
T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med 388;26  nejm.org  June 29, 20232456

Review Article

From the Departments of Medicine, Ge­
netics, and Biomedical Data Science, 
Stanford University, Stanford, CA (B.G., 
E.A.A.); and the Department of Cardiol­
ogy, Pneumology, and Angiology, Heidel­
berg University Hospital, Heidelberg, 
Germany (B.G.). Dr. Ashley can be con­
tacted at euan@​stanford​.edu or at Stan­
ford University, Falk Bldg., 870 Quarry 
Rd., Stanford, CA 94304.

N Engl J Med 2023;388:2456-65.
DOI: 10.1056/NEJMra2204787
Copyright © 2023 Massachusetts Medical Society.

New methods such as genomic sequencing and mass spectrome-
try have prompted dramatic increases in the amount of molecular data 
available to scientists and health care professionals seeking more refined 

diagnoses and increased therapeutic precision.1 Although the largest advances 
have been made in genetic sequencing of DNA and RNA, medical applications of 
high-dimensional measurement of proteins and metabolites are increasing.

Analytic tools have been improved in parallel to match the volume, velocity, and 
variety of these molecular “big data.” The emergence of machine learning has 
proved especially valuable. In these approaches, computer systems use large 
amounts of data to build predictive statistical models that are iteratively improved 
by incorporating new data. Deep learning, a powerful subset of machine learning 
that includes the use of deep neural networks, has had high-profile applications 
in image object recognition,2 voice recognition, autonomous driving, and virtual 
assistance. These approaches are now being applied in medicine to yield clinically 
directive medical information. In this review article, we briefly describe the meth-
ods used to generate high-dimensional molecular data and then focus on the key 
role that machine learning plays in the clinical application of such data.

Molecul a r Data Gener ation at Sc a le

A major change in our ability to measure molecules at scale has fueled the current 
era of individualized medicine (Fig. 1). For decades, genetic sequencing based on 
the technique of Sanger focused on sections of DNA or RNA that were up to a few 
hundred bases in length. In the early 2000s, approaches such as sequencing by 
synthesis (Illumina) gained traction, allowing hundreds and eventually billions of 
short DNA templates to be synthesized and read simultaneously. More recent 
methods (from Pacific Biosciences and Oxford Nanopore), which have focused on 
continuous sequencing of long nucleic acid molecules, have additional benefits. 
Whereas the Human Genome Project took 10 years to sequence one incomplete 
monoploid genome at a cost of several billion dollars, in 2022, a more complete 
human genome3 could be sequenced in 5 hours for just a few hundred dollars.4 
This rapid acceleration in the availability of genomic data has created demand for 
fast processing and accurate interpretation of these data.

The process of genomic sequencing results in a computer text file in which each 
line represents an individually “read” molecule of DNA or RNA. For genomic se-
quencing, the aim is typically to generate sufficient overlapping data to cover each 
part of the genome 40 times. Some types of technology capture a subset of the 
genome and cover it many more times. This output text file is 100 to 200 gigabytes 
in size (similar to the hard-disk capacity of an entry-level laptop today). The reads, 
ranging from a few hundred to several million bases in length, are mapped to the 
reference genome generated by the Human Genome Project by means of the Bur-
rows–Wheeler transform, a method derived from data-compression information 
theory.5 Machine-learning or algorithmic approaches are then used to determine 
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where the genome being analyzed differs from 
the reference sequence. This results in a variant 
call file — a text file typically 3 million to 4 
million lines in length and a few megabytes in 
size. To prioritize the variants in the file accord-
ing to, for example, their likelihood of causing a 
rare disease in a patient, filtering or machine-
learning approaches are used.6 For RNA sequenc-
ing, after mapping, most applications focus on 
quantification of gene or isoform expression 
rather than on sequence identity, converting read 
counts per gene or isoform to a standardized 
quantitative measure.

In contrast, mass spectrometry is the work-
horse of proteomics (the study of all proteins in 
a cell) and metabolomics (the study of chemical 
processes involving metabolites in cell metabo-
lism). It generates ions by bombarding organic 
or inorganic compounds with electrons and 
separating the resulting positively charged frag-
ments by their mass-to-charge ratio. The first stage 
of mass spectrometry often involves a separation 
phase such as liquid chromatography, followed 
by a spectrometry phase. The output is in the 
form of spectral plots of ion signal as a function 
of mass-to-charge ratio. These output plots usu-
ally represent superimposed signals from at least 
hundreds of chemical entities that need to be 
decomposed into individual signals, mapped by 
reference to large databases of spectra from 
known chemical entities, and then further pro-
cessed. This processing might include, for ex-
ample, reassembling peptide fragments into full-
length proteins.

M achine-Le a r ning A pplic ations 
in Genomics

The most important advances in the application 
of machine learning to genomics (the study of 
the set of genes [the genome] in a cell) have oc-
curred in variant calling: the process of deter-
mining where the analyte sequence (e.g., a sample 
from a patient) varies from the reference se-
quence. As individual reads are mapped to the 
corresponding position in the reference genome, 
they can be visualized as a “pile up” in which 
bases distinct from the reference are highlighted 
(Fig.  1). This visual representation facilitates 
rapid manual review in complex areas of the 
genome, an insight that led to the development 
of a deep-learning approach to variant identifi-
cation that draws on advances in computer vi-

sion and image recognition.7 Other approaches 
to variant calling use machine learning in nar-
rower applications, such as for the technical 
calibration of error profiles for specific variants 
or regions of the genome.8

Deep neural networks9 are complex, nonlinear 
functions fit to large data sets. Multiple layers of 
alternating “neuron” weights and nonlinearities 
transform the data into abstract and lower-dimen-
sional representations that are useful for classi-
fication. Layers are connected through an activa-
tion function, which acts as a gatekeeper to the 
further propagation of individual outputs. In 
image tasks, pooling functions are used to down-
scale inputs over specific areas. Neuron weights 
are then refined through a process known as 
back-propagation, and a final classification is 
usually in the form of a confidence estimate for 
each of several output options. Convolutional 
neural networks are a specific form of deep neu-
ral networks, often used for image recognition, 
that are characterized by the process of sliding 
filters over the image input (Figs. 2 and 3).

With the power of neural networks and the 
ability to read much longer molecules of DNA, a 
new era in haplotyping (the mapping of DNA 
strands to the parental chromosome of origin) 
could emerge. The haplotyping approach improves 
the quality of variant calling by better representing 
the originating DNA molecules and can inform 
clinical management — for example, in the case 
of compound heterozygosity, when identification 
of the parent of origin of two variants at the same 
locus can affect patient care. Recently, unprece-
dented accuracy has been achieved with the use 
of an approach to variant calling that combines 
haplotyping with models optimized for sequen-
tial data, followed by the convolutional neural 
network approach described above (https://github​
.com/​google/​deepvariant/​releases/​tag/​v1​.5​.0).17

The improvement in variant calling resulting 
from these advances has been facilitated by the 
National Institute of Standards and Technology 
through its Genome in a Bottle Consortium and 
by the Food and Drug Administration (FDA) 
through the precisionFDA initiative. Together, 
these groups run open “Truth Challenge” com-
petitions with standardized samples. Results re-
veal continuing improvements in the accuracy of 
variant calling genomewide and specifically in 
challenging areas of the genome, such as regions 
encoding the major histocompatibility complex 
on chromosome 6. F1 accuracy scores, which 
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take both false positive and false negative results 
into account, range between 0, for the poorest 
outcome, and 1.0, for the best outcome. Scores 

higher than 0.998 have now been reported for 
the three most commonly applied forms of se-
quencing technology (with both short- and long-
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read sequencing) across all benchmark regions, 
including single-nucleotide and small insertion–
deletion variants.18

Machine learning (Fig. 2) has also proved to 
be extremely useful in the prioritization of vari-
ants for rare disease.19 For example, one approach 
used logistic regression–based machine learning 
within a large literature-derived data set to match 
phenotypes to candidate genes in order to help 
identify potentially causal genes for mendelian 
disease.20 Another approach applies maximum 
likelihood estimation (an iterative method for 
estimating the parameters of a model) and 
Bayesian networks (probabilistic graphical mod-
els) to achieve the same end.21

Application of all these approaches has been 
particularly successful in identifying rare inher-
ited diseases, with multiple studies showing solve 
rates of 30 to 50% for undiagnosed genetic dis-
ease.22,23 Using a variety of methods, the Undiag-
nosed Diseases Network reported a solve rate of 
35% for patients in a study, one third of whom 
had already undergone some form of genomic 
sequencing.22 In addition, in a recent study in-
volving 13,449 probands from the United King-
dom and Ireland, the diagnosis rate was 41%.24 
Also, our team found that clinical application of 
nanopore long-read sequencing not only improved 
accuracy as compared with prior approaches25 but 
also had the potential to make clinical diagnoses 
in a rare-disease context in less than 8 hours.4

In one case involving a 6-month-old infant 

with a seizure disorder, blood was drawn, and 
high-molecular-weight DNA was derived from 
white cells. As single DNA strands traversed 
hundreds of thousands of nanopore proteins, 
raw data representing the change in real-time 
current were fed to a recurrent neural network, 
which identified the underlying genetic sequence. 
These sequences were mapped to the reference 
sequence with the use of the Burrows–Wheeler 
transform. A recurrent neural network com-
bined with a hidden Markov model then sepa-
rated the parent of origin of individual DNA 
molecules and identified areas where the infant’s 
genome differed from the reference sequence. 
Finally, a convolutional neural network pro-
cessed the pile-up images, resulting in the out-
put of 4,503,667 variant calls. A filtration scheme 
prioritized 29 small variants and 20 structural 
variants for manual review, and within 8 hours 
after the infant’s blood had been drawn, a hetero-
zygous truncating variant in PCDH19 was identi-
fied as causal, establishing the diagnosis and 
allowing the bedside team to direct patient care 
according to the molecular cause of the seizures.

M achine Le a r ning for 
Tr a nscr ip t omics

Reading of the transcriptome (the sum of all the 
RNA transcripts in an organism) is being used 
as an additional tool to identify causal genes in 
rare diseases.26 Initial efforts revealed that iden-
tifying expression outliers by comparing the ex-
pression profile of every gene with a reference 
range could point to otherwise unsuspected 
causal genes.27 For an additive benefit, this ap-
proach was later combined with Bayesian models 
that predict regulatory effects for rare variants.28 
In a large cohort of patients with undiagnosed 
rare diseases, blood transcriptome sequencing 
identified causal variants in 8% of the patients.29 
Subsequently, a hierarchical Bayesian model in-
corporating gene expression, allele-specific ex-
pression, and alternative splicing data was used 
to identify genetically driven transcriptome ab-
normalities.30

Despite this progress, predicting splice junc-
tions remains a challenging problem. One deep-
learning model using a 32-layer deep neural 
network showed promise in improving the diag-
nosis of rare diseases.31 Use of an autoencoder, 
a neural network that efficiently learns how to 
encode input data to a compressed representa-

Figure 1 (facing page). Data Processing for Molecular 
Profiling.

From tissue-sample collection to accurate clinical diag­
nosis, complex laboratory and computational pipelines 
are required to generate and analyze data with the use 
of new measurement techniques. Initial workflow steps 
commonly include sample collection and library prepa­
ration. DNA and RNA sequencing are most commonly 
completed through synthesis sequencing (Illumina), 
nanopore sequencing (Oxford Nanopore), or single-
molecule real-time sequencing (SMRT, Pacific Biosci­
ences). Each method produces output in the form of 
raw data that vary according to the nucleotide of focus. 
Computational analysis converts those raw signals into 
bases (A, T/U, G, C) that are then output as a text file 
of short or long DNA or RNA molecules. Alignment  
of these individual “reads” to a genome of reference is 
then performed, and variants are called or gene expres­
sion is quantified. For mass spectrometry applications, 
output is in the form of ion spectra that are mapped to 
known chemical entities. Further important downstream 
analysis includes three-dimensional structure and func­
tion predictions.
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tion before decoding it back to a representation 
of the original input, has been shown to improve 
aberrant splicing prediction from RNA sequenc-
ing data (Fig. 2).13

These approaches were used in the case of a 
12-year-old girl with developmental regression, 
tremors, and seizures. Short-read genomic se-
quencing identified 96 candidate gene variants, 
none of which appeared to be responsible for the 
patient’s condition. The addition of a splice-
outlier algorithm based on RNA sequencing of 
the patient’s blood identified a splice-gain vari-
ant in KCTD7, which was not in the original list, 
establishing the diagnosis of progressive myoc-
lonus epilepsy.

Epigenomic A pplic ations

Epigenomics is defined as a complete set of 
modifications that influence gene expression. 
Although epigenetic mechanisms are known to 
play a role in certain rare and common disease 
presentations, characterization of chemical modi-
fications of DNA at scale is only beginning to 
have an impact on clinical medicine. Long-read 
sequencing methods present an exciting oppor-
tunity, since they produce signals when the nucle-
otide passes through a protein nanopore32 or as a 
base is incorporated by DNA polymerase.33 These 
signals can be interpreted by machine-learning 

methods to call not just the nucleotide at that 
site but any of a series of chemical modifications 
of that nucleotide. These approaches do not re-
quire the bisulfite conversion of the previous 
standard, which has been shown to cause DNA 
fragmentation.34 Because of a critical role in 
tissue-specific transcription, most attention has 
focused on the addition of a methyl group to the 
C5 position of cytosine residues in sequential 
CG dinucleotide sequences called CpG sites. Ap-
proaches involving the use of a range of neural 
networks, including convolutional neural net-
works,35 bidirectional recurrent neural networks 
(Fig. 3),14 and a combination of the two types,36 
have achieved a C statistic of more than 0.95 for 
the detection of methylation, outperforming 
previous benchmark models.36

M achine Le a r ning for 
Pro teomics

Deep learning has facilitated substantial prog-
ress in almost all parts of the proteomics work-
flow.37 With training on patterns of spectral 
plots from known chemical entities, deep-learn-
ing approaches have improved the prediction of 
spectra of candidate peptides,38-40 which is a 
pivotal step for tandem mass spectrometry–based 
proteomics. With the use of a bidirectional, long 
short-term memory, deep-learning approach, in 
which a neural network propagates information 
sequentially forward and backward across an 
input signal, one algorithm38 predicts peptides 
with a Pearson correlation coefficient greater 
than 0.9, surpassing the previous machine learn-
ing–based standard of 0.85.41 Peptide retention 
time, which is the point in time when a peptide 
is eluted from the liquid chromatography col-
umn, has also been predicted accurately with the 
use of convolutional neural network–based tools.42 
Apart from mass spectrometry, de novo peptide 
sequencing43 and protein identification have been 
the focus of deep-learning applications that use 
both convolutional neural networks and long 
short-term memory approaches. One tool out-
performed benchmark peptide-sequencing tools, 
with a C statistic that was 33% higher than a 
previous standard,44 and another transformer-
based tool showed sequence coverage of 97.7 to 
99.5%.10,11 Moreover, large language models have 
recently been applied to protein-function predic-
tion, with the aim of accelerating drug discovery.12

Post-translational modification of proteins in 

Figure 2 (facing page). Machine Learning for Biomedical 
Applications.

Commonly used machine-learning approaches are shown. 
In random forest models, decision trees are applied to 
iterative subsets of the data. Support-vector machines 
separate subgroups according to a hyperplane (separa­
tion) in n-dimensional space. Neural networks, learn­
ing models inspired by the organization of the human 
brain, comprise nodes called neurons. Deep learning 
has been particularly effective in image recognition, 
especially through convolutional neural networks. For 
sequential data, recurrent neural networks (including 
long short-term memory [LSTM] units) allow the net­
work to retain memory of previous input data. Since 
the networks perform less well with longer input, sci­
entists have increasingly adopted transformer10,11 and 
large language models12 that ingest sequential data as a 
whole, prioritizing specific areas for “attention” and in­
corporating weights from input data found both earlier 
and later in the data sequence. In a transformer model, 
the self-attention component assigns weights to the 
elements in a sequence in order to define their impor­
tance within the context. Multi-head attention builds 
on this idea by incorporating multiple sets of attention 
to capture diverse patterns and aspects of the sequence.
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processes such as phosphorylation is critical for 
protein function, regulation, and degradation,45

but quantification remains an unsolved challenge. 

Deep-learning prediction of post-translational 
modification sites from a protein sequence alone 
has been successful, with examples including 

+ −
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acetylation46 and ubiquitination.47 Predicting pro-
tein function from a peptide sequence has also 
recently been improved with a combination of 
machine-learning approaches — namely, hidden 
Markov models and an ensemble of convolu-
tional neural networks.48 The combined ap-
proaches contributed functional predictions for 
360 previously unannotated human reference pro-
teome proteins, expanding coverage of the stan-
dard protein family database by more than 9%.

In a high-profile application of deep learning 
to proteomics, neural network–based AlphaFold49 
(Fig. 3) won the 13th and 14th Critical Assess-
ment of Protein Structure Prediction competi-
tions (specifically, AlphaFold1 won the CASP13 
competition and AlphaFold2 won the CASP14 
competition). These were biennial, blinded com-
petitions to benchmark progress in protein struc-
ture prediction. In the 13th competition, Alpha-
Fold1 created high-accuracy structures for 24 of 
43 free modeling domains, greatly surpassing 
both previous approaches and the next best 
method, which achieved similar accuracy for 
only 14 of 43 domains.50 In the CASP14 competi-
tion, AlphaFold2 built on this progress, outper-
forming many competing models.15

The prediction of biomarkers has been a prin-
cipal clinical focus for proteomics in recent years. 
Research has been directed at both single-marker 
and multimarker discovery. In one study, in 

which protein quantification was achieved with 
the use of a panel of aptamers (oligonucleotides 
that bind to proteins), a series of machine-
learning models, including logistic regression–
based models and random forests (Figs. 2 and 3), 
were trained to predict 11 different indicators of 
health that are commonly used for preventive 
medicine (e.g., the 5-year risk of a primary car-
diovascular event) in a panel of approximately 
17,000 persons with no major illnesses, from 
five independent cohort studies.51 Quantification 
of 94 proteins predicted liver fat with a C statis-
tic of 0.83 in a validation cohort,51 suggesting 
potential near-term application for noninvasive 
detection of nonalcoholic fatty liver disease. A 
machine learning–assisted proteomics approach 
has also identified circulating biomarkers for 
alcoholic liver disease, Alzheimer’s disease, and 
Parkinson’s disease.52

A pplic ations for Me ta bol omics

Metabolomics focuses on the dynamics of the 
entire set of small molecules of an organism.53 
As compared with proteomics, which is focused 
on the protein complement, metabolomics in-
cludes measurements of fatty acids, lipids, organic 
acids, amino acids, steroids, and carbohydrates. 
One of the central clinical applications of me-
tabolomics is the diagnosis of inborn errors of 
metabolism. Classically, the quantification of 
specific classes of metabolites such as purines 
and amino acids is undertaken with the use of 
individual assays, with the main limitation be-
ing a priori assumptions regarding the potential
ly affected pathways. Mass spectrometry–based 
metabolomics, in contrast, can be combined 
with genomic sequencing as an untargeted strat-
egy to address the low diagnostic rate among 
patients presenting with typical signs of inborn 
errors of metabolism but with negative results of 
standard screening. Untargeted metabolomics 
led to an increase in the diagnostic rate by a fac-
tor of 6 in one cross-sectional analysis54 and has 
been shown to be a useful strategy in targeting 
deficiencies in the nonoxidative pentose phos-
phate pathway.55 In a recent study, exome se-
quencing combined with metabolomics improved 
variant classification.56 For example, a metabolic 
fingerprint approach established a diagnosis of 
pyruvate kinase deficiency with the use of a sup-
port vector machine, which identifies subgroups 
by finding a hyperplane in n-dimensional space 

Figure 3 (facing page). Applications of Machine Learning 
to Omics Data.

Variant calling can be regarded as an image-classifica­
tion problem (https://github​.com/​google/​deepvariant/​
releases/​tag/​v1​.5​.0), whereas alternative splicing can  
be predicted through an auto-encoder network.13 In the 
example of variant calling, the sequence data, quality 
scores, and other read features are encoded into a multi­
channel feature representation. This feature representa­
tion is then fed into a convolutional neural network to 
calculate genotype likelihoods for three genotype states: 
homozygous reference, heterozygous, or homozygous 
alternate. In the example shown, a heterozygous variant 
is identified as the most probable genotype. Prediction 
of methylation has benefited from bidirectional recur­
rent neural networks.14 Deep-learning applications are 
increasing the accuracy of predictions of three-dimen­
sional (3D) protein structures.15 Support-vector machines 
in untargeted metabolomics have shown promise in 
the diagnosis of rare hereditary anemias.16 Applications 
of learning models to combined multi-omic inputs rep­
resent the next frontier in the pursuit of precision med­
icine. AI denotes artificial intelligence, and ReLu recti­
fied linear unit.

The New England Journal of Medicine 
Downloaded from nejm.org at CCSS CAJA COSTARRICENSE DE SEGURO SOCIAL BINASSS on June 29, 2023. For personal use only. No other uses without permission. 

 Copyright © 2023 Massachusetts Medical Society. All rights reserved. 



n engl j med 388;26  nejm.org  June 29, 20232464

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

(Figs. 2 and 3).16 In another example, variants in 
genes for metalloproteins provided the training 
data for a multichannel convolutional neural 
network, which showed that mutations in the 
iron-binding site of metalloproteins were more 
closely associated with metabolic diseases than 
were mutations at other locations.57

Multi- omic A pplic ations

As high-dimensional data from multiple types of 
technology are more readily available, computa-
tional approaches to combining data become 
more important. One of the earliest examples of 
a multi-omic study (i.e., an approach integrating 
multiple “omes” data types such as the genome 
or proteome) was a longitudinal analysis involv-
ing a single person that combined genomic, tran-
scriptomic, proteomic, metabolomic, and auto-
antibody profiles.58 Others have since used a 
multi-omic approach to build a correlation net-
work reflecting health and disease states and by 
so doing have proposed novel biomarkers for 
cardiometabolic disease.59 Other integrative ap-
proaches making use of deep learning have also 
been reported. These approaches either fuse the 
data early, concatenating omics data and then 
performing a single analysis, or fuse the data 
later, creating a joint model that combines out-
put from several single omic analyses.60 Some 
multi-omic approaches have proved successful in 
the clinical arena, such as in the identification of 
leucine zipper transcription factor–like 1 (LZTFL1) 
as a candidate effector gene at a coronavirus 
disease 2019 (Covid-19) risk locus, with the use 

of previously published machine-learning mod-
els, including a neural network.61 By suggesting 
that increased expression of LZTFL1 might be 
associated with a worse outcome, this insight 
reveals novel candidate targets for the preven-
tion and treatment of Covid-19. Novel biomark-
ers of the response to immunotherapy have also 
been revealed through analysis of genomic, tran-
scriptomic, and immunomic response data in 
cancer with the use of a support-vector machine.62

Conclusions

Over the past decade, technological advances have 
greatly enhanced our ability to measure funda-
mental biologic processes at scale. The resulting 
volume of data has been met with machine-
learning methods that are increasingly tuned for 
the analysis of multidimensional biologic data 
sets. The outcome is a progressively detailed 
understanding of the molecular trajectory of 
disease that is now finding application in clini-
cal medicine, with the greatest progress having 
been made in the diagnosis, and in some cases 
treatment, of rare genetic diseases. Challenges 
remain, including data quality, data consistency, 
and clinician awareness. However, as single-
omic discovery gives way to multi-omic applica-
tion, standardization of pipelines, expansion of 
benchmark metrics, and acceleration in the 
speed and accuracy of data processing will en-
sure that the potential for a far-reaching impact 
on precision health care is realized.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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