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ARTICLE INFO ABSTRACT

Keywords: Intervertebral disc degeneration (IDD) is a common cause of joint-related chronic disability in elderly individuals
Modifications worldwide. It seriously impacts the quality of life and inflicts a substantial social and economic burden. The
Inflammation

pathological mechanisms underlying IDD have not been fully revealed, leading to less satisfactory clinical
treatment outcomes. More studies are urgently needed to reveal its precise pathological mechanisms. Numerous
studies have revealed that inflammation is closely related to various pathological processes of IDD, including the
continuous loss of extracellular matrix, cell apoptosis, and senescence, indicating the important role of inflam-
mation in the pathological mechanism of IDD. Epigenetic modifications affect the functions and characteristics of
genes mainly through DNA methylation, histone modification, non-coding RNA regulation, and other mecha-
nisms, thus having a major effect on the survival state of the body. Recently, the role of epigenetic modifications
in inflammation during IDD has been attracting research interest. In this review, we summarize the roles of
different types of epigenetic modifications in inflammation during IDD in recent years, to improve our under-
standing of the etiology of IDD and to transform basic research strategy into a clinically effective treatment for

Intervertebral disc degeneration
DNA methylation

Histone modification
Non-coding RNA regulation

joint-related chronic disability in elderly individuals.

1. Introduction

Joints are anatomical structures that are critical for the flexibility,
mobility, and stability of the body. As a result, patients with joint dis-
eases often experience pain in joints and impairment in daily activities
(Rustenburg et al., 2018; Tonomura et al., 2020). With the aging of
modern society and the continued impact of the accelerated pace of life
and daily work stress, the number of patients with degenerative joint
diseases is increasing. Intervertebral disc (IVD) degeneration (IDD) is a
common underlying cause of joint-related chronic disability in elderly
individuals (Madhu et al., 2021). It is the main cause of lower back pain
and the common pathological basis for a variety of spinal disorders
including lumbar disc herniation and lumbar spinal stenosis. The IVD,
composed of nucleus pulposus (NP), annulus fibrosus (AF) and cartilage
endplate (CEP), plays an important role in spinal movement and load
bearing. The NP located in the center of the IVD contains abundant
water and extracellular matrix (ECM),which is essential for the main-
tenance of IVD function. The AF located at the periphery prevents
excessive lateral expansion of the IVD. The CEP located above and below
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provides a barrier for nutrient penetration of the IVD (Chen et al., 2019).
The lack of nutrition to the IVD results in its limited ability to repair
itself when damaged. IDD is mainly characterized by decreased disc
height, reduced hydration, and a weakened ability to absorb pressure
loads. An important pathological feature of IDD is the disruption of the
dynamic balance between ECM catabolism and anabolism, with a
preference for catabolism. This metabolic imbalance in the ECM is
mainly caused by the homeostasis disorder of NP cells in IVD (Li et al.,
2021b; Zheng et al., 2021). CEP degeneration hinders nutrient delivery
and affects mechanical conduction, which leads to IDD development
(Jiang et al., 2019). The damage caused by IDD is a major challenge for
patients and healthcare providers, increasing the burden on global
health care. Furthermore, the clinical outcomes of IDD have been
unsatisfactory.

The current clinical approach for the early treatment of IDD focuses
on changes in lifestyle and the use of nonsteroidal anti-inflammatory
drugs along with physical therapy, however, these interventions are
unable to prevent disease progression. Surgical treatment, specifically
spinal fusion, is the preferred treatment option for advanced cases of
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Fig. 1. Inflammation is involved in multiple pathological processes of IDD. Inflammation plays an important role in the occurrence and development of IDD by
regulating the continuous loss of extracellular matrix, apoptosis, senescence, oxidative stress, angiogenesis and nerve ingrowth.

IDD. It has been proven to improve pain symptoms in patients in
numerous clinical studies; however, its high invasiveness and cost
cannot be ignored (Lu et al., 2021; Ma et al., 2019; Zhou et al., 2020).
The main reason for these suboptimal outcomes is the fact that the
pathogenesis of IDD is not well understood. Although the etiology of IDD
is complex, many studies have confirmed the importance of inflamma-
tion in disease progression. For example, inflammatory factors promote
ECM degradation, senescence and apoptosis, and ultimately lead to the
development of IDD (Early et al., 2021; Kang et al., 2017; Zhang et al.,
2021a, 2021b). Therefore, identifying the specific mechanisms that
trigger and maintain the inflammatory response during IDD would
greatly contribute to the clarification of the disease pathology and allow
the development of new therapeutic strategies to facilitate more tar-
geted and less invasive treatments. Herein, we focus our discussion on
the reasons for the continuous activation of inflammation in the path-
ogenesis of IDD.

2. Role of inflammation in the course of IDD

Inflammation is closely related to IDD progression (Krupkova et al.,
2018; Li et al., 2021a; Silva et al., 2019; Wang et al., 2020b). Several
pro-inflammatory cytokines such as TNF-a, IL-1f,IL-17, IL-1a,and IL-8
are significantly increased in the degenerative intervertebral disc.
These cytokines have been revealed to play an important role in several
key pathophysiological processes in IDD (Johnson et al., 2015; Wang
et al., 2020b). The expression levels of inflammatory factors, which form
a gradually amplified inflammatory cascade and a continuous inflam-
matory state, involve a mutual induction process. For example, IL-1f
stimulation substantially enhances the expression of IL-6, IL-8, and IL-17
in human IVD cells (Jia et al., 2020; Jimbo et al., 2005). In in vivo ex-
periments, after the IVD was injected with inflammatory factors,
degenerative changes including rupture of the AF and degradation of NP
ECM were observed (Kang et al., 2015). The anabolism and catabolism
of ECM in NP tissues are in balance under the regulation of various
cytokines, which is the key factor for the maintenance of healthy IVD. In
the microenvironment of degenerative IVD, the expression and activity
of catabolic components of ECM are greater than that of synthetic
components. Matrix metalloproteinases (MMPs) and a disintegrin and
metalloprotease with thrombospondin motifs (ADAMTS) are the main
enzymes that cleave ECM components. Some ECM-degrading enzymes,
such as MMP-1/3/7/9 and ADAMTS-1/4/5/9 are significantly increased
in degenerative IVD (Le Maitre et al., 2007). Pro-inflammatory cytokines
have been shown to promote ECM degradation and the subsequent IVD
structural destruction by promoting the expression of ECM-degrading
enzymes (Le Maitre et al., 2007; Vo et al., 2013). Excessive IVD cell

apoptosis and senescence are important pathological features of IDD.
This pathological change leads to a gradual reduction in the number of
active cells in the IVD, which eventually leads to the destruction of the
structure and loss of function of the IVD (Cazzanelli and Wuertz-Kozak,
2020; Lin et al., 2021). In addition, senescent cells may further destroy
the microenvironment of the IVD by secreting ECM-degrading enzymes
and inflammatory factors and aggravate the development of IDD (Zhang
et al., 2020b). Studies have confirmed that inflammatory factors can
promote apoptosis and senescence of IVD cells. Oxidative stress plays an
important role in several diseases. In degenerated IVD cells, the imbal-
ance between the increase of reactive oxygen species and the lack of
antioxidant capacity leads to oxidative stress, which leads to the damage
of various molecules including DNA and protein. Pro-inflammatory
factors can induce oxidative damage to IVD cells (Wang et al., 2020b).
Healthy IVD is characterized by limited blood vessels in the outer sur-
face of AF. In IDD, vascular invasion has been widely observed, and is
believed to play an important role in the development of IDD by acti-
vating immune cells and inflammatory cytokines, promoting neurali-
zation, and thus destroying the stability of the IVD. Pro-inflammatory
factors can also promote the vascularization of degenerative interver-
tebral discs, thereby exacerbating degeneration (Kwon et al., 2017). In
addition, nerve ingrowth of degenerative intervertebral discs and the
low back pain that ensues have also been shown to be related to an in-
flammatory response (Ohtori et al., 2012a; Ohtori et al., 2012b). In
conclusion, inflammation is an important driver of IDD (Fig. 1). How-
ever, the factors triggering inflammation in IDD have not been fully
elucidated.

3. Effects of epigenetic modifications on inflammation in IDD

Epigenetics refers to reversible and heritable changes in gene func-
tion, with no changes in the cellular nuclear DNA. Several types of
epigenetic modification are widely studied, including DNA methylation,
histone modification, and non-coding RNA regulation (Li et al., 2020a;
Lio et al., 2019; Topper et al., 2020; Vaiserman and Lushchak, 2019).
Numerous studies have revealed that these changes play an important
role in not only the normal physiological processes of cells but also the
pathological processes of various diseases (Chang et al., 2022; Sun et al.,
2022; Yang et al., 2022; Zhao et al., 2022). In the above section, we
describe the role of inflammation in the progression of IDD. Elucidation
of the specific mechanisms that trigger and maintain inflammation
during IDD would help identify new targets for the treatment of IDD.
Epigenetic modifications play a crucial role in controlling inflammation
in the pathophysiology of several diseases. Some epigenetic modifica-
tions are disease-specific; however, others influence the inflammatory
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response during disease progression through complex interactions be-
tween multiple epigenetics (Celarain and Tomas-Roig, 2020; Chen et al.,
2022c; Evans et al., 2020; Liu et al., 2022; Rasheed et al., 2021; Tan
et al., 2022; Zong et al., 2019). During the progression of IDD, some
epigenetic modifications exhibit disease-specific changes. Determining
the specific mechanisms of epigenetics in a disease can help unravel the
pathology of the disease and contribute to therapeutic improvement.

3.1. DNA methylation

DNA methylation is a widely studied mechanism of epigenetic
modification in mammals. In the presence of DNA methyltransferases
(DNMTs), the methyl group is embedded in the fifth carbon atom of
cytosine to form 5-methylcytosine. Methylation of CpG islands regulates
gene expression in a variety of ways. For example, DNA methylation can
affect the configuration of the promoter in the gene, and then interfere
with the binding of transcription factors to promoter regions with
hypermethylation; The methylated sequences in the promoter can bind
to specific proteins and then competitively inhibit the binding of tran-
scription factors to the promoter; DNA methylation can suppress gene
expression via modification of the chromatin structure. Therefore,
hypermethylation of gene promoter regions is often associated with
gene expression silencing, whereas hypomethylation of genes is associ-
ated with increased gene transcriptional activity (Vandenhoeck et al.,
2021; Ye et al., 2021; Yu et al., 2022). DNMTs are classified as DNMT1,
DNMT3a, and DNMT3b. DNMT1 is the most important methyltransfer-
ase in cells and is mainly involved in the maintenance of the methylation
state. DNMT3a and DNMT3b are the main enzymes involved in de novo
methylation (Arumugam et al., 2021).

In the field of disc degeneration research, Ikunoet al. (Ikuno et al.,
2019) mapped genome-wide DNA methylation profiles in NP tissue in
the early and late stages of degeneration progression. They identified
220 differentially methylated loci between tissue samples from early and
late degeneration stages, with four hypomethylated loci and 216
hypermethylated loci in the late stage. They concluded that there were
significant differences in the DNA methylation profiles between the
early and late stages of human disc degeneration, suggesting that DNA
methylation may be involved in IDD development. In addition, Zhao
et al. (Zhao et al., 2017) found that the upregulated expression of
miRNA-143 in degenerated disc specimens is associated with the
hypomethylation of CpG islands in its promoter region. High expression
of miRNA-143 promotes the apoptosis of NP cells by reducing expression
of anti-apoptotic factors, suggesting that DNA methylation is involved in
regulating the pathological processes in IDD.

In terms of the inflammatory response during IDD, Ikuno et al. (Ikuno
et al., 2019) found that the methylation levels of several genes related to
inflammatory response changed during the progression of IDD. Nuclear
factor-kB (NF-xB) pathway activation has been confirmed to be related
to the expression level of many inflammatory factors in IDD develop-
ment, such as TNF-a, IL-1p, IL-6, and IL-8 (Tak and Firestein, 2001).
CARD14, EFHD2, and RTKN2 are involved in the regulation of the NF-xB
signaling pathway, and their methylation levels are significantly
different in the early and late stages of IDD (Myouzen et al., 2012; Zotti
et al., 2018). In addition, the gene methylation levels of MAPKAPK5 and
PRKCZ, which are related to the MAPK signaling pathway, also changed
significantly in IDD development (Monick et al., 2000; Ni et al., 1998;
Westhovens et al., 2013). In addition, Luo et al. (Luo et al., 2021)found a
significant reduction in the mRNA and protein expression of DNMT3b in
degenerated disc tissue, and functional experiments showed that
DNMT3b promotes NP cell proliferation and inhibits the expression of
inflammatory cytokines TNF-a, IL-6, and IL-8, as well as the
ECM-degrading enzymes MMP-3 and MMP-9. It has been proved that
inhibiting inflammatory factors can inhibit the catabolism of ECM and
thus inhibit the progression of IDD. This finding supports the inhibitory
effect of DNMT3b on the development of IDD. Luo et al. also continued
their mechanistic studies. Transient receptor potential (TRP) channels
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Fig. 2. DNA methylation modulates inflammation in IDD. DNMTs cause the
methyl group to embed into the fifth carbon atom of cytosine to form 5-meth-
ylcytosine. Subsequent methylation of CpG islands regulates gene expression in
multiple ways. The expression level of DNMT3b was significantly decreased in
degenerative disc tissue. DNMT3b reduces inflammation in NP cells through
TRPA1/COX2 axis. During IDD development, there are DNA methylation
changes in CARD14, EFHD2, RTKN2, MAPKAPKS5 and PRKCZ in disc tissue.
Altered DNA methylation of these key genes leads to changes in the activity of
associated molecular networks, which has an important role in the progression
of IDD.
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have emerged as potential sensors of inflammatory pain, and transient
receptor potential ankyrin 1 (TRPA1) is involved in regulating the disc
inflammatory response and ECM homeostasis. They showed that
DNMT3b inhibits TRPA1 expression by promoting methylation of its
promoter, promotes cell proliferation, and reduces ECM degradation
and inflammation in a TRPA1-dependent manner.COX-2 is a key link in
triggering the inflammatory response.COX-2 activity is extremely low in
normal tissue cells; however, when cells are stimulated by inflammatory
stimuli, COX-2 activity is substantially increased leading to an inflam-
matory response and tissue damage. Luo et al. found that DNMT3b could
reverse the TRPA1-induced expression of COX2. It was also found that
COX2 can increase the expression of IL-6, TNF-a, and IL-8, whereas
DNMT3Db can reverse this trend. These findings suggest that DNMT3B
promotes NP cell proliferation and reduces ECM degradation and
inflammation in a TRPA1/COX2-dependent manner (Luo et al., 2021).
From these studies, it can be concluded that DNA methylation may play
a key regulatory role in disc degeneration and is closely related to the
inflammatory response (Fig. 2).

3.2. Histone modification

Histone modification is a post-translational modification of a specific
site on histones in chromatin. It can regulate gene expression by
affecting chromatin structure, and this has become topic of interest in
the epigenetic research field (Huang et al., 2020; Samudyata et al.,
2020). The nucleosome is the basic structural unit of chromatin, which is
composed of DNA and five histones, such as H1, H2A, H2B, H3, and H4.
Two molecules of H2A, H2B, H3, and H4 form a histone octamer, and
about 200 bp of DNA molecules coil around the core structure formed by
the histone octamer to form a nucleosome core particle. Histone modi-
fications are post-translational modifications of the characteristic sites
on chromatin histones, mainly including acetylation, methylation,
phosphorylation, and ubiquitination (Su et al, 2020). These
post-translational modifications of histones that have been demon-
strated are reversible, and there are interactions between different types,
culminating in a complex chromatin-based signaling system. By
affecting the interaction between histones and DNA, these modifications
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Fig. 3. Histone modification modulates inflammation in IDD. SIRT6 reduces
the acetylation level of the downstream target gene promoter, thus inhibiting
the transcription activity of NF-kB. EZH2 inhibits the expression of miR-129-5p
through H3K27me3 modification, thereby upregulating the expression of
MAPK1 and promoting the development of IDD. HDAC4 is related to the
expression level of inflammatory factors in the process of IDD.

influence the ability of regulatory complexes to bind to chromatin and
chromatin remodeling, ultimately affecting a wide range of cellular
functions (Edwards and Johnson, 2021; Garcia-Giménez et al., 2021).
One of the most widely studied modifications is histone acetylation,
which is an important and common phenomenon. It regulates the
transcriptional activity and modulates fitness through chromatin. Dy-
namic acetylation and deacetylation are regulated by histone acetyl-
transferases (HATs) and histone deacetylases (HDACs). HAT-mediated
histone acetylation is involved in transcriptional activation of open
chromatin structures, whereas deacetylation by HDAC is associated with
transcriptional repression of condensed chromatin structures (Desaul-
niers et al., 2021; Kowluru and Mohammad, 2022). Sirtuins are a class of
histone deacetylases. Seven members of the sirtuin family,
SIRT1-SIRT7,have been identified, which belong to class III HDAC
(Wang et al., 2020a). NF-xB is an inducible stress response transcription
factor, and its important role in the inflammatory response has been
revealed in detail (Choi et al., 2019; Lepetsos et al., 2019). It is worth
noting that its pro-inflammatory effect on IDD has also been recognized
by researchers (Zhang et al., 2021a). Under normal conditions, NF-kB is
located in the cytoplasm. When stimulated by risk factors, NF-xB rapidly
transfers to the nucleus, where it participates in regulating the expres-
sion of target genes and promoting the production of inflammatory
factors, such as TNF-a, IL-6, and IL-2, by combining the promoter of its
downstream target genes (Zhang et al., 2021a). SIRT6 is a member of the
sirtuin family, which is mainly located in the nucleus. Studies have
confirmed that SIRT6 can be recruited into NF-kB on the promoter of its
downstream target gene, thereby deacetylating histone H3K9 in this
region and reducing the acetylation level of the promoter, thereby
weakening NF-kB signal transduction. In SIRT6 knockdown cells, high
acetylation levels in the promoter region of NF-xB downstream target
genes and NF-kB occupancy, gene expression level, and cell aging are
closely related (Kawahara et al., 2009; Yu et al., 2013). These effects
have also been confirmed in the field of IDD (Kang et al., 2017; Xie et al.,
2022; Zhang et al., 2020a). EZH2 encodes a histone lysine N-methyl-
transferase that functions as a gene silencer by adding three methyl
groups to histone H3 lysine 27 (H3K27). The methylation activity of
EZH2 promotes the formation of heterochromatin and thus gene
silencing, and EZH2 is one of the components of the PRC2 complex.
Mutations or overexpression of EZH2 are associated with several types
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of cancers, such as bladder cancer, prostate cancer, and breast cancer
(Huang et al., 2022; Li et al., 2022d; Xiang et al., 2020; Yuan et al.,
2020). Abnormal EZH2 activity has also been observed in osteoarthritis
and rheumatoid arthritis (Luobu et al., 2022; Wang et al., 2021). Inac-
tivation of EZH2 attenuates chondrocyte dysfunction and osteoarthritis
progression by reducing the enrichment of H3K27me3 in the miR-128a
promoter (Lian et al., 2018). In the field of disc degeneration research,
EZH2 and MAPK]1 are overexpressed in specimens and LPS-induced NP
cells of patients with disc degeneration (Zhou et al., 2022). In terms of
cellular phenotype, EZH2 overexpression increases the release of in-
flammatory factors and cellular senescence factors from NP cells.
Mechanistic studies have confirmed that EZH2 suppresses the expression
of miR-129-5p through H3K27me3 modification, thereby upregulating
the expression of MAPK1 and promoting the development of disc
degeneration (Zhou et al., 2022). In addition, the role of HDAC4 in the
inflammatory response of IDD was also observed. Studies have shown
that HDAC4 can inhibit TNF-a and IL-6 expression, and then participate
in the occurrence and development of IDD (Wu et al., 2020). In sum-
mary, the above studies demonstrate the role of histone
post-translational modifications in IDD development (Fig. 3).

3.3. Non-coding RNA

Most transcripts in the human genome are non-coding RNAs
(ncRNAs) that cannot encode proteins. Several ncRNAs have been
widely studied, including microRNAs (miRNAs), long non-coding RNAs
(IncRNAs), and circular RNAs (circRNAs). Numerous studies have
revealed that ncRNAs are significantly differentially expressed in
different disease states and play a critical role in the development of
multiple diseases. The role of ncRNAs in age-related diseases has been
extensively studied, such as degenerative musculoskeletal disorders,
cancer, neurodegenerative diseases, chronic inflammation, and aging (Li
et al., 2021c; Li et al., 2021d; Liu et al., 2022; Rasheed et al., 2021;
Vezzani et al., 2022; Yang et al., 2022; Zheng et al., 2021). Importantly,
their role in IDD has also been demonstrated.

miRNAs are a large class of short-stranded non-coding RNAs that are
approximately 22 nucleotides. miRNAs exert regulatory effects on the
expression levels of their target genes at the post-transcriptional level,
primarily by directing the RNA-induced silencing complex to the 3'-
untranslated region of their downstream target mRNAs. miRNAs are
involved in almost all cellular functional processes, and their important
roles in various diseases have been revealed (Cazzanelli and
Wuertz-Kozak, 2020; Chi et al., 2021; Lin et al., 2020). miRNAs are
closely related to the inflammatory response and can contribute to the
inflammatory response through dysregulated cytokines (Chunlei et al.,
2020). Kong et al. (Kong et al., 2018)confirmed that miR-194 plays an
important role in the inflammatory response during the progression of
IDD. MiR-194 can inhibit the expression level of inflammatory cyto-
kines, such as TNF-a, IL-1, IL-6, and PGE2. This effect is related to its
inhibitory effect on TNF receptor-associated factor 6 (TRAF6) and
downstream signal molecule NF-kB. Sun et al. found that the upregu-
lation of miR-181a inactivates the ERK pathway by inhibiting tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) in mice with
IDD, thereby inhibiting TNF-a, IL-6, and IL-1f expression (Sun et al.,
2020). MiRNA-495-3p has been proven to play a protective role by
inhibiting the inflammatory response of human NP cells by targeting
Interleukin 5 receptor subunit alpha (ILSRA) pathway (Lin and Lin,
2020). Overexpression of miR-140 inhibits Toll-like receptor 4 (TLR4),
thereby inhibiting TNF-a, IL-1p, and IL-6 expression and NF-kB activa-
tion (Zhang et al., 2018).

LncRNAs are another class of ncRNAs that are more than 200 nu-
cleotides in length and significantly longer than miRNAs. LncRNAs are
derived from genomic regions but lack open reading frames. With the
advances in sequencing technology, more than 14,000 IncRNAs have
been identified (Derrien et al., 2012). IncRNAs are mainly classified into
long intergenic ncRNAs (lincRNAs), intronic IncRNAs, antisense
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Fig. 4. Non-coding RNA regulation modulates inflammation in IDD. miRNA regulates inflammation by inhibiting the expression level of downstream specific targets.
LncRNA or circRNA mainly regulate the expression level of target genes through the mechanism of competitive endogenous RNA, or directly interact with target

proteins, thereby regulating inflammation.

IncRNAs, enhancer RNAs, and pseudogene IncRNAs, based on their
genomic localization relative to protein-coding genes. In terms of its
regulatory functions, IncRNAs have many ways of action. For example,
interacting with transcription factors and chromatin modifiers to regu-
late gene expression; or acting as endogenous miRNA sponges, which
absorb miRNAs through multiple specific binding sites, thereby
reducing the inhibition of downstream target genes and thus regulating
the expression of downstream target genes (Jung et al., 2020). Notably,
studies have shown that IncRNAs are involved in a variety of physio-
logical and pathological processes (Kyriazi et al., 2020; Li et al., 2020b;
Shi et al., 2021; Zhang et al., 2021c). In the IDD study, Li et al. reviewed
articles related to the expression profile of IncRNAs and summarized the
number of differentially expressed IncRNAs. The number of
up-regulated IncRNAs ranged from 67 to 2234, while the number of
down-regulated IncRNAs ranged from 49 to 938 (Li et al., 2018). During
IDD, Zhang et al. found reduced IncRNA MALAT1 expression in
degenerating NP cells. MALAT1 can downregulate IL-1 and IL-6
expression levels in NP cells (Zhang et al., 2017). In addition, Jiang
et al. found that MALAT1 promotes the degeneration of rat CEP cells
induced by high glucose by activating p38/MAPK signal pathway (Jiang
et al., 2020). Xi et al. found that HCG18 can absorb miR-146a-5p as
competitive endogenous RNA, thereby regulating the TRAF6/NF-«xB
pathway in NP cells and playing an important role in IDD (Xi et al.,
2017). In addition, IncRNA zinc finger antisense 1 (ZFAS1) expression
was significantly upregulated in degenerated NP tissues, and ZFAS1 was
positively correlated with TNF-a and IL-6 expression levels (Deng et al.,
2019). Yu et al. found that inhibition of LINC00969 decreased
thioredoxin-interacting protein (TXNIP) and IL-1p levels, but increased
miR-335-3p expression compared with the control. TXNIP, a target gene
of miR-335-3p, may promote the release of inflammatory factors such as
IL-1p and induce apoptosis in NP cells during IDD (Yu et al., 2019).
N6-methyladenosine (m®A) is the most prevalent RNA modification at
the post-transcriptional level in eukaryotic cells and is closely involved
in various biological and pathological processes (Chen et al., 2022b;
Zhang et al., 2019). The m®A modification of IncRNA has been proved to
be associated with IDD. The m®A modification is catalyzed by “writers”,
including METTL3, METTL4, and WTAP, while the demethylases
ALKBHS5 and FTO act as “erasers” to reverse this process. The transcripts
modified with m®Acan be recognized by “readers”, such as YTHDF1-3,
YTHDC1, and IGF2BPs, to perform a specific functional regulation (Li
etal., 2022a; Qin et al., 2021). NORAD is a IncRNA that responds to DNA
damage and is critical for genome integrity. Li et al. found that WTAP
upregulation promoted m®A modification of NORAD and induced
degradation of NORAD transcripts through YTHDF2 recognition. Less
NORAD leads to less sequestered RNA-binding proteins PUM1/2, which

leads to more binding of PUM1/2 to E2F3 mRNA, and ultimately pro-
motes the NP cell senescence (Li et al., 2022b). Senescent NP cells can
further damage the microenvironment of degenerative IVD by secreting
inflammatory factors and ECM degrading enzymes.

circRNAs are a class of ncRNAs characterized by a covalent closed-
loop structure and are thus more metabolically stable to exonucleases
than linear ones. In addition, circRNAs are widely expressed in
mammalian cells. They have drawn increasing attention to the study of
biomarkers and as therapeutic targets for a variety of human diseases
(Chen et al., 2022a; Han et al., 2022; Li et al., 2022c). circRNAs have
been studied to reveal different biological functions, and the most
studied molecular mechanism of action is that of competing endogenous
RNA as miRNA molecule "sponge". Other mechanisms of circRNAs
include interacting with chromatin and acting as protein scaffolds.
CircRNAs play a crucial role in the pathophysiological processes of
various human diseases and have great potential for the clinical treat-
ment of diseases (Chen et al., 2021; Yang et al., 2021). Among them,
their relationship with the inflammatory response in IDD is gradually
being revealed. Guo et al. (Guo et al., 2020) found that circ-FAM169A
upregulates Beta-Transducin Repeat Containing E3 Ubiquitin Protein
Ligase (BTRC) in NP cells, resulting in NF-kappaB inhibitor alpha (IKBa)
degradation. In turn, this leads to the upregulation of the expression of a
variety of pro-inflammatory cytokines (IL-1p and TNF-a). The levels of
type II collagen and aggrecan decreased, and the levels of MMP-13 and
ADAMTS-5 increased, resulting in an imbalance between the anabolic
and catabolic activities of NP cells. These adverse factors cause or
accelerate IDD. Cui et al. (Cui et al., 2022) found that the expression of
circ_0005918 in IVD samples was positively correlated with the degree
of IDD. Functional studies show that circ_.0005918 overexpression can
induce IL-1f, IL-6, and TNF-o secretion and MMP-13 and MMP-9
expression. Mechanism study shows that circ_. 0005918 plays a role in
promoting IDD by sponging miR-622. Yan et al. found that circ_ 0134111
overexpression promotes IDD by inhibiting miR-578, which in turn in-
duces inflammation and ECM degradation in NP cells (Yan et al., 2022).
These evidences above suggest that ncRNAs play an important regula-
tory role in the inflammatory response to IDD (Fig. 4).

4. Epigenetics provides a potential therapeutic target for the
control of inflammation in IDD

The above studies suggest that epigenetic modifications in genes
associated with inflammatory responses are abnormally regulated dur-
ing IDD process, promoting inflammation and IDD development. Tar-
geted modulation of such epigenetic changes, therefore, holds promise
for the treatment of IDD. HDAC inhibitors can inhibit histone
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Tablel
Epigenetic modifications of inflammation in IDD.
Gene/Target Experimental Key findings References
design
DNA methylation
MAPKAPKS/ Human NP tissue Advanced vs. Early Tkuno et al.
PRKCZ samples; Genome- degenerated human NP (2019); Monick
wide DNA tissue samples: et al. (2000); Ni
methylation Hypermethylation; et al. (1998);
profiling Regulated MAPK Westhovens
signaling pathway et al. (2013)
CARD14/ Human NP tissue Advanced vs. Early Tkuno et al.
EFHD2/ samples; Genome- degenerated human NP (2019);
RTKN2 wide DNA tissue samples: Myouzen et al.
methylation Hypomethylation, (2012); Zotti
profiling CARD14; et al. (2018)
Hypermethylation,
EFHD2/RTKN2;
Regulated NF-kB
signaling pathway
DNMT3b Puncture-induced IVD samples of IDD rats Luo et al. (2021)

rat IDD model; rat
NP cells

Histone modifications

SIRT6

EZH2

HDAC4

Human NP tissue
samples; IL-1f
induced human
NP cells

Human NP tissue
samples; LPS
induced human
NP cells

IL-1p induced
human NP cells

Non-coding RNA regulation

miR-194

miR-181a

miR-495-3p

miR-140

MALAT1

LPS induced rat
NP cells

Mouse IDD model

TNF-o induced
human NP cells

Human NP tissue
samples; LPS
induced human
NP cells

Human NP cells

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en junio 13, 2023. Para

vs. sham rats:
Downregulation;
Suppressed
inflammation and
alleviated IDD through
TRPA1/COX2/YAP axis

Degenerated vs.
Normal human NP
tissue samples:
Downregulation;
Inhibited NF-xB
signaling pathway
Degenerated vs.
Normal human NP
tissue samples:
Upregulation;
Upregulated MAPK
signaling pathway
IL-1B induced human
NP cells vs. Normal
control:
Downregulation;
Inhibited the TNF-a and
IL-6 expression

LPS induced rat NP
cells vs. Normal
control:
Downregulation;
Inhibited LPS-Induced
inflammatory response
by targeting TRAF6
Mouse IDD model vs.
Normal control:
Downregulation;
Exerted anti-
inflammatory effects
via inhibition of the
ERK pathway

TNF-« induced human
NP cells vs. Normal
control:
Downregulation;
Attenuated TNF-«
induced inflammation
in human NP cells by
targeting ILSRA

High degeneration
group vs. Low
degeneration group:
Downregulation;
Inhibited LPS-induced
inflammation by
downregulating TLR4

Kang et al.
(2017)

Zhou et al.
(2022)

Wu et al. (2020)

Kong et al.

(2018)

Sun et al. (2020)

Lin et al. (2020)

Zhang et al.
(2018)

Tablel (continued)
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Gene/Target

Experimental
design

Key findings

References

HCG18

NORAD

LINC00969

circ-
FAM169A

circ_0005918

circ 0134111

Human NP tissue
samples; Human
NP cells

Human NP tissue
samples; Human
NP cells

Human NP tissue
samples; Human
NP cells

Human NP tissue
samples; Human
NP cells

Human NP tissue
samples; IL-1p and
TNF-« induced
human NP cells

Human NP tissue
samples; Human
NP cells

Degenerated human NP
cells vs. Normal
control:
Downregulation;
Suppressed the
expression of IL-6
Degenerated vs.
Control human NP
tissue samples:
Upregulation;
Promoted IDD by
sponging miR-146a-5p
and regulating TRAF6
expression
Degenerated vs.
Control human NP
tissue samples:
Downregulation;
Regulated IDD
development through
PUM1/2/E2F3 axis
Degenerated vs.
Control human NP
tissue samples:
Upregulation;
Promoted
inflammation through
miR-335-3P/TXNIP
Degenerated vs.
Control human NP
tissue samples:
Upregulation;
Promoted
inflammation by miR-
583/BTRC/NF-kB
signaling
Degenerated vs.
Control human NP
tissue samples:
Upregulation;
Induced inflammation
via sponging miR-622
Degenerated vs.
Control human NP
tissue samples:
Upregulation;
Induced inflammation
through inhibiting miR-
578

Zhang et al.
(2017)

Xi et al. (2017)

Li et al. (2022b)

Yu et al. (2019)

Guo et al. (2020)

Cui et al. (2022)

Yan et al. (2022)

deacetylases and thereby regulate gene expression levels. Sub-
eroylanilide hydroxamic acid (SAHA) is an HDAC inhibitor and has been
approved by the U.S. Food and Drug Administration (FDA)for the
treatment of cutaneous T-cell lymphoma (Kim et al., 2019). In addition,
SAHA has been shown to treat rheumatoid arthritis (Kim et al., 2019).
Park et al. showed that M808, a novel specific HDAC6 inhibitor,
inhibited the inflammatory and destructive activity of fibroblast-like
synoviocytes and reduced the severity of arthritis (Park et al., 2021).
Azacitidine, a DNA methyltransferase inhibitor, became the first
FDA-approved drug for myelodysplastic syndrometreatment in 2004
(Kaminskas et al., 2005). For non-coding RNAs, their expression can
now be blocked or knocked down by antisense oligonucleotides or small
interfering RNA, and these approaches have been tested clinically with
proven results (Liu et al., 2022). The role of Traditional Chinese Medi-
cine (TCM) in disease treatment has become a research topic of interest
in recent years (Kang et al., 2022). The classical TCM, Wutou Decoction
(WTD) has been used clinically for thousands of years. It also has been
studied and proven to be useful in the treatment of arthritis. Further
studies have revealed that WTD exerts anti-inflammatory effects by
regulating DNA methylation and histone modification. Liu et al. found
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that the DNMT1 mRNA level and DNA methylation were significantly
downregulated and the level of H3 acetylation was significantly
increased in peripheral blood mononuclear cells of collagen-induced
arthritis rats treated with WTD (Liu et al., 2016). As mentioned above,
these types of epigenetic modifications are all associated with excessive
activation of inflammation during IDD. They are already being used
clinically to treat a variety of diseases with targeted drugs, although they
have not yet been studied in the clinical management of IDD. Therefore,
a more systematic study of epigenetic changes in the over-activation of
the inflammatory response in IDD is needed, which will help to identify
clinical therapeutic targets for IDD in the future (Table 1).

5. Conclusion and prospect

In general, epigenetics plays an important regulatory role in the
regulation of gene expression levels and is closely related to the path-
ogenesis of numerous diseases. Among them, the relationship between
epigenetics and the inflammatory response in the process of IDD has
been initially revealed. Considering the important role of the inflam-
matory response in IDD and the fact that epigenetics is still at a pre-
liminary stage of research in this field, more attention needs to be placed
on the study of this aspect in the future. Several specific issues require
our attention. First, functions of the epigenetics in diseases are mainly
based on adjustments to expression levels of specific genes. To
comprehensively consider epigenetic changes as well as functions of
specific genes in disease development can help to identify key patho-
genic molecules. Second, some biological inhibitors, such as deacetylase
inhibitors, have shown optimal inhibition of IDD in both in vitro cellular
experiments and in vivo animal experiments, but more experiments are
needed to validate their clinical efficacy in patients. Third, while ex-
periments are designed to verify the therapeutic effects of drugs on
disease, their side effects on patients should also be taken into account.
This has led to another question on how to deliver the drugs to the
disease-causing sites has also surfaced. Fourth, while research on TCM
components is in full swing, the reality of the complexity of TCM com-
ponents is also an issue that cannot be ignored, so a more targeted use of
the active ingredients in the drug is essential. Finally, a deeper under-
standing of the epigenetic regulatory mechanisms of the inflammatory
response in IDD will help identify new markers, signaling pathways, and
targeted drugs/herbal medicines, providing new strategies for diag-
nosing and treating IDD.
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