
Cystic Fibrosis
A Review
Thida Ong, MD; Bonnie W. Ramsey, MD

C ystic fibrosis is an autosomal recessive, genetic dis-
ease characterized by reduced or absent function of the
cystic fibrosis transmembrane conductance regulator

(CFTR) protein that affects more than 30 000 individuals in the US
and approximately 89 000 in registries worldwide.1,2 More than
2000 sequence variants of the CFTR gene (OMIM 602421) have
been identified. Of these, approximately 700 have been shown to
cause disease.3

The clinical features of cystic fibrosis result from reduced or
absent function of the CFTR protein, a regulated anion channel

located in the apical membrane of epithelia in multiple organs,
including the lungs, liver, gastrointestinal tract, and pancreas.4,5

The clinical manifestations of CFTR dysfunction and resultant
organ damage include pancreatic insufficiency with malnutrition,
biliary cirrhosis, absence of the vas deferens resulting in azoosper-
mia, chronic sinusitis, and chronic endobronchial bacterial infec-
tions associated with obstructive airway disease.6 Identifying the
structure and function of CFTR has facilitated development of small
molecule CFTR modulator drugs that improve the health of more
than 90% of people with cystic fibrosis.7 This review summarizes

IMPORTANCE Cystic fibrosis, a genetic disorder defined by variants in the cystic fibrosis
transmembrane conductance regulator (CFTR) gene, affects more than 30 000
individuals in the US and approximately 89 000 worldwide. Absent or decreased
function of the CFTR protein is associated with multiorgan dysfunction and shortened
life expectancy.

OBSERVATIONS CFTR is an anion channel in the apical membrane of epithelial cells.
Loss of function leads to obstructed exocrine glands. Of people with cystic fibrosis in
the US, approximately 85.5% have the gene variant F508del. Manifestations of
cystic fibrosis in patients with the F508del gene variant begin in infancy with steatorrhea,
poor weight gain, and respiratory symptoms (coughing, wheezing). As people with cystic
fibrosis age, chronic respiratory bacterial infections cause loss of lung function and
bronchiectasis. With the availability of universal newborn screening in multiple countries
including the US, many people with cystic fibrosis are asymptomatic at diagnosis.
With multidisciplinary care teams that included dietitians, respiratory therapists, and
social workers, treatment of cystic fibrosis can slow disease progression. Median
survival has improved from 36.3 years (95% CI, 35.1-37.9) in 2006 to 53.1 years
(95% CI, 51.6-54.7) in 2021. Pulmonary therapies for patients with cystic fibrosis
consist of mucolytics (eg, dornase alfa), anti-inflammatories (eg, azithromycin), and
antibiotics (such as tobramycin delivered by a nebulizer). Four small molecular therapies,
termed CFTR modulators, that facilitate CFTR production and/or function have received
regulatory approval. Examples are ivacaftor and elexacaftor-tezacaftor-ivacaftor.
For example, in patients with 1 F508del variant, the combination of ivacaftor, tezacaftor,
and elexacaftor improved lung function from −0.2% in the placebo group to 13.6%
(difference, 13.8%; 95% CI, 12.1%-15.4%) and decreased the annualized estimated rate of
pulmonary exacerbations from 0.98 to 0.37 (rate ratio, 0.37; 95% CI, 0.25-0.55). Improved
respiratory function and symptoms have lasted up to 144 weeks in postapproval
observational studies. An additional 177 variants are eligible for treatment with the
elexacaftor-tezacaftor-ivacaftor combination.

CONCLUSION Cystic fibrosis affects approximately 89 000 people worldwide and is
associated with a spectrum of disease related to exocrine dysfunction, including chronic
respiratory bacterial infections and reduced life expectancy. First-line pulmonary therapies
consist of mucolytics, anti-inflammatories, and antibiotics, and approximately 90% of people
with cystic fibrosis who are 2 years or older may benefit from a combination of ivacaftor,
tezacaftor, and elexacaftor.
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current evidence regarding clinical manifestations and pulmonary
treatments of cystic fibrosis (Box).

Methods
We searched PubMed for English-language studies of practical guide-
lines, meta-analyses, or clinical or randomized clinical trials of cys-
tic fibrosis published from January 1, 2012, to December 31, 2022,
and updated the search through March 31, 2023.

A total of 1002 articles were retrieved. A second literature search
from January 1, 2002, to December 31, 2022, focused on CFTR
modulators and resulted in 26 additional articles. Current practice
guidelines were reviewed. We manually inspected reference lists of
selected articles for other relevant sources. Articles of highest pri-
ority for inclusion were meta-analyses, randomized clinical trials, lon-
gitudinal studies with longer follow-up, and studies relevant to gen-
eral medical practice. The 115 articles included 24 were randomized
clinical trials; 6 were pediatric single-arm intervention trials; 7 were
meta-analyses; 24 were reviews; 14 were longitudinal observa-
tional studies; 9 were cross-sectional studies;15 were guidelines or
consensus documents; 6 were basic science studies; 3 were regis-
try studies; and 7 were other (1 autopsy case series, 1 economic analy-
sis, 1 protocol, and 4 prescribing information).

Discussion and Observations

Epidemiology
Worldwide, approximately 89 000 individuals are living with cys-
tic fibrosis, including approximately 31 450 people in the US.1,2 The
prevalence of cystic fibrosis is similar between the US (7.97 per
100 000) and European Union (7.37 per 100 000).8 Among people
with cystic fibrosis in the US, approximately 3.5% identified as Black
or African American, 91.4% as White, and 5.1% as other, which in-
cluded people who identified as American Indian or Alaska Native,
Asian, Native Hawaiian or other Pacific Islander, some other race, or
2 or more races. Among people with cystic fibrosis in the US, ap-
proximately 9.8% identified as Hispanic ethnicity and approxi-
mately 91.2% as non-Hispanic ethnicity.1

Approximately 85.5% of people in the US have the phenylala-
nine deleted at position 508 (p.Phe508del) gene variant, also known
as F508del.1 A meta-analysis described 24 to 54 CFTR gene vari-
ants in regions from South Asia, the Middle East, and East Asia, but
populations of non-European ancestry are likely underestimated due
to ascertainment bias.2,9 In populations from 10 countries in Latin
America, F508del was the most frequent CFTR variant, ranging from
23% to 59%.10 Rare variants (<1% of individuals) in Latin American
populations reflect diverse Native, African, and European heritages.10

Pathophysiology
Pathophysiological changes in cystic fibrosis are primarily due to loss
of CFTR protein function and its essential role as an anion channel in
apical epithelia. Loss of function of the CFTR protein alters hydra-
tion and pH concentration in exocrine ducts, leading to obstructed
and dilated exocrine glands in multiple organs.11 Reduced CFTR func-
tion in the sweat gland leads to increased salt losses and higher chlo-
ride concentrations in sweat.12 The mucinous obstruction of pancre-
atic acini and ducts biliary ducts and glandular obstruction of the vas
deferens and submucosal glands in the airways leads to organ de-
struction and fibrosis.13-15 The endobronchial space of airways in
people with cystic fibrosis typically becomes infected initially with
bacterial pathogens such as Staphylococcus aureus and Haemophi-
lus influenzae and later with Pseudomonas aeruginosa.16 These in-
fections are associated with a neutrophilic inflammatory response
and persistent mucopurulent plugging that leads to bronchiectasis.17

With the availability of CFTR modulator therapies, the pathogenesis
of clinical disease is changing, and early intervention may partially pre-
vent development of multiorgan pathology. In utero administration
of the CFTR modulator ivacaftor to ferret fetuses with the glycine at
residue 551 replaced by the aspartic acid (p.Gly551Asp; legacy G551D)
variant reduced meconium ileus and improved pancreatic exocrine
function, growth, and survival.18

More than 700 disease-causing gene variants of CFTR have been
identified.3,6 The most common are grouped into 6 classes by the
processes through which they can cause CFTR dysfunction
(Figure 1).19,20 Three classes (I, II, III) typically result in minimal or
no CFTR and are often associated with the highest sweat-chloride
values, severe lung disease, and pancreatic insufficiency whereas
classes IV, V, and VI are associated with some residual protein func-
tion, may have lower sweat chloride, and milder disease. Although
there are examples in which single variants affect multiple mecha-
nisms, matching of cystic fibrosis variants with biological pathways

Box. Commonly Asked Questions on the Management
of Cystic Fibrosis

How have the new medicines, termed CFTR modulators, affected
the lives of people with cystic fibrosis?

Modulator combination therapies such as elexacaftor-
tezacaftor-ivacaftor, which received initial regulatory approval
in 2019, have been highly effective leading to a marked
improvement in lung function as measured by forced expiratory
volume in the first second, reductions in respiratory symptoms
such as cough and sputum production, and hospitalizations.
People with cystic fibrosis also experience weight gain and
improvements in several measures of quality of life including
reduction in school or work absenteeism.

Do all people with cystic fibrosis have access to highly effective
modulators?

People with cystic fibrosis must carry at least 1 copy of a cystic
fibrosis gene variant responsive to a modulator therapy such as
elexacaftor-tezacaftor-ivacaftor to be eligible to receive the
therapy. Approximately 90% of people with cystic fibrosis have
the gene variant F508del, which is responsive to the
elexacaftor-tezacaftor-ivacaftor combination, but there remain
many people with cystic fibrosis who do not yet have access to
elexacaftor-tezacaftor-ivacaftor, including children younger
than 2 years, people with rare gene variants unresponsive to
therapy, and people living in geographic regions without access
to the approved drugs.

Are there research efforts to find therapies for all people with
cystic fibrosis?

There are multiple research programs across the world trying
to develop gene-agnostic therapies for which all people with
cystic fibrosis will be eligible including gene therapy, gene
editing, messenger RNA therapy, and alternative ion channels
to bypass the CFTR protein. Most of these approaches are
in preclinical stages.
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Figure 1. Cystic Fibrosis Transmembrane Conductance Regulator Variant Classes1,5,6,19
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Cystic fibrosis transmembrane conductance regulator (CFTR) variants can be
generally classified in 6 mechanistic classes based on how they alter CFTR RNA
transcription, protein trafficking, channel function, and stability.5,19 Reported
prevalence, and clinical features (sweat chloride, pancreatic insufficiency) are

summarized for exemplar variants per class.1,6 The CFTR2 database provides
information on all the CFTR variants and updates it as information becomes
available.6 The figure is adapted from Boyle and De Boeck.5 N/A indicates
number not available.
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have aided in the development of CFTR modulator therapies.21

Modulator therapies that increase the quantity of CFTR protein at
the cell surface are termed correctors, and those that augment chan-
nel function are termed potentiators (Figure 2).

Clinical Presentation
Because disease-causing variants of the CFTR gene result in a range
of protein dysfunction, the clinical presentation and rate of disease
progression are variable (Figure 1).5,21 More than 80% of people with
cystic fibrosis and 2 severe gene variants have consequences of exo-
crine pancreatic insufficiency including protein and fat maldiges-
tion, steatorrhea, and poor growth.25 Both upper and lower airway
disease begin in infancy with cough, increased respiratory rate, or
wheezing or crackles on chest auscultation.26 As patients become
infected with pathogens such as S aureus and subsequently
P aeruginosa, they frequently experience acute pulmonary exacer-
bations, characterized by cough, sputum production, and dyspnea,
which require more frequent airway clearance treatments (Table 1)
and often hospitalization.44 Chronic endobronchial infections and in-
flammation lead to a decline in lung function, characterized by a de-
crease in the forced expiratory volume in the first second (FEV1) of
expiration and forced vital capacity (FVC) on spirometry. Most pa-
tients with cystic fibrosis develop an obstructive pattern on spirom-
etry. Recurrent pulmonary infections cause bronchiectasis, a major
cause of morbidity and mortality.7 In addition, patients with ad-
vanced cystic fibrosis may develop pulmonary hypertension, which
is associated with decreased survival.49 Adults in the US have been
reported to have increased risk of comorbidities1 including cystic
fibrosis–related diabetes (29.2%),50 liver disease with cirrhosis
(4.1%),51 and osteoporosis (7.5%).52 People with cystic fibrosis who
have at least 1 copy of a CFTR variant with residual function often have
later onset of lung disease yet have comparable disease progres-
sion with those with minimally functional variants.53

Of 563 infants diagnosed by newborn screening in the US in
2021, 88.3% were asymptomatic at the time of diagnosis.1 Among

the 216 individuals diagnosed at ages older than 6 months, the most
common presenting symptoms were acute or persistent respira-
tory abnormalities (50.2%) such as cough or wheeze, nasal polyps
or sinus disease (15.5%), congenital bilateral absence of the vas def-
erens or infertility (9%), steatorrhea or abnormal stools (7.7%), fail-
ure to thrive (6.9%), and digital clubbing (2.6%).1

Assessment and Diagnosis
Diagnostic criteria for cystic fibrosis consist of 1 or more organ-
specific manifestations and elevated sweat chloride levels or ge-
netic confirmation of 2 disease-causing variants in the CFTR gene.
Most newborn screening methods include measurement of immu-
noreactive trypsinogen (IRT) from a bloodspot, followed by DNA test-
ing for CFTR variants, but the thresholds that define IRT elevation
and selection of CFTR variants can vary across the US, affecting the
prevalence of positive screening results.54,55

Sweat chloride testing is the main diagnostic test for cystic fi-
brosis with high sensitivity (99%) and specificity (93%) and has es-
tablished guidelines for technical quality and accuracy at special-
ized cystic fibrosis centers.12,56 Elevated chloride concentration of
collected sweat (�60 mEq/L) is consistent with the diagnosis. In-
termediate sweat chloride levels (30-59 mEq/L) require further bio-
chemical, genetic testing, or nasal potential difference measure-
ment and long-term follow-up at specialized centers because some
patients may later be diagnosed with definite cystic fibrosis, rang-
ing from 6% to 48% based on prospective and retrospective case
series and registry studies.12,57-59

Treatment
Long-term Therapies
For patients with cystic fibrosis, at least quarterly visits with a spe-
cialized, multidisciplinary team, including physicians, nurses, social
workers, and dietitians, are recommended to monitor for disease pro-
gression and treat multiorgan manifestations.29,30,49,60,61 Annual
screening for psychosocial health concerns is recommended in

Figure 2. Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapy Functions21-24
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p.Gly551Asp indicates glycine at
residue 551 replaced by aspartic acid;
and p.Phe508del, phenylalanine
deleted at position 508.
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Table 1. Long-term Pulmonary Therapies for Cystic Fibrosis

Therapy Mechanism of action Indication
Mode of administration and
frequency Evidence summary

Mucociliary clearance

Airway clearance techniques
such as chest physiotherapy
and oscillating devices

Augmented mucociliary
clearance of the lung and
facilitate cough to remove
mucus obstruction from
airways; mechanical loosening
of airway secretions

Mechanical exercise and
devices to relieve retained
airway secretions in
conjunction with standard
maintenance nebulized
therapies

Maintenance typically 2/d and
increases with pulmonary
exacerbations27

In a meta-analysis of 38 studies
(n =1114) of multiple
oscillating devices for airway
clearance techniques, there
was no clear evidence of one
mode superior to another28

Dornase alfa Reduced viscosity of airway
secretions through cleaving of
extracellular DNA in sputum

Recombinant DNase enzyme
used in conjunction with
maintenance airway clearance
techniques

Recommended as part of
maintenance therapy: 2.5-mg
nebulized 1/d29,30

In a meta-analysis of 15 studies
(n = 2447), dornase alfa
improved lung function and
reduced pulmonary
exacerbations vs placebo31

Inhaled hypertonic saline Not established. Proposed
mechanisms include airway
surface hydration through
improved sputum rheological
properties and antimicrobial
properties

Concentrated saline solution
inhaled used in conjunction
with standard maintenance
airway clearance therapies

Recommended as part of
maintenance therapy29

7%: 4 mL-nebulized 2/d;
Bronchodilator pretreatment
recommended to reduce
symptoms of cough and
wheeze associated with
administration

Meta-analysis of 17
randomized controlled trials
(n = 966) found evidence of
reduced frequency of
pulmonary exacerbations, but
low evidence for improvement
in FEV1

32

In recent trials among young
children, 7% hypertonic saline
use improved lung clearance
index, a measure of lung
function33,34

Mannitol Not directly established;
proposed mechanisms are to
act as a hyperosmolar agent to
rehydrate the airway surface
and improve sputum viscosity

Nebulized sugar alcohol as
add-on maintenance therapy to
manage patients who have
passed a tolerance test
Mannitol was approved in 2019
for age ≥18 y in the US

400-mg inhaled 2/d A meta-analysis of 6 studies
(n = 784) reported that
mannitol improved measures
of lung function with moderate
quality evidence35

Inhaled mannitol was
associated with mean absolute
improvement of lung function
relative to placebo in adults
(ppFEV1 difference, 1.21%;
95% CI, 0.07%-2.36%;
P = .04)36

Anti-inflammatory

Azithromycin Proposed anti-inflammatory
mechanisms include reducing
IL-4 and IL-8, suppressing
neutrophil activity, and
decreasing production of
tumor necrosis factor37

Macrolide antibiotic as add-on
maintenance therapy for
patients who are chronically
infected with Pseudomonas
aeruginosa and consideration
of use for those without
P aeruginosa29,30

Limited data, but largest trials
have used <40 kg: 250 mg
3/wk and ≥40 kg: 500 g
3/wk38

A 2012 Cochrane review of 10
studies (n = 959) found
azithromycin improved mean
FEV1 by approximately 4% vs
placebo for patients infected
with P aeruginosa and reduced
exacerbations38

Hospital days for exacerbations
were reduced with
azithromycin vs placebo among
infants, 3-6 mo (mean
difference, 6.3; 95% CI; −10.5
to −2.1)39

High-dose ibuprofen Not directly established;
proposed mechanisms include
reduced airway inflammation
as an inhibitor of
cyclooxygenase-1 and
cyclooxygenase-2; blocks
release of leukotriene B4,
a proinflammatory molecule
that promotes neutrophil
activity; inhibition of
neutrophil chemotaxis and
NF-KB–mediated
inflammation29

Patients aged 6-18 y to reduce
annual decline in lung function;
US national guidelines
recommend use in children
with attention to concentration
levels, but insufficient
evidence for use in adults29

Dose adjusted for peak plasma
concentrations of 50 to 100
μg/mL; approximately 20 to
30 mg/kg 2/d
Maximum dose: 1600 mg 2/d
Requirement for annual
ibuprofen levels has reduced
acceptance of therapy by
patients and caregivers

A 2019 Cochrane review of 4
trials (n = 287) found
ibuprofen treatment vs placebo
reduced annual rates of lung
function decline, particularly
in children40

Inhaled antibiotics for chronic P aeruginosa

Inhaled tobramycin Active against most
gram-negative bacilli through
binding of bacterial ribosome
and inhibiting protein
synthesis41

Guideline-recommended
inhaled maintenance therapy
for patients with chronic
Pseudomonas aeruginosa
infection29

300-mg nebulized or 112-mg
dry powder inhaler 2/d for 28 d
alternating with 28 d off

A 2022 meta-analysis of
inhaled antibiotics to treat
P aeruginosa in included 18
trials (n = 3024); among the
12 included, tobramycin had
the best available evidence of
the antipseudomonal
antibiotics reviewed and
tobramycin use was associated
with improved lung function
and reduced exacerbations 42

(continued)
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children aged 12 years or older.62 Monitoring for comorbidities in-
cludes annual oral glucose tolerance testing (�10 years) for cystic
fibrosis–related diabetes,50 dual-energy x-ray absorptiometry scan-
ning every 2 to 5 years (>8 years) for bone density, and colonos-
copy every 5 years (�40 years) for colorectal cancer.63

Disease progression is measured by monitoring for trends in nu-
tritional status (height, weight, body mass index [BMI], calculated
as weight in kilograms divided by height in meters squared), lung
health (spirometry, respiratory microbiology, chest imaging), and as-
sessments for pulmonary exacerbations. Exacerbations manifest as
an acute worsening of respiratory symptoms and lung function (per-
cent predicted FEV1 [ppFEV1]) and usually require oral or intrave-
nous antibiotic treatments specific for respiratory microbiology, in-
creased airway clearance therapies (eg, high-frequency oscillatory
percussive devices), and high-calorie, high-protein diets to limit per-
manent loss of lung function.44,47 In a randomized clinical trial of 982
participants with cystic fibrosis and pulmonary exacerbation de-
fined by providers as necessitating intravenous antibiotic treat-
ment, antibiotic therapy duration of 10 days was noninferior to 14
days, based on the outcome of lung function (change in ppFEV1)
among those who had improved lung function and symptoms within
7 to 10 days of treatment (mean ppFEV1 change, 12.8% vs 13.4%;
difference, −0.65%; 95% CI, −3.3% to 2.0%). In addition, those with-
out improved lung function or symptoms within days 7 to 10 days,
21 days of intravenous antibiotics was not superior to 14 days47 (mean
ppFEV1 change, 3.3% vs 3.4%; difference, −0.10%; 95% CI, −1.3%
to 1.1%).47 In subsequent analysis, lung function improvement was
higher for those treated in the hospital (mean ppFEV1 change, 8.0%;

95% CI, 6.7% to 9.4%) vs at home (mean ppFEV1 change, 5.0%; 95%
CI, 3.5% to 6.5%).48

Long-term pharmacological pulmonary therapies such as mu-
colytics to thin secretions to facilitate clearance from the upper and
lower airways (such as dornase alfa), airway surface liquid hydra-
tion (inhaled hypertonic saline, mannitol), and anti-inflammatory
drugs (azithromycin, ibuprofen) have been based on phase 3 ran-
domized, placebo-controlled clinical trials (Table 1). In a clinical trial
of 968 patients with cystic fibrosis, dornase alfa compared with pla-
cebo increased the mean percent change in FEV1 by 5.8% (SE, 0.7%)
vs 0% (SE, 0.6%) and reduced the proportion of patients with 1 or
more pulmonary exacerbations from 89 (27%) to 61 (19%).64 In a
clinical trial of 164 participants, 7% hypertonic saline compared with
0.9% saline reduced pulmonary exacerbations (mean exacerba-
tions per participant, 0.39 [7% saline] vs 0.89 [0.9% saline]); dif-
ference, 0.5; 95% CI, 0.14-0.86; P = .02).65 In a randomized clini-
cal trial of 185 patients chronically infected with P aeruginosa,
azithromycin, compared with placebo, significantly improved lung
function from baseline (ppFEV1, 4.4% vs −1.8%; mean difference,
6.2%; 95% CI, 2.6%-9.8%) at end of 168 days of treatment.66

CFTR Modulator Therapies
CFTR modulator therapies act by 2 mechanisms to enhance CFTR
function. Potentiators, like ivacaftor, increase the probability that
the protein channel is open, so chloride or bicarbonate can flow
more easily through the cell membrane (Figure 2). Correctors,
like lumacaftor, tezacaftor, and elexacaftor, improve channel quan-
tity at the cell surface by helping the protein fold properly, enabling

Table 1. Long-term Pulmonary Therapies for Cystic Fibrosis (continued)

Therapy Mechanism of action Indication
Mode of administration and
frequency Evidence summary

Inhaled aztreonam lysine Inhibits synthesis of bacterial
cell walls; active against
gram-negative bacteria and
stable against β-lactamases43

Inhaled maintenance therapy
for patients with chronic
P aeruginosa infection29

75-mg nebulized 3/d for 28 d
alternating with 28 d off

A 2022 meta-analysis of
inhaled antibiotics to treat
P aeruginosa included 18 trials
(n = 3024);
Of 18 trials, 1 trial found
moderate-quality evidence for
aztreonam use for improved
lung function (mean difference,
FEV1, −3.4%; 95% CI, −6.63%
to −0.17%) with fewer
hospitalizations vs inhaled
tobramycin42

Pulmonary exacerbations

Management of pulmonary
exacerbations, clinically
presenting as recurrent
episodes of clinical symptoms
including increased cough,
sputum production, dyspnea,
decreased energy level and
appetite, weight loss, and/or
decreases in measures of
spirometry44,45

Antibiotic therapy for 10- to
14-d courses associated with
decreased bacterial density in
sputum and improved lung
function46

Guideline-recommended
increased frequency for airway
clearance therapy sessions and
antibiotic courses44

Antibiotics based on
respiratory microbiological
cultures; increased frequency
of airway clearance;
hospitalization may be needed

A 2021 trial of adults (n = 982)
treated for pulmonary
exacerbation found lung
function change from
treatment initiation was
noninferior at 10 d vs 14 d of
therapy among early
responders within 7 to 10 d of
therapy (mean ppFEV1 change,
12.8% vs 13.4%; difference,
−0.65%; 95% CI, −3.3% to
2.0%) and noninferior at 14 vs
21 d of therapy for later
responders (difference,
−0.10%; 95% CI, −1.3% to
1.1%)47

Lung function improvement
was higher for those treated in
the hospital vs at home (mean
ppFEV1 change, 8.0%; 95% CI,
6.7% to 9.4% vs 5.0%; 95% CI,
3.5% to 6.5%)48

Abbreviations: NF-KB, nuclear factor kappa-B; ppFEV1, predicted percent of forced expiratory volume in the first second of expiration.
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transport to the cell surface (Figure 2). Severe variants such as
F508del need both potentiators and correctors to improve chan-
nel quantity and function (Figure 2). Four modulators are currently
approved by US and European drug regulatory agencies, and eligi-
bility for each treatment depends on the specific CFTR genetic
variants present (Table 2). Ivacaftor is available as a monotherapy,
and lumacaftor-ivacaftor, tezacaftor-ivacaftor, and elexacaftor-
tezacaftor-ivacaftor are available as combination therapies (Table 2).

Ivacaftor (formerly VX-770) was the first CFTR modulator tested
in randomized clinical trials of patients with cystic fibrosis in 2006.
Ivacaftor was tested first for patients with cystic fibrosis who have
a G551D-CFTR variant where the CFTR protein is transported to the
cell membrane, but the CFTR channel does not open properly. In a
randomized clinical trial of 161 patients with at least 1 copy of G551D,
compared with placebo, patients at 24 weeks’ follow-up had im-
proved ppFEV1 (10.1% vs −0.4%; mean difference, 10.5%; 95% CI,
8.5%-12.5%), a 55% reduction in pulmonary exacerbations (28 vs
44; rate ratio, 0.43; 95% CI, 0.27-0.68), and increased weight
(3.1 kg vs 0.4 kg; mean difference, 2.7 kg; 95% CI, 1.3-4.1 kg).68

Respiratory symptoms were scored on a 100-point scale on the re-
spiratory domain of the Cystic Fibrosis Questionnaire revised
(CFQ-R), for which higher numbers indicate a lower effect of these
symptoms on quality of life (minimal clinically important differ-
ence, 4 points).81 Ivacaftor improved respiratory symptom scores
by 8.6 points relative to placebo (5.9 vs −2.7; mean difference, 8.6;
P < .001). Ivacaftor is approved for patients 4 months or older.

For people with 2 copies of the F508del variant, ivacaftor alone
did not improve CFTR activity or demonstrate clinical efficacy.82

These patients required the combination of corrector and poten-
tiator medications. Randomized, placebo-controlled clinical trials of
first-generation correctors, lumacaftor or tezacaftor, in combina-
tion with ivacaftor demonstrated modest improvements in ppFEV1

and reduction in pulmonary exacerbations in patients homozy-
gous for the F508del variant.73,74,77,83,84 For example, in a clinical
trial of 509 patients homozygous for the F508del variant, the
tezacaftor-ivacaftor combination drug compared with placebo im-
proved ppFEV1 (3.4% vs −0.6%; mean difference, 4%; 95% CI, 3.1%
to 4.8%) and reduced the pulmonary exacerbations annualized rate
(0.64 vs 0.99 events per year; rate ratio, 0.65; 95% CI, 0.48 to 0.88)
at 24 weeks’ follow-up.70 The tezacaftor-ivacaftor combination re-
duced sweat chloride (−9.9 vs 0.2 mEq/L; mean difference, −10.1
mEq/L; 95% CI, −11.4 to −8.8 mEq/L) for patients homozygous for
the F508del variant, but had no effect in patients with 1 copy.53,77,85,86

The combination of a second-generation corrector, elexacaftor
(formerly VX-445) with the first-generation corrector tezacaftor (for-
merly VX-661) had an additive effect in stabilizing the nascent CFTR
protein and facilitated increased expression of the mature CFTR pro-
tein channel at the cell surface.87,88 When the 2 correctors were com-
bined with the potentiator, ivacaftor, in phase 3 randomized trials,
this triple combination was effective and had similar clinical re-
sponses for people with cystic fibrosis who were either homozy-
gous for the F508del variant or who had 1 copy of the F508del vari-
ant and 1 copy of a minimal function variant on the second allele
(Table 2).22,23 In a randomized clinical trial of 107 patients who were
homozygous for the F508del variant, the elexacaftor-tezacaftor-
ivacaftor combination compared with tezacaftor-ivacaftor alone in-
creased ppFEV1 (10.4% vs 0.4%; difference, 10.0%; 95% CI, 7.4% to
12.6%), decreased sweat chloride concentration (−43.4 vs 1.7 mEq/L;

difference, −45.1; 95% CI, −50.1 to −40.1 mEq/L), and improved re-
spiratory symptom scores above the 4-point minimally important
clinical difference for CFQ-R (16 vs −1.4; difference, 17.4; 95% CI, 11.8
to 23) at 4 weeks’ follow-up.22

In a randomized clinical trial23 of 403 patients heterozygous for
the F508del variant and a minimal function variant, elexacaftor-
tezacaftor-ivacaftor compared with placebo improved ppFEV1

(13.6% vs −0.2%; mean difference, 13.8%; 95% CI, 12.1% to 15.4%)
at 4 weeks and through 24 weeks (13.9% vs −0.4%; mean differ-
ence, 14.3%; 95% CI, 12.7% to 15.8%).23 The elexacaftor-tezacaftor-
ivacaftor combination decreased the pulmonary exacerbations an-
nualized rate (0.37 vs 0.98; rate ratio, 0.37; 95% CI, 0.25 to 0.55),
increased absolute change in body mass index from baseline (1.13
vs 0.09; difference, 1.04; 95% CI, 0.85 to 1.23), improved respira-
tory symptom scores by CFQ-R (17.5 vs −2.7; difference, 20.2 points;
95% CI, 17.5 to 23.0) and decreased sweat chloride concentration
(−42.2 vs −0.4 mEq/L; difference, −41.8 mEq/L; 95% CI, −44.4 to
−39.3 mEq/L) at 24 weeks’ follow-up.22,23 Preliminary open-label ob-
servational studies involving people taking elexacaftor-tezacaftor-
ivacaftor therapy have reported similar results at up to 144 weeks
of follow-up.89

Elexacaftor-tezacaftor-ivacaftor is approved for patients aged
2 years or older; approximately 90% of people with cystic fibrosis,
including for those with variants that have demonstrated in vitro cul-
ture response to treatment.80,90-92 This technique known as thera-
typing has increased access to therapy with modulator drugs among
people with rare (<1%) CFTR variants.92

Ivacaftor and its combination CFTR modulator were generally well
tolerated and had similar safety profiles in phase 3 studies involving
younger age groups (Table 2).69-71,74,75,80,90,91,93,94 Compared with
placebo, elexacaftor-tezacaftor-ivacaftor had a similar incidence of
adverse events (93.1% vs 96.1%) including headache (17%), upper
respiratory tract infection (16%), abdominal pain (14%), diarrhea
(13%), exanthem (10%), increased alanine transaminase (10%), or
aspartate transaminase (9%).23 Serious adverse events were less
common in the treatment group (13.9% vs 20.9%).23 For all CFTR
modulator therapies, liver function monitoring is recommended
quarterly for the first year of treatment and then annually.67,72,76,78

Ophthalmologic examinations for children are recommended annu-
ally based on toxicology studies of ivacaftor that identified cataracts
in juvenile rats, although this adverse effect was not observed in hu-
man trials.67 Drug interactions are important considerations be-
cause ivacaftor and combination therapies are both substrates and
inducers in the cytochrome P450 (CYP3A) pathway (Table 2).67,72,76,78

Prognosis
In 2021, the median age of survival in the US was approximately
53.1 years (95% CI, 51.6-54.7 years) for people born from 2017
through 2021. In comparison, for people with cystic fibrosis born
from 2001 through 2006, life expectancy was approximately 36.3
years (95% CI, 35.1-37.9 years). The US annual mortality rate was 1.5
deaths per 100 in 2006 and 0.7 deaths per 100 in 2021.1 Registry
data across multiple other countries such as the UK, Germany, and
Canada have reported similar improvements in life expectancy.
Current life expectancy in the UK, Germany, and Canada is approxi-
mately 47 to 53 years.95

Newborn screening for early diagnosis of cystic fibrosis has been
associated with improved health.12 A prospective, observational
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Table 2. CFTR Modulator Therapies for Cystic Fibrosis

Modulator
name

Common eligible
genotypes
(prevalence
in US)1

Ages approved
and adult dosing Efficacy Adverse effects

Monitoring and drug
interactions

Ivacaftor Approved use for
use with ≥1 copy
of G551D (4.2%)
R117H (3.3%)
3849 +
10kbC→T
(1.8%)a

2789 + 5G→A
(1.5%)a

D1152H (1.1%)
3272-26A→G
(0.8%)a

L206W (0.7%)
A455E (0.6%)
For all eligible 97
variants, refer to
prescribing
information67

Approved for ages
≥1 mo;
Dose for ages ≥6 y:
one 150-mg tablet
every 12 h; for ages
4 mo to 6 y, see
prescribing
information67

For patients with a G551D-CFTR variant,
ivacaftor vs placebo increased mean
absolute change from baseline lung
function (ppFEV1) through wk 24 (10.4%
vs −0.2%; 95% CI, 8.6% to 12.6%;
P < .001) and wk 48 (10.1% vs −0.4%;
95% CI, 8.5% to 12.5%; P < .001); reduced
pulmonary exacerbations at wk 28 (rate
ratio, 0.38; 95% CI, 0.22 to 0.64;
P < .001); and improved weight gain from
baseline to wk 28 (difference, 2.8 kg; 95%
CI, 1.8 to 3.7; P < .001); reduced sweat
chloride concentration (−48.7 vs −0.06
mEq/L; mean difference, −48 mEq/L;
P < .001)68

In an open-label, single-arm study of
children (aged 2-5 y) who received
ivacaftor and had 1 gating gene variant,
mean-weight-for-age z score increased 0.2
from baseline at wk 24 (P < .001)69

In single-arm study of infants (12-24 mo)
receiving ivacaftor, mean weight-for-age z
score was maintained 0.15 (95% CI, −0.05
to 0.36) from baseline70

Ivacaftor for 4 mo-<12 mo, mean
weight-for-age z score increased 0.52
(95% CI, 0.23 to 0.82) from baseline71

AEs were similar for
ivacaftor vs placebo to 48
wk (82 vs 78
participants), but lower
incidence of cough (33%
vs 42%), pulmonary
exacerbation (13% vs
33%) in the treated
group; AEs more
commonly reported for
ivacaftor vs placebo:
headache (22.9%),
respiratory tract infection
(22.9%), nasal congestion
(17%), rash (14.5%),
dizziness (12%),
increased hepatic enzyme
levels led to study drug
discontinuation for 1 in
the ivacaftor group vs 4 in
the placebo group68

Elevated transaminases: ALT
or AST assessed prior to
initiation and every 3 mo for
first y of treatment, then
annually; increase
monitoring frequency for
history of elevations;
interrupt dose if ALT or AST
>5 × ULN
Cataracts: reported in
pediatric patients; baseline
and follow-up eye
examinations recommended
for patients ≤18 y
Drug interactions: reduce
ivacaftor dose or avoid
CYP3A inhibitors (eg,
ketoconazole, voriconazole,
clarithromycin,
erythromycin, food
containing grapefruit); avoid
coadministration with strong
CYP3A inducers (eg,
rifampin, phenobarbital,
St John’s wort) that decrease
ivacaftor exposure; caution
and monitoring for
medications categorized as
CYP2C9 substrates (eg,
warfarin, glipizide) and
CYP3A and/or P-gp
substrates (eg, digoxin,
cyclosporine, tacrolimus)
Ivacaftor may increase
exposure of such medications

Lumacaftor-
ivacaftor

F508del
homozygous
(44.1%)

Approved for ages
≥1 y
Dose for ages ≥12 y:
2 tablets combined of
200-mg lumacaftor
and 125-mg ivacaftor
every 12 h
Doses for ages 1 y to
11 y, refer to
prescribing
information72

In pooled analysis of 2 studies,
lumacaftor-ivacaftor vs placebo improved:
mean absolute difference of ppFEV1 (range,
2.8 to 3.3, P < .001); reduced pulmonary
exacerbations rate (range, 0.61 to 0.70;
P = .001); increased absolute change in BMI
(range, 0.24 to 0.28; P < .001).73,74

Incidence of AEs were
similar in
lumacaftor-ivacaftor-
treated and placebo
groups up to 24 wk, but
higher proportion of
patients who
discontinued study drug
because of an AE in
lumacaftor-ivacaftor
group (4.2% vs 1.6%)73

Common AEs: dyspnea
(13%), nasopharyngitis
(13%), nausea (13%),
rash (7%), and elevated
blood creatine
phosphokinase (7%);
elevation of liver
transaminases, rash; and
drug interactions have
also been reported74,75

Patients: caution use and
consider reduced dose in
patients with advanced liver
disease; increased
monitoring for respiratory
symptoms at initiation in
patients with ppFEV1 < 40%
Elevated transaminases (ALT,
AST, bilirubin): same
monitoring as per ivacaftor
and interrupt dose if ALT or
AST >3 × ULN with bilirubin
>2 × ULN
Blood pressure: periodically
measure blood pressure in all
patients for elevations
Drug interactions: same as
ivacaftor above; and
interacts with CYP3A
substrates or CYP3A
substrates with narrow
therapeutic index, including
reducing effects of hormonal
contraceptives
Cataracts: same monitoring
as ivacaftor

F508del
homozygous
(44.1%); or 1
copy of all
variants for
ivacaftor; or 1
copy of additional
57 variants; for all
eligible variants,
refer to
prescribing
information76

Approved for ages
≥6 y
Dose for ages ≥12 y:
1 tablet tezacaftor
100 mg/ivacaftor
150 mg in AM; 1 tablet
ivacaftor 150 mg
in PM

Doses for ages 6 y to
11 y, refer to
prescribing
information76

Tezacaftor-ivacaftor vs placebo improved
mean absolute difference of ppFEV1 (3.4%
vs −0.6%, P < .001) through wk 24;
reduced pulmonary exacerbation rate
(0.65; 95% CI, 0.48, 0.88; P = .005)77

Tezacaftor-ivacaftor improved ppFEV1
(6.8%, P < .001) vs placebo53

Most AEs deemed
unrelated to study drug;
common adverse drug
reactions (occurring in
≥3% of patients) were
headache, nausea, sinus
congestion, and dizziness;
study drug interruption
most commonly from
elevated liver
transaminases53

Elevated transaminases (ALT,
AST, bilirubin): same
monitoring as per
lumacaftor-ivacaftor
Cataracts: same monitoring
as ivacaftor
Drug Interactions: same as
ivacaftor; reduce dose with
strong or moderate CYP3A
inhibitors; avoid
coadministration with strong
CYP3A inducers and food
containing grapefruit

(continued)
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study of 231 infants with cystic fibrosis diagnosed by universal new-
born screening in the US demonstrated that infants diagnosed dur-
ing newborn screening had minimal respiratory symptoms and were
able to achieve normal weight for age by 1 year, although their mean
lengths were lower than the World Health Organization standard
growth curves for healthy infants.96 A retrospective cohort study com-
paring the longitudinal outcomes of 9571 infants in the same birth co-
hort before and after implementation of the cystic fibrosis newborn
screening program by state found that a newborn screening pro-
gram was associated with higher median weight (6.0, 95% CI, 3.1-
8.4) and median height (6.6; 95% CI, 3.8-9.3) percentiles in the first
year of life and was associated with older age at onset of chronic P ae-
ruginosa infection (hazard ratio [HR], 0.69; 95% CI, 0.54-0.89), but
no association with lung function (ppFEV1) at age 6 years.97

Observational data showed that modulator therapy was asso-
ciated with improved health.98,99 Among 2509 patients with cys-
tic fibrosis from the US and UK who were followed up from 2011 (pre-
treatment baseline) to 2016, the 635 patients treated with ivacaftor
maintained higher lung function and higher BMI compared with the
1874 patients not treated with ivacaftor.98 Patients who received
ivacaftor had an FEV1 decline of −0.7% at the 5-year follow-up com-
pared with 8.3% in the group that did not receive ivacaftor. In the
PROMISE99 observational study of 487 people with cystic fibrosis
who were treated with elexacaftor-tezacaftor-ivacaftor, sustained
improvement in lung function, measured by ppFEV1, was observed
at the 6-month follow-up compared with pretreatment baseline
(90.9% vs 80.5%; difference, 9.8%; 95% CI, 8.8% to 10.8%). In this
cohort, elexacaftor-tezacaftor-ivacaftor use was associated with im-
proved CFTR function as measured by sweat chloride concentra-
tion (after treatment, 45.7 mEq/L vs baseline, 88.0 mEq/L; differ-
ence, −41.7 mEq/L; 95% CI, −43.8 to –39.6 mEq/L).99 In a prospective

observational study of people with cystic fibrosis with advanced lung
disease (defined as ppFEV1 < 40%), elexacaftor-tezacaftor-
ivacaftor use was associated with an absolute change from base-
line ppFEV1 of 15.1%.100 The proportion of people with cystic fibro-
sis who required supplemental oxygen declined from 43.4%
at initiation to 23.4% after 3 months of elexacaftor-tezacaftor-
ivacaftor treatment and requirements for noninvasive ventilation
were reduced from 28.1% to 19.8%.100 The 2021 Cystic Fibrosis Foun-
dation Patient Registry1 reported a decline in number of lung trans-
plants from 197 in 2006 to 54 in 2021.

Improvements in longevity observed in cystic fibrosis are not
equal by race or ethnicity in the US. Hispanic patients compared with
non-Hispanic patients had significantly higher mortality after adjust-
ment for clinical and socioeconomic factors (9.1% vs 3.3%; HR, 2.8;
95% CI, 1.7 to 4.6).101 These differences in outcomes may be due in
part to delayed diagnosis and care initiation. Among 6354 infants born
between 2010 through 2018, initiating cystic fibrosis care occurred
later among infants described as American Indian and Native Alaskan,
Asian, Black or African American, and/or other race, and/or Hispanic
ethnicity (group 1), compared with infants described as White and not
Hispanic (group 2). The median age at the first clinical evaluation for
cystic fibrosis among infants in group 1 was 31 days (IQR, 19-49 days)
vs 22 days (IQR, 14-36) for those in group 2. Delayed cystic fibrosis
care was associated with worse nutrition. Measured by weight-for-
age z scores at 1 year of age, the median z score for group 1 was −0.11
(IQR, −0.75 to 0.59) vs 0.062 (IQR, −0.57 to 0.65) for group 2.102 CFTR
genetic panels and selection of variants tested differ by state and of-
ten represent the most common variants. In a cross-sectional study
of 7 CFTR genetic panels used in newborn screening, detection of at
least 1 CFTR variant was lowest in infants identified as Black, Asian, and
Hispanic compared with infants categorized as non-Hispanic White

Table 2. CFTR Modulator Therapies for Cystic Fibrosis (continued)

Modulator
name

Common eligible
genotypes
(prevalence
in US)1

Ages approved
and adult dosing Efficacy Adverse effects

Monitoring and drug
interactions

Elexacaftor-
tezacaftor-
ivacaftor

≥1 copy of
F508del (85.5%);
G85E (0.7%)
or all variants for
tezacaftor-
ivacaftor (except
as indicated)a

or of additional
30 CFTR variants;
all eligible
variants, refer to
prescribing
information78

Approved for ages
≥2 y
Dose for ages ≥12 y:
2 tablets, each
containing 100-mg
elexacaftor, 50-mg
tezacaftor, and 75-mg
ivacaftor in AM;
1 tablet of 150-mg
ivacaftor in PM

Doses for ages 2 y to
11 y, refer to
prescribing
information78

In patients who were F508del
homozygous, elexacaftor-tezacaftor-
ivacaftor vs placebo increased: absolute
change in lung function (ppFEV1) from
baseline at 29 d (13.8 vs 0.4; difference,
11.0; 95% CI, 7.9 to 14.0; P < .001)22

In patients with F508del-minimal function
genotypes, elexacaftor-tezacaftor-
ivacaftor vs placebo increased absolute
change in lung function (ppFEV1) from
baseline at wk 4 (13.6% vs −0.2%; mean
difference, 13.8%; 95% CI, 12.1% to
15.4%; P < .001) and through wk 24
(13.9% vs −0.4%; mean difference, 14.3%;
95% CI, 12.7% to 15.8%; P < .001)23

In participants with F508del-gating or
F508del-residual function variants,
elexacaftor-tezacaftor-ivacaftor vs active
control increased lung function (ppFEV1)
from active control by 3.5 percentage
points (95% CI, 2.2 to 4.7)79

In children aged 6-11 y, elexacaftor-
tezacaftor-ivacaftor improved the lung
clearance index (−2.29 vs −0.02 units;
P < .001)80

Similar incidence of AEs
seen in
elexacaftor-tezacaftor-
ivacaftor vs placebo;
common AEs (≥5% of
patients and higher than
placebo by ≥1%):
headache (17%), upper
respiratory tract infection
(16%), abdominal pain
(14%), diarrhea (13%),
rash (10%), increased ALT
levels (10%), increased
nasal congestion, blood
creatine phosphokinase
levels (9%), and AST
increased (9%); rash led
to 1% study drug
discontinuation vs <1%
placebo23

Elevated transaminases (ALT,
AST, bilirubin): same
monitoring as per
lumacaftor-ivacaftor and
tezacaftor-ivacaftor; more
frequent monitoring for
people with advanced liver
disease or history of
elevations
Cataracts: same monitoring
as ivacaftor
Drug Interactions: same as
tezacaftor-ivacaftor; reduce
dose with strong or moderate
CYP3A inhibitors; avoid
coadministration with strong
CYP3A inducers and food
containing grapefruit

Abbreviations: AE, adverse effect; ALT, alanine transaminase; AST, aspartate
transaminase; BMI, body mass index; CFRT, cystic fibrosis transmembrane
conductance regulator; ppFEV1, predicted percent of forced expiratory volume
in the first second of expiration; ULN, upper limit of normal.

a Variants eligible for ivacaftor and tezacaftor-ivacaftor only and not eligible for
elexacaftor-tezacaftor-ivacaftor therapy.
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for all panels (41.9%-93.1% vs 87.5%-97.0%).103 Panel choice by state
may contribute to inequities in delays in diagnosis of cystic fibrosis.
The CFTR genetic variants present in Black patients (69.7%) and
Hispanic patients (75.6%) have fewer matchingCFTR modulators avail-
able for treatment compared with the variants present in White pa-
tients (92.4%).104

Practical Considerations and Application of Evidence
As health improves, particularly after initiation of elexacaftor-
tezacaftor-ivacaftor, people with cystic fibrosis have expressed in-
terest in reducing the number of treatments.105 Randomized clini-
cal trials and observational studies are underway to identify therapies
that can be reduced or eliminated in patients receiving CFTR modu-
lator therapies. The SIMPLIFY study105 included 2 independently con-
ducted randomized, clinical trials assessing the noninferiority of dis-
continuing vs continuing 6 weeks of either hypertonic saline (184
discontinued vs 186 continued) or dornase alfa (240 discontinued
vs 234 continued). In the hypertonic saline trial, discontinuing hy-
pertonic saline was non-inferior to continuing with respect to the
6-week change in ppFEV1 (−0.19% vs 0.14%; difference, −0.32%;
95% CI, −1.25 to 0.60). In the dornase alfa trial, discontinuing dor-
nase alfa was noninferior to continuing with respect to the 6-week
change in ppFEV1 (0.18% vs 0.16%; difference, 0.35%: 95% CI,
−0.45% to 1.14%).105 The SIMPLIFY study is the first step toward un-
derstanding the need for standard therapies for people receiving
modulators.

Wholesale acquisition costs of CFTR modulators can range from
$272 623 to $311 741 per year and raise concerns about affordabil-
ity and access.106 However, the final reimbursement cost is based
on agreements with health authorities or private payers and is vari-
able. In the US, CFTR modulator therapies were prescribed to 91%
(range, 75.9%-100%) of people with eligible CFTR variants in 2021,
funded by both private and public payers.1 More than 40 coun-
tries, including Australia, Europe, Israel, New Zealand, and North
America have regulatory and reimbursement approvals permitting
access to elexacaftor-tezacaftor-ivacaftor combination therapy.
However, other global areas such as India, and in regions of Central
and South America, the Middle East, and Southern Africa are await-
ing approval for elexacaftor-tezacaftor-ivacaftor, which could widen
disparities in cystic fibrosis outcomes between high-income and low-
and middle-income countries.107

Several knowledge gaps about modulator therapies must be ad-
dressed. Long-term pharmacovigilance is needed to understand the
safety of these drugs including drug-drug interactions and effects
such as weight gain, elevated blood pressure, mental health ef-
fects, and liver function abnormalities.94 The long-term safety and
effectiveness of CFTR modulators prenatally and in infants younger
than 4 months is unknown.108

Adults comprise 58.3% of the total US cystic fibrosis popula-
tion. As this population ages, expanded services will be needed

across multiple subspecialities to manage comorbidities and age-
related complications including gastrointestinal cancers, diabetes,
obesity, and hypertension.1,50,63,94,109 Rates of pregnancy in women
with cystic fibrosis have increased from 210 in 2011 to 675 in 2021,
underscoring the importance of attending to reproductive health.1,110

The association of cystic fibrosis with mental health has been char-
acterized in observational studies, but interventional studies are
needed.62,111,112 In an observational study of 1005 patients with cys-
tic fibrosis, patients who tested positive (mean hazard rate, 29.4
deaths per 1000 patients per year) for any depression screening tool
had a higher 5-year mortality rate than those who tested negative
for depression (mean hazard rate, 15.7 deaths per 1000 patients per
year; unadjusted HR, 2.0; 95% CI, 1.3-3.0), but the association was
attenuated and no longer statistically significant after adjustment
for potential confounders (adjusted HR, 1.4; 95% CI, 0.9-2.2).111

Future studies should identify effective therapies for all people
with cystic fibrosis, regardless of the genetic variant. For example,
therapies are needed for people with genetic variants that are not
modulator responsive such as premature termination codons, large
deletions or frameshifts that produce little or no stable protein.113

Although multiple gene replacement programs, both virally and non-
virally based, have been attempted,114 none have demonstrated ef-
ficacy. The availability of gene editing technologies such as clus-
tered regularly interspaced short palindromic repeats (CRISPR)
CRISPR–associated protein 9 may lead to functional CFTR repair in
intestinal or pulmonary epithelia.115 All genetic based therapies face
the challenge of developing efficient vectors that can deliver stable
product to the target stem cells in the airway or intestinal tract.113

Limitations
This review has several limitations. First, some relevant publica-
tions may have been missed. Second, this was not a systematic re-
view. Third, the review focused on CFTR modulators for which long-
term safety and efficacy data are not available. Fourth, topics such
as lung transplant, the effect of COVID-19, digital health, or man-
agement of cystic fibrosis–related comorbidities such as diabetes or
liver disease were not covered.

Conclusions
Cystic fibrosis affects approximately 89 000 identified people world-
wide and is associated with a spectrum of disease related to exo-
crine dysfunction, including chronic respiratory bacterial infec-
tions and reduced life expectancy. First-line pulmonary therapies
consist of mucolytics, anti-inflammatories, and antibiotics, and ap-
proximately 90% of people with cystic fibrosis 2 years and older ben-
efit from a combination of ivacaftor, tezacaftor, and elexacaftor.
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