROC 

MacWilliams et al.  
[28] 

Cerebral 
Palsy 

Discrimination 
between 
hereditary 
spastic 
paraplegia and 
cerebral palsy 

706 Optoelectronic 
(No more info) 

Spatio- 
temporal 

Sagittal, 
Frontal, 
Transversal 

Bayesian 
Additive 
Regression 
Trees 

2 Specificity, 
Sensitivity, 
Confusion 
Matrix 

Malley et al. [58] Cerebral 
Palsy 

Classification of 
the ambulation 
of neurologically 
intact children 
and those with 
cerebral palsy. 

156 Six-Camera 
Vicon System 

Spatio- 
temporal 

Sagittal Fuzzy 
clustering 

5 Not reported 

Manca et al. [59] Stroke Identification of 
foot-ankle 
complex 
dysfunction in 
gait patterns in 
hemiplegic 
patients 

49 Six-camera 
motion analysis 
Vicon 460 
system 

Kinematics Sagittal, 
Frontal, 
Transversal 

Non- 
hierarchical 
cluster analysis 

5 Post-hoc test, 
Kruskal-Wallis 
test 

Mannini et al. [29] Stroke, 
Huntington 

Classification of 
different 
pathological 
gaits using 
probabilistic 
models 

42 IMU sensors, 
Force Plates 

Spatio- 
temporal 

Not 
reported 

Support Vector 
Machine 

3 Mean Square 
Error, Confusion 
Matrix 

Mathur et al. [72] Stroke Identification of 
different 
mobility levels 
of the entire 
group of patients 
with varying 
levels of disease 

80 IMU sensor 
(Xsens Motion 
Capture System) 

Spatio- 
temporal 

Not 
reported 

Logistic 
Regression, 
MLP Neural 
networks, 
Support vector 
machine, 
Extreme 
gradient 
boosting 
(XGBoost) 

2 Sensitivity, 
Precision, F1- 
Score 

Muhammad et al.  
[38] 

Cerebral 
Palsy 

Categorization 
of gait patterns 
to normal, pre- 
treatment, and 
post-treatment 
cp 

55 3-DGA (Vicon 
Polygon 
software) 

Spatio- 
temporal, 
Kinematics, 
Kinetics 

Sagittal, 
Frontal, 
Transversal 

MLP Neural 
networks 

3 Accuracy, ROC 

Mulroy et al. [35] Stroke Classification of 
gait patterns for 
stroke patients 

52 Vicon motion 
analysis system, 
EMG, LIDO 
Active 
dynamometer 
Force Plates 

Spatio- 
temporal, 
Kinematics 

Sagittal Non- 
hierarchical 
cluster analysis 

4 Accuracy, 
ANOVA, 
Kruskal-Wallis 
test, Jack-Knife 

O’Byrne et al. [60] Cerebral 
Palsy 

Categorization 
of gait patterns 
in CP 
participants 

146 CODA-3 system Kinematics Sagittal K-means 8 Not reported 

Pauk et al. [77] Stroke Proposing a new 
biclustering 
method (KMB) 

41 Motion tracking 
system (Motion 
Analysis Corp.), 

Spatio- 
temporal 

Not 
reported 

agglomerative 
hierarchical 
clustering 
algorithm, 

3 Not reported 
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Authors Pathologies Main Objective Sample 
Size 

Measurement 
Tool 

Gait 
Parameters 

Study 
Plane 

ML Algorithms Group 
Numbers 

Assessment 
Methods 

in identifying 
three gait types 

AMTI Force 
Plates 

Biclustering 
algorithm 
(KMB) 

Pauk et al. [78] Stroke Clustering of 
gait patterns in 
the hemiplegia 
population 

18 Motion tracking 
system (Motion 
Analysis Corp.), 
AMTI Force 
Plates 

Kinetics Not 
reported 

Biclustering 
algorithm 

Not 
reported 

ANOVA, Mean 
Square Residue 
Score, 
Spearman’s 
correlation 
coefficient 

Prakash et al. [61] Cerebral 
Palsy 

Finding the 
optimal number 
of gait profiles 
using nature- 
based clustering 
algorithms 

156 Six cameras of 
the Vicon 
system 

Spatio- 
temporal 

Not 
reported 

K-means, GA, 
Hybrid GA, 
PSO, Hybrid- 
PSO, Fuzzy c- 
means 

5, 4 (Differs 
for 
different 
algorithms) 

Mean Square 
Error, Silhouette 
coefficient, T- 
test, Cluster 
purity index, 
Dunn Index. 

Prokopowicz et al.  
[39] 

Stroke Comparing two 
post-stroke 
rehabilitation 
methods by 
machine 
learning 
approaches 

50 Optoelectronic 
(No more info) 

Spatio- 
temporal 

Not 
reported 

MLP Neural 
Networks 

2 Not reported 

Ries et al. [40] Cerebral 
Palsy 

Proposing a 
statistical 
orthosis 
selection model 
using the 
Random Forest 
Algorithm 

1491 Optoelectronic 
(No more info) 

Kinematics Not 
reported 

Random Forest 5 Accuracy, 
Specificity, 
Sensitivity, 
Positive 
Predictive Value, 
Negative 
Predictive Value, 
RMSE, 
Coefficient of 
determination, 
Matthews 
correlation 
coefficient 

Roche et al. [62] Cerebral 
Palsy 

Determining 
principal gait 
patterns in 
adults with cp 
using the 
clustering 
approach 

44 Motion Analysis 
System (Motion 
Analysis 
Corporation) 

Spatio- 
temporal, 
Kinematics 

Sagittal, 
Frontal 

Hierarchical 
clustering 
method 

5 ANOVA 

Rozumalski et al.  
[36] 

Cerebral 
Palsy 

Clustering of CP 
who walk with 
excessive knee 
flexion at initial 
contact 

2159 Not reported Kinematics Sagittal K-means 5 Dunn Index 

Sangeux et al. [87] Cerebral 
Palsy 

Classifying the 
sagittal gait 
patterns of 
patients with CP 
according to 
Rodda 

776 Not reported Kinematics Sagittal K-means 5 Accuracy, 
ANOVA, post- 
hoc test 

Scheffer et al. [73] Stroke Distinguish 
between 
participants 
with hemiplegic 
stroke and 
healthy 
individuals 

58 IMU sensors Kinematics Sagittal, 
Frontal, 
Transversal 

MLP Neural 
Networks 

2 Accuracy, 

Sekiguchi et al.  
[79] 

Stroke Categorization 
of gait patterns 
after stroke 
based on ankle 
stiffness and use 
of ankle orthosis 

79 Motion Analysis 
System with 
eight cameras 
(Motion 
Analysis 
Corporation), 
Force Plates 

Kinematics Sagittal Hierarchical 
cluster analysis 

3 ANOVA, post- 
hoc test, 
Kruskal-Wallis 
test 

Straudi et al. [63] Stroke Clustering of 
hemiplegic gait 
in stroke 
patients 

34 Vicon 460 
motion analysis 

Spatio- 
temporal, 
Kinematics 

Sagittal K-means 3 ANOVA 

Sung et al. [80] Stroke Stroke severity 
classification 
based on 

31 3-D motion 
capture cameras 
(Vicon Nexus) 

Spatio- 
temporal, 
Kinematics, 
kinetics 

Not 
reported 

Support Vector 
Machine, 
Gradient 
Boosting, 

3 Accuracy, 
Specificity, 
Sensitivity, 
Precision, F1- 

(continued on next page) 
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Table 3 (continued ) 

Authors Pathologies Main Objective Sample 
Size 

Measurement 
Tool 

Gait 
Parameters 

Study 
Plane 

ML Algorithms Group 
Numbers 

Assessment 
Methods 

walking 
symmetry 

Decision Tree, 
Random Forest 

Score, Confusion 
matrix 

Szopa et al. [81] Cerebral 
Palsy 

Detecting gait 
patterns for 
unilateral CP 
participants 
using clustering 

96 3-D real-time 
motion analysis 
(CMS-HS 3D), 
Force Plates 

Spatio- 
temporal, 
Kinematics 

Sagittal, 
Frontal, 
Transversal 

K-means 3 ANOVA, post- 
hoc test 

Tan et al. [74] Stroke Proposing a new 
Kinetic Index to 
characterize the 
gait deficits in 
stroke survivors 
and classifying 
stroke survivors 
based on TUG 
scores 

30 IMU sensors, 
EMG 

Spatio- 
temporal, 
Kinematics, 
Muscle 
Activation 

Sagittal Hierarchical 
Cluster Analysis 

3 ANOVA 

Toro et al. [64] Cerebral 
Palsy 

Clustering of 
different gait 
types in children 
with CP 

67 Optoelectronic 
(No more info) 

Kinematics Sagittal Hierarchical 
cluster analysis 

13 Objective 
validation 
procedures 
based on clinical 
judgment 

Vaughan et al. [65] Cerebral 
Palsy 

Introducing a 
simple gait 
nomogram 
based on the 
dynamic 
similarity 
hypothesis and 
monitoring of 
the functional 
status of CP 
children using 
Fuzzy clustering 

747 Six-Camera 
Vicon system 

Kinematics Sagittal Fuzzy 
Clustering 

5 4 test data were 
used to test the 
validity of the 
proposed 
method 

Wang et al. [30] Stroke, 
Peripheral 
Neuropathy, 
Parkinson’s 

Classifying 
different 
pathologies by 
two shank- 
mounted IMUs 

49 IMU sensors 
(InvenSense 
MPU-6050) 

Spatio- 
temporal, 
Kinematics 

Sagittal Support Vector 
Machine 

2 Accuracy, 
Specificity, 
Sensitivity, 
Confusion 
Matrix 

Wang et al. [75] Stroke Detection and 
classification of 
stroke gaits as an 
aid to diagnosis 
and for 
application of 
appropriate 
rehabilitation 
methods 
selection 

15 IMU sensors 
(APDM OPAL 
system) 

Kinematics Sagittal Deep Neural 
Network 

4 Accuracy, F1- 
Score 

Wolf et al. [31] Cerebral 
Palsy, 
Hereditary 
spastic 
Paraplegia 

Distinguish 
between CP and 
HSP participants 

87 Vicon 370 
motion capture 
system 

Kinematics Sagittal Fuzzy C-means 4, 5, 6 Not reported 

Zhang et al. [82] Cerebral 
Palsy 

Classification of 
sagittal gait 
patterns for CP 
children with 
spastic diplegia 

200 Eight-camera 
Vicon system, 
Force Plates 

Kinematics Sagittal MLP Neural 
Network, 
Discriminant 
Analysis, Naive 
Bayes, Decision 
Tree, K-Nearest 
Neighbors, 
Support Vector 
Machine, 
Random Forest 

4 Accuracy, 
Specificity, 
Sensitivity, ROC 

Zhang et al. [27] Cerebral 
Palsy 

Distinguishing 
between CP and 
healthy 
participants 

156 Six-camera 
Vicon system 

Spatio- 
temporal 

Not 
reported 

Bayesian 
classification 

2 Accuracy, 
Specificity, 
Sensitivity 

Zwick et al. [83] Cerebral 
Palsy 

Classification 
method for 
equines 
deformity in 
spastic cerebral 
palsy. 
(Differentiate 
dynamic calf 

66 Vicon 370, 
Force Plates 

Kinematics, 
Kinetics 

Not 
reported 

Generalized 
Dynamic 
Neural Network 

2 Specificity, 
Sensitivity, 
Positive 
Predictive Value, 
Negative 
Predictive Value 

(continued on next page) 
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scores in methodological aspects. At the same time, clinical-related 
criteria received deficient scores (see Fig. S1 in supplementary 
materials). 

4. Discussion 

This systematic review was conducted to address the existing gap 
between ML algorithms proposed in the literature to analyze or cluster 
GA data from children with CP and stroke patients and their clinical 
application. 

4.1. Dataset 

Data quality is pivotal in implementing a ML algorithm. The theory 
emphasizes the need for a dataset that adequately characterizes the 
statistical distribution of selected features in the chosen population 
including all relevant clinical information and reliable instrumental 
data. 

Creating a sufficiently large and diverse dataset containing data 
collected for clinical GA with minimal noise and outliers is challenging. 
This complexity of providing datasets with adequate sample sizes and 
reliable data affects the feasibility, robustness, and reliability of ML 
methods. 

One notable concern could be the use of synthetic data that may not 
accurately capture the intricacies of human movement dynamics and 
pathophysiological conditions, potentially limiting the generalizability 
of findings to real-world clinical settings. All the studies included in this 
review except one [89] used clinical datasets with a broad spectrum of 
sizes. In the study by Hu et al. [89] in which a mixed clustering method 
was proposed to analyze gait data of children with CP, there was a 
notable absence of information regarding the dataset utilized. This 
absence poses a challenge in discussing the results presented in the 
study. In studies utilizing supervised methods, the dataset sizes varied 
from 15 [75] to 933 [50], while for studies employing unsupervised 
algorithms, the range was broader, spanning from 18 [78] to 2159 [36] 
(see Table 3). Several studies utilized limited datasets, with 27% of the 
papers involving cohorts of 40 participants or fewer. This variety proved 
that no standard guideline for the ideal sample size definition exists. 
Reasonably, sample sizes depended on data availability without an a 
priori sample size design. Using small datasets can significantly impact 
the significance and generalizability of the results, i.e., of ML algorithms 
to make accurate predictions or classifications on unseen data. 

An anecdotal example is the study by Kim et al. [90], in which 29 
subjects were clustered into ten groups. In this case, aside from the 
increased risk of overfitting and the influence of noise and random 
variables in shaping clusters, extracting meaningful conclusions about 
the underlying patterns becomes challenging. On the other side of the 
spectrum, the research by Rozumalski et al. [36] featured the most 
extensive participant cohort among studies, encompassing 2159 in
dividuals. Unfortunately, the authors of this study did not report critical 
factors such as demographic characteristics, the severity of functional 
limitations, and information regarding previous medical interventions. 
Noteworthy, approximately 40% of the assessed studies in this review 
did not report the patients’ clinical characteristics (for more information 
see Fig. S1 in supplementary materials). These limitations can also 
compromise the clinical applicability of the results. 

The reliability of proposed methods is closely tied to data 

acquisition, particularly regarding instrumental data quality limitations. 
In clinical practice, data acquired with both standalone and integrated 
methods can be affected by some operator-dependent errors, such as the 
misplacement of one or more markers (or inertial measurement units 
(IMU)) relative to the anatomical landmarks provided by the biome
chanical model, differences in marker or IMU placement in successive 
evaluations, or e.g., in pre- and post-treatment studies, and the non- 
perfect identification of foot-contact or foot-off time instants [92,93]. 
These factors significantly influence the reliability of results, high
lighting the critical importance of meticulous data acquisition tech
niques in ensuring robust and dependable outcomes. None of the studies 
addressed these practical considerations or implemented some 
pre-processing procedure to control for or decrease the effects of these 
factors in data. Besides this lack of data quality verification, only sagittal 
gait data was collected in 38% of studies (see Table 3). Restricting 
analysis to the sagittal plane may not adequately assess gait deviations 
and compensatory mechanisms that are typical for both post-stroke 
patients and - even more - children with CP [35,63,94]. 

The availability of large, diverse, and clean datasets is key in ML 
applications in clinical settings. Data collection should be carefully 
designed to improve model performance and reduce the risk of over
fitting and considering real-world constraints like limited participant 
access, time limitations, ethical considerations, economic cost, and 
technological constraints. In addition, well-founded pre-processing 
techniques must be designed and applied to ensure input data quality. 

4.2. Feature engineering 

The choice of proper gait parameters, in alignment with the research 
objectives, plays a pivotal role in shaping the clinical relevance and 
suitability of algorithms. Employing pre-processing and feature extrac
tion techniques can enhance the reliability of ML algorithms by reducing 
the influence of noise, outliers, and missing data and mitigating over
fitting. Additionally, reducing the dimensionality of features enhances 
algorithm feasibility by reducing computational requirements. 

Only 6% of the studies [46,48,58,65] addressed a well-defined 
rationale for the chosen parameters, which gave this item the lowest 
score in our assessment (see Fig. S1 in supplementary materials). The 
lack of clear justification for selected gait variables can affect the clinical 
utility and suitability of the methods employed. Making explicit the 
rationale behind the choice of parameters supports critical reasoning 
and also encourages the use of these variables by other researchers and 
clinicians who understand their significance and can translate them into 
daily clinical practice. Providing explicit reasoning behind the selected 
gait variables and using the clinically meaningful features can, there
fore, enhance the relevance of the algorithm in clinical settings. 

Regarding pre-processing methods, although many studies had 
implemented scaling methods, signal denoising was observed in only 
about 10% of these studies, with the low-pass Butterworth filter being 
the most used technique [29,51,80]. None of the studies provided a clear 
description of their approach to handling missing data. Since addressing 
these issues is critical for mitigating the shortcomings in data collection 
methods in clinical settings, the studies’ limitations in implementing 
these techniques can pose significant practical challenges. 

Finding the optimal number of features can be a challenging task in 
developing feature extraction and dimensionality reduction techniques. 
In two studies [58,65], the Authors employed a widely accepted 

Table 3 (continued ) 

Authors Pathologies Main Objective Sample 
Size 

Measurement 
Tool 

Gait 
Parameters 

Study 
Plane 

ML Algorithms Group 
Numbers 

Assessment 
Methods 

muscle tightness 
from fixed 
muscle 
contracture)  
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heuristic to determine the appropriate number of features, where the 
number of subjects is chosen to be approximately ten times the dimen
sion of the feature space [95]. Only in 6% of the studies did the number 
of samples and features follow this rule. As an example of the most 
extreme case, Mannini et al. [29] chose 18 features for a dataset 
comprising only 42 samples. This choice raises a concern related to the 
curse of dimensionality, where a substantial number of features in a 
constrained dataset leads to heightened computational complexities and 
an increased risk of overfitting in ML models [95]. The disparity be
tween the dataset size and the number of features, mainly stemming 
from the constrained sizes of the datasets in various studies, can exert 
notable effects on the interpretability, computational burden, and per
formance of ML methods. 

4.3. Algorithm selection 

Algorithm interpretability is a significant consideration in deter
mining the suitability of the selected ML method for clinical applica
tions. Simultaneously, selecting an algorithm with better performance 
indices can be more reliable. Moreover, the feasibility of the algorithms 
in the real-world setting can be affected by their computational cost. 

Clinicians prefer to understand how the algorithm makes predictions 
and identifies specific gait patterns. Therefore, interpretable methods 
are preferable for clinical applications and can potentially cultivate trust 
among clinicians and promote their acceptance and utilization. Only one 
study by Gestel et al. [66] explicitly highlighted the interpretability of 
their chosen method as a key rationale in algorithm selection. In their 
study, a Bayesian network approach was used to classify children with 
CP. Inherent limitations of some ML algorithms in interpretability could 
be the main reason for this limitation in studies. The shortening of 
interpretability in the proposed methods constitutes a critical challenge 
to the clinical utility of these models. Computational requirement, 
another factor in selecting an ML algorithm, was noted only in one study 
[51]. The selection of ML algorithms is directly linked to the feasibility 
of methods, particularly concerning computational requirements. Given 
the cost constraints and hardware limitations often present in clinical 
settings, considering computational requirements can significantly 
enhance the feasibility of the methods in real-world settings. This 
consideration ensures that the chosen algorithms are not only effective 
but also practical for implementation in real-world clinical scenarios. 
Finally, to attain satisfactory performance, typically the primary 
objective in the development of ML techniques, the optimal selection of 
an algorithm plays a critical role. To achieve this goal, assessing the 
outcomes of several chosen methods to reach the best solution can be a 
proper approach. This procedure was the main criterion in selecting the 
methods in the assessed literature. 

When choosing an appropriate ML method for clinical applications, 
it is essential to take all these factors into account. However, there exists 
a trade-off between these aspects. For instance, enhancing performance 
may lead to increased computational demands. Therefore, evaluating 
the pros and cons of ML algorithms and selecting the algorithm ac
cording to the research objective and practical limitations becomes 
crucial. Ten studies [40,45,48,51,53,54,66,71,82,83] addressed the 
advantages and drawbacks of developed ML methods, while no one 
addressed practical challenges regarding developed methods. Thought
ful evaluation of these aspects, aligned with research objectives and 
real-world constraints, plays a paramount role in mitigating the inherent 
limitations and optimizing the effectiveness of these methods in clinical 
settings. 

4.4. Algorithm design and validation 

Developing appropriate design and validation methods holds sub
stantial importance in ensuring the clinical reliability and feasibility of 
the proposed methods. Furthermore, in unsupervised methods, accu
rately determining the number of clusters can significantly improve the 

clinical relevance of the results, thereby increasing the suitability of the 
algorithms for clinical applications. 

All included studies utilized the random sample selection approaches 
for constructing test sets. In the research conducted by Lee et al. [70], 
the authors employed 80 sets of gait data collected from 40 individuals 
for training an RF algorithm. To create the training and test sets, they 
randomly divided the data, allocating 75% for training and 25% for 
testing. Therefore, because of the random allocation of various features 
from each subject, the data from each participant could be present in 
both the training and testing datasets. This non-independence of the test 
set raises concerns about the reliability of the reported 100% scores for 
performance metrics in this study. It became evident that the results 
presented in the paper were highly prone to overfitting. While random 
test set selection is essential to provide an unbiased evaluation of a 
model’s performance, it cannot ensure the representativeness of the test 
set, which is imperative for a more efficient model. To generate a 
representative test set, stratified sampling is a noteworthy strategy, a 
statistical technique ensuring that each class is proportionally repre
sented in the test set [96]. This method was not addressed in the studies, 
utilizing which can improve the reliability of assessments. 

In most studies, applying an independent test set and cross- 
validation methods were two frequent considerations for handling 
overfitting and performing a realistic evaluation of the proposed 
methods (see Fig. S1 in supplementary materials). Constructing an 
appropriate test set and developing cross-validation methods are crucial 
in implementing a reliable algorithm. However, it is important to note 
that cross-validation techniques can affect the feasibility of the algo
rithms by increasing computational and timing requirements. Therefore, 
balancing these factors is essential to achieve the optimal solution based 
on clinical objectives. 

Effective hyperparameter tuning enhances the method’s reliability. 
Most of the studies represented the details of the proposed ML algo
rithms. In this regard, selecting the optimal number of clusters in un
supervised methods poses challenges. Despite most of the studies that 
conducted mathematical methods, in eight studies [54–56,60,63,81,87, 
90], the experts’ knowledge was employed to predefine the number of 
clusters. Although employing mathematical methods to determine the 
number of clusters is effective in revealing hidden patterns within gait 
data, it may lack the clinical explainability that is a primary advantage 
of expert-defined clusters. In the study by Mulroy et al. [35], the optimal 
number of clusters was determined by evaluating the resultant clinical 
characteristics of a practical range of group numbers and by maximizing 
the R ratio. This approach combines mathematical techniques with 
expert insights, enabling not only the identification of concealed pat
terns through algorithms but also making the findings more clinically 
comprehensible. Therefore, the utilization of such integrated ap
proaches can be more effective for clinical applications. 

While most of the studies employed robust validation techniques to 
evaluate the performance of proposed algorithms, five studies with su
pervised methods [24,39,45,66,73] relied solely on accuracy as the 
metric for assessing their results. Considering the critical importance of 
false negatives and false positives in clinical decision-making, depend
ing solely on accuracy may prove inadequate for ensuring the reliability 
of a ML algorithm. In most of the studies utilizing unsupervised 
methods, statistical approaches were applied to evaluate the quality of 
the clusters. Applying these techniques can assess the consistency of the 
clusters. On the other hand, two studies [48,64] exclusively relied on 
clinical judgments and predefined clinical criteria for assessing cluster 
quality. While utilizing expert knowledge to assess the findings can 
effectively enhance their clinical relevance, the consistency of the 
clusters could be adversely affected by a lack of statistical analysis 
methods. Sangeux et al. [87] conducted an integrated approach. They 
not only utilized statistical methods such as ANOVA and post-hoc tests to 
evaluate cluster quality but also validated their findings by comparing 
them to the results of classifications conducted by experts. Employing 
methods that integrate expert knowledge with statistical techniques can 
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effectively ensure both the reliability and clinical relevance of the 
findings. 

Our analysis highlighted that adapting ML algorithms for clinical 
applications is mainly challenging in terms of suitability, primarily due 
to the lack of justification in selecting both features and ML algorithms. 
Additionally, another notable issue that affected the suitability, espe
cially in the realm of unsupervised methods, was the difficulty in 
achieving clinical interpretability of the results. In these algorithms, 
determining the optimal number of clusters emerged as a crucial factor 
for ensuring that the clinical outcomes can be readily understood and 
explained. 

With an average of around 70% of studies achieving medium and 
high quality, it is worth noting that the feasibility of the methods was 
reasonably well-considered. Nevertheless, it is important to highlight 
that the feasibility was still affected by the inadequate justification 
provided for selecting features and algorithms. 

The reliability of the systems gained the highest score, indicating 
that many researchers prioritized accuracy in their systems over their 
applicability and usability in real-world clinical contexts. Nevertheless, 
it is crucial to emphasize that focusing solely on the reliability of the 
systems is insufficient for achieving clinical applicability, as addressing 
real-world constraints characterized by the suitability and feasibility of 
these systems is of paramount importance. 

A significant diversity among study protocols was evident in various 
aspects, including participant demographics, data acquisition methods, 
extracted features, ML algorithms, and validation techniques. This di
versity reflects the multifaceted nature of clinical gait analysis and the 
complexity of applying ML algorithms to this domain. 

For instance, different studies focused on different populations, uti
lized various types of sensors, and employed a range of ML algorithms. 
The impact of this diversity on the analysis can be profound. Variations 
in participant characteristics, such as age, severity of condition, and 
comorbidities, can introduce heterogeneity that may influence the 
generalizability of findings across different patient populations. Differ
ences in data acquisition methods may affect the quality and reliability 
of the input data, potentially influencing the performance of ML algo
rithms. Moreover, the choice of ML algorithms and validation tech
niques can significantly impact the interpretability and generalizability 
of results. 

The findings of studies included in this study may not have been 
translated directly to the clinical applications. However, they can 
contribute to enhance our understanding of gait patterns, identifying 
relevant features, and exploring predictive models using various 
algorithms. 

5. Conclusion 

Although ML algorithms are powerful tools for handling vast and 
complex gait data, our current review has highlighted a notable lack of 
clinical relevance in the ML methods proposed for analysing clinical gait 
data from individuals with CP and stroke. The overall methodological 
quality of the evaluated studies regarding their appropriateness for 
clinical applications was found to be low. Most of the studies classified 
the samples into some classes focusing on enhancing the specified per
formance indices. However, the reliability and practicality of these 
methods for clinical settings were compromised due to insufficient 
justification for selecting features and ML algorithms and using datasets 
that did not adequately represent the population. Furthermore, there 
was a notable absence of explanations regarding how the resulting 
clusters were related to the impairments observed in individuals with CP 
and stroke, particularly in unsupervised ML methods. To develop ML 
methods that are genuinely applicable in clinical settings, it is essential 
to consider various aspects such as dataset quality, feature engineering, 
model selection, and interpretability of the results more comprehen
sively. The findings in this review can be used to develop more robust 
gait data analysis methods using ML algorithms that are better equipped 

to address the constraints and complexities of real-world clinical 
scenarios. 
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analysis may help to distinguish hereditary spastic paraplegia from cerebral palsy, 
Gait Posture 33 (4) (2011) 556–561. 

[32] S. Armand, E. Watelain, M. Mercier, G. Lensel, F.-X. Lepoutre, Identification and 
classification of toe-walkers based on ankle kinematics, using a data-mining 
method, Gait Posture 23 (2) (2006) 240–248. 

[33] A. Carriero, A. Zavatsky, J. Stebbins, T. Theologis, S.J. Shefelbine, Determination 
of gait patterns in children with spastic diplegic cerebral palsy using principal 
components, Gait Posture 29 (1) (2009) 71–75. 

[34] S. Kinsella, M. Kieran, Gait pattern categorization of stroke participants with 
equinus deformity of the foot, Gait & posture 27 (1) (2008) 144–151. 

[35] S. Mulroy, J. Gronley, W. Weiss, C. Newsam, J. Perry, Use of cluster analysis for 
gait pattern classification of patients in the early and late recovery phases 
following stroke, Gait Posture 18 (1) (2003) 114–125. 

[36] A. Rozumalski, M.H. Schwartz, Crouch gait patterns defined using k-means cluster 
analysis are related to underlying clinical pathology, Gait Posture 30 (2) (2009) 
155–160. 

[37] R. Burduk, I. Rojek, E. Mikołajewska, D. Mikołajewski, Post-stroke gait 
classification based on feature space transformation and data labeling, Appl. Sci. 
12 (22) (2022) 11346. 

[38] J. Muhammad, S. Gibbs, R. Abboud, S. Anand, W. Wang, Gait pattern recognition 
in cerebral palsy patients using neural network modelling, J. Ayub Med. Coll., 
Abbottabad: JAMC 27 (4) (2015) 754–758. 

[39] P. Prokopowicz, D. Mikołajewski, K. Tyburek, E. Mikołajewska, Computational gait 
analysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal 
dimension and neural networks, Bull. Pol. Acad. Sci.: Tech. Sci. (2) (2020). 

[40] A.J. Ries, T.F. Novacheck, M.H. Schwartz, A data driven model for optimal orthosis 
selection in children with cerebral palsy, Gait Posture 40 (4) (2014) 539–544. 

[41] P. Rajpurkar, E. Chen, O. Banerjee, E.J. Topol, AI in health and medicine, Nat. Med. 
28 (1) (2022) 31–38. 

[42] M.J. Page, J.E. McKenzie, P.M. Bossuyt, I. Boutron, T.C. Hoffmann, C.D. Mulrow, et 
al., The PRISMA 2020 statement: an updated guideline for reporting systematic 
reviews, Int. J. Surg. 88 (2021) 105906. 

[43] J. Fayad, P.E. Eltes, A. Lazary, L. Cristofolini, R. Stagni, Stereophotogrammetric 
approaches to multi-segmental kinematics of the thoracolumbar spine: a systematic 
review, BMC Musculoskelet. Disord. 23 (1) (2022) 1080. 

[44] R. Caldas, M. Mundt, W. Potthast, F.B. de Lima Neto, B. Markert, A systematic 
review of gait analysis methods based on inertial sensors and adaptive algorithms, 
Gait Posture 57 (2017) 204–210. 

[45] K. Kaczmarczyk, A. Wit, M. Krawczyk, J. Zaborski, Gait classification in post-stroke 
patients using artificial neural networks, Gait Posture 30 (2) (2009) 207–210. 

[46] H. Kim, Y.-H. Kim, S.-J. Kim, M.-T. Choi, Pathological gait clustering in post-stroke 
patients using motion capture data, Gait Posture 94 (2022) 210–216. 

[47] G. Luo, Y. Zhu, R. Wang, Y. Tong, W. Lu, H. Wang, Random forest–based 
classsification and analysis of hemiplegia gait using low-cost depth cameras. Med. 
Biol. Eng. Comput. 58 (2020) 373–382. 

[48] L. Abbasi, Z. Rojhani-Shirazi, M. Razeghi, H. Raeisi-Shahraki, Kinematic cluster 
analysis of the crouch gait pattern in children with spastic diplegic cerebral palsy 
using sparse K-means method, Clin. Biomech. 81 (2021) 105248. 

[49] J. Amene, J.J. Krzak, K.M. Kruger, L. Killen, A. Graf, H. Altiok, et al., Kinematic 
foot types in youth with pes planovalgus secondary to cerebral palsy, Gait Posture 
68 (2019) 430–436. 

[50] R.J. BRAVO, O.C.D.E. CASTRO, A.J. SALAZAR, Spastic hemiplegia gait 
characterization using support vector machines: contralateral lower limb, Rev. De. 
la Fac. De. Ing. ía Univ. Cent. De. Venez. 21 (2) (2006) 111–119. 

[51] S. Chakraborty, A. Nandy, Automatic diagnosis of cerebral palsy gait using 
computational intelligence techniques: a low-cost multi-sensor approach, IEEE 
Trans. Neural Syst. Rehabil. Eng.: a Publ. IEEE Eng. Med. Biol. Soc. 28 (11) (2020) 
2488–2496. 

[52] F. Chantraine, C. Schreiber, J.A.C. Pereira, J. Kaps, F. Dierick, Classification of stiff- 
knee gait kinematic severity after stroke using retrospective k-means clustering 
algorithm, J. Clin. Med. 11 (21) (2022). 

[53] J. Choisne, N. Fourrier, G. Handsfield, N. Signal, D. Taylor, N. Wilson, et al., An 
unsupervised data-driven model to classify gait patterns in children with cerebral 
palsy, J. Clin. Med. 9 (5) (2020) 1432. 

[54] H. Darbandi, M. Baniasad, S. Baghdadi, A. Khandan, A. Vafaee, F. Farahmand, 
Automatic classification of gait patterns in children with cerebral palsy using fuzzy 
clustering method, Clin. Biomech. 73 (2020) 189–194. 

[55] M. Domagalska-Szopa, A. Szopa, Gait pattern differences between children with 
mild scoliosis and children with unilateral cerebral palsy, PLoS One 9 (8) (2014) 
e103095. 

[56] M. Domagalska-Szopa, A. Szopa, Gait pattern differences among children with 
bilateral cerebral palsy, Front. Neurol. 10 (2019) 183. 

[57] T. De Laet, E. Papageorgiou, A. Nieuwenhuys, K. Desloovere, Does expert 
knowledge improve automatic probabilistic classification of gait joint motion 
patterns in children with cerebral palsy? PLoS One 12 (6) (2017) e0178378. 

[58] M.J. O’Malley, M.F. Abel, D.L. Damiano, C.L. Vaughan, Fuzzy clustering of 
children with cerebral palsy based on temporal-distance gait parameters, IEEE 
Trans. Rehabil. Eng. 5 (4) (1997) 300–309. 

[59] M. Manca, G. Ferraresi, M. Cosma, L. Cavazzuti, M. Morelli, M. Benedetti, Gait 
patterns in hemiplegic patients with equinus foot deformity, BioMed. Res. Int. 2014 
(2014). 

[60] J.M. O’Byrne, A. Jenkinson, T. O’brien, Quantitative analysis and classification of 
gait patterns in cerebral palsy using a three-dimensional motion analyzer, J. Child 
Neurol. 13 (3) (1998) 101–108. 

[61] C. Prakash, R. Kumar, N. Mittal, Optimized clustering techniques for gait profiling 
in children with cerebral palsy for rehabilitation, Comput. J. 61 (11) (2018) 
1683–1694. 

[62] N. Roche, D. Pradon, J. Cosson, J. Robertson, C. Marchiori, R. Zory, Categorization 
of gait patterns in adults with cerebral palsy: a clustering approach, Gait Posture 39 
(1) (2014) 235–240. 

[63] S. Straudi, M. Manca, E. Aiello, G. Ferraresi, S. Cavazza, N. Basaglia, Sagittal plane 
kinematic analysis of the six-minute walk test: a classification of hemiplegic gait, 
Eur. J. Phys. Rehabil. Med 45 (3) (2009) 341–347. 

[64] B. Toro, C.J. Nester, P.C. Farren, Cluster analysis for the extraction of sagittal gait 
patterns in children with cerebral palsy, Gait Posture 25 (2) (2007) 157–165. 

[65] C.L. Vaughan, M.J. O’Malley, A gait nomogram used with fuzzy clustering to 
monitor functional status of children and young adults with cerebral palsy, Dev. 
Med. Child Neurol. (2005) 377–383 (England). 

[66] L. Van Gestel, T. De Laet, E. Di Lello, H. Bruyninckx, G. Molenaers, A. Van 
Campenhout, et al., Probabilistic gait classification in children with cerebral palsy: 
A Bayesian approach, Res. Dev. Disabil. 32 (6) (2011) 2542–2552. 

[67] J. Chakraborty, A. Nandy, Discrete wavelet transform based data representation in 
deep neural network for gait abnormality detection, Biomed. Signal Process. 
Control 62 (2020) 102076. 

[68] W.-C. Hsu, T. Sugiarto, Y.-J. Lin, F.-C. Yang, Z.-Y. Lin, C.-T. Sun, et al., Multiple- 
wearable-sensor-based gait classification and analysis in patients with neurological 
disorders, Sensors 18 (10) (2018) 3397. 

[69] I. Hussain, S.-J. Park, Prediction of myoelectric biomarkers in post-stroke gait, 
Sensors 21 (16) (2021) 5334. 

[70] J. Lee, S. Park, H. Shin, Detection of hemiplegic walking using a wearable inertia 
sensing device, Sensors 18 (6) (2018) 1736. 
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