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KEY POINTS

� Echocardiography, the first-line imaging modality for cancer therapy-related cardiotoxicity (CTRCT)
screening, should be obtained with signs or symptoms of cardiac involvement in patients with his-
tory of cardiotoxic cancer therapy.

� Echocardiographic strain imaging can detect subclinical cardiac dysfunction and is a promising
tool for the prediction and prognostication of CTRCT.

� Cardiac MRI (CMR) should be obtained if echocardiography is insufficient or suboptimal, highly ac-
curate volume assessments are needed, or myocarditis is suspected.

� Parametric T1 and T2 mapping should be included, when possible, in the CMR evaluation of cancer
patients.

� CTRCT surveillance varies based on patient risk and cancer therapy. Baseline echocardiography
should be obtained before therapy initiation in all intermediate and high-risk patients and consid-
ered in low-risk patients.
INTRODUCTION

The constant evolution of cancer treatment has led
to improved outcomes in numerous malig-
nancies.1 With improved cancer survivorship and
the introduction of novel therapies such as biologic
agents and immunotherapeutics, the prevalence
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of systemic toxicities, in particular cardiotoxicity,
has grown.2 Because cardiovascular (CV) disease
remains the leading noncancer cause of death in
cancer survivors, cardio-oncology strives to un-
derstand and improve CV health in patients with
cancer.3,4
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CV imaging is crucial in recognizing, under-
standing, monitoring, and treating cancer
treatment-related cardiotoxicities (CTRCT).5

Structural and functional imaging modalities pro-
vide important information in the management of
pathologic cardio-oncologic conditions. Echocar-
diography continues to be highly used for assess-
ment of cardiac structure and function due to its
low cost, accessibility, and effectiveness. Newer
echocardiographic applications, such as strain im-
aging, are increasingly used in evaluation of
CTRCT, especially to detect subclinical disease.6,7

Similarly, cardiac magnetic resonance (CMR) has
become a crucial imaging modality in cardio-
oncology. Although less accessible, CMR offers
accurate functional and structural assessment
because of excellent reproducibility, high signal-
to-noise ratio in addition to fine tissue character-
ization that is particularly helpful when echocardi-
ography is insufficient or suboptimal.6,8 This
review will discuss current evidence for use of
echocardiography and CMR in cardio-oncology
and practical clinical uses for each.

Traditional 2D Echocardiography

Due to availability, low cost, short acquisition time,
and safety, echocardiography is the first-line im-
aging modality for CTRCT screening by all pub-
lished cardio-oncology guidelines and expert
consensus statements.5 Fig. 1 illustrates the rela-
tive utility of echocardiography considering
various parameters. Although left ventricular ejec-
tion fraction (LVEF) as measured by the Simpson
biplane method is the most cited parameter in
strict definitions of cardiotoxicity (definitions range
from reduction in LVEF by 5%–10% to absolute
LVEF of less than 50%–55%),9 LVEF assessment
via 2D echocardiography lacks the sensitivity and
reproducibility for primary CTRCT screening.10

Thus, newer echocardiographic applications
such as strain imaging, 3D echocardiography,
and contrast echocardiography have growing
roles in screening for CTRCT.

Echocardiographic strain imaging
Myocardial strain, or deformation, is the measure
of percent change in the length of a myocardial
segment during a given timeframe. This parameter
is helpful in quantifying myocardial function
directly rather than indirectly via 2D LVEF with
the Simpson biplane method. Speckle-tracking
echocardiography (STE) is the preferred method
of strain imaging. STE tracks the artifactual
“speckles” created by reflected and scattered ul-
trasound beams through cardiac tissue. Strain
can be calculated for the 3 major orientations of
myocardial fibers (longitudinal, radial, and
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circumferential) and as global longitudinal strain
(GLS), which uses data from multiple cardiac seg-
ments. All of these show promise in the early
detection of CTRCT before changes in LVEF
occur.7,11 A decrease in GLS of less than or equal
to 15% from baseline is considered abnormal and
has been most extensively studied.12

Several studies have assessed the prognostic
value of GLS in the early prediction of CTRCT
before LVEF changes. A 2019 systematic re-
view13 evaluated 21 such studies of patients
treated with anthracyclines with or without trastu-
zumab for a variety of cancers. Summary odds ra-
tios (ORs) for the prediction of CTRCT based on
threshold GLS values and percent change of
GLS after treatment initiation were 12.27 and
15.82, respectively. Since the publication of this
systematic review, newer studies have shown
similar findings,14–18 some incorporating several
biomarkers for additional predictive value with
mixed utility.19–21 GLS has been studied in pedi-
atric populations as well. Although less robust,
the studies use strain-imaging to evaluate sub-
clinical cardiac dysfunction in varying follow-up
periods after anthracycline therapy or radia-
tion.22–27 As in adults, GLS in pediatric patients
detects myocardial dysfunction before changes
in LVEF. Future studies in all populations should
focus on both early and long-term predictive
value of strain imaging with and without bio-
markers for the development of CTRCT.

Echocardiography in anthracyclines
Anthracyclines are antitumor antibiotics that play a
major role in the treatment of a wide range of can-
cers. Both antitumor action and cardiotoxicity are
thought to be due to activation of apoptotic path-
ways triggered by a combination of 3 separate
mechanisms: direct DNA damage via intercalation
into DNA strands, transcription interference via in-
hibition of topoisomerase enzymes, and DNA and
cellular damage via generation of free radi-
cals.28,29 Cardiotoxicity manifests primarily in the
form of myocardial dysfunction, usually within
1 year30 of therapy initiation, and it can progress
to irreversible heart failure, characterized by
diffuse fibrosis.31 Risk factors for cardiotoxicity
include cumulative anthracycline exposure, age
greater than 65 years or less than 18 years, female
sex, preexisting cardiac risk factors, kidney dis-
ease, and exposure to other cardiotoxic thera-
pies.32 Patients can be categorized into low,
intermediate, and high risk for cardiotoxicity based
on these risk factors (Table 1). Echocardiography
is the primary screening tool for anthracycline car-
diotoxicity, with GLS emerging as the most sensi-
tive measure of early myocardial dysfunction.13
ial Security de ClinicalKey.es por Elsevier en junio 28, 2022. Para 
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Fig. 1. Comparison of value of echocar-
diography and CMR. One filled in black
circle represents minimal value, 2 repre-
sents limited value, 3 represents good
value, and 4 represents gold standard.
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Echocardiography in Her2/Neu therapy
Trastuzumab is a monoclonal antibody used
mostly in the treatment of HER2-positive breast
cancer that targets HER2/neu receptors,
epidermal growth factor receptor tyrosine kinases
(TKs) important in cell proliferation. Cardiotoxicity
is the major adverse effect attributed to trastuzu-
mab, primarily manifesting as potentially severe,
reversible left ventricular (LV) dysfunction while
on therapy33 as well as right ventricular (RV)
dysfunction.34 Myocardial dysfunction has been
reported in up to 30% of patients19 with a 3%
risk of severe cardiotoxicity.35 Women treated
with both anthracyclines and trastuzumab are at
higher risk of cardiotoxicity than those treated
with either alone.36 Toxicity is thought to be due
to inhibition of cardioprotective mechanisms
(sarcomere maintenance, proapoptotic molecule
scavenging) initiated by neuregulin-1-mediated
activation of HER2. Subsequent oxidative stress
and upregulation of angiotensin II is thought to
further promote toxicity.33 As with anthracyclines,
GLS detects subclinical myocardial dysfunction
before LVEF changes and should be implemented
Descargado para Anonymous User (n/a) en National Library of Health a
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in any echocardiographic assessment of patients
treated with trastuzumab.13,18

Echocardiography in targeted therapies and
immunotherapy
Although anthracyclines and trastuzumab repre-
sent the classic culprits of CTRCT, emerging ther-
apies also cause cardiotoxicities that can be
assessed via echocardiography and strain imag-
ing. These include targeted therapies (eg, protea-
some inhibitors [PIs], vascular endothelial growth
factor inhibitors [VEGF-Is], tyrosine kinase inhibi-
tors [TKIs]) and immunotherapies (eg, immune
checkpoint inhibitors [ICIs], chimeric antigen re-
ceptor T cell [CAR-T] therapy).

Echocardiography in proteasome inhibitors
Proteasome inhibitors (PI), such as bortezomib
and carfilzomib, are used in the treatment of mul-
tiple myeloma and are known to cause cardiotox-
icity in the form of myocardial dysfunction and
heart failure.37 Proposed mechanisms include
interference of production of nitric oxide in the
endothelium leading to vasoconstriction and
nd Social Security de ClinicalKey.es por Elsevier en junio 28, 2022. Para 
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Table 1
Low, intermediate, and high-risk features for development of CTRCT. A patient should be groupedwith
their highest individual risk factor

Risk Factor Categories for CTRCT

Low Risk � Age 18–50 y
� Cumulative dose <200 mg/m2 doxorubicin (or equivalent)
� No preexisting or new CVD risk factorsa

� Cumulative RT dose <30 Gy without chest involvement

Intermediate Risk � Age 50–65 y
� Cumulative dose 200–400 mg/m2 doxorubicin (or equivalent)
� 1–2 preexisting or new CVD risk factorsa

� Cumulative RT dose >30 Gy without chest involvement
� Single-agent targeted therapy or immunotherapy

High Risk � Age <18 or >65 y
� Cumulative dose >400 mg/m2 doxorubicin (or equivalent)
� Any RT involving the chest
� Any combination of cardiotoxic cancer therapies, even within

same class
� >2 preexisting or new CVD risk factorsa

� Underlying CVD (CAD, HF, PAD, and so forth)
� History of CTRCT

Abbreviations: CAD, coronary artery disease; CTRCT, cancer therapy-related cardiotoxicity; CVD, cardiovascular disease;
Gy, Gray unit(s); HF, heart failure; PAD, peripheral artery disease; RT, radiation therapy.

a CVD risk factors include, but are not limited to, hypertension, insulin resistance, diabetes mellitus, smoking, obesity,
and dyslipidemia.
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inhibition of the ubiquitin-proteasome system
leading to protein misfolding and cell death. Cardi-
omyocytes are particularly vulnerable to this sec-
ond mechanism because they are
nonproliferative and express elevated proteasome
levels.38 Meta-analyses of carfilzomib and borte-
zomib showed ORs of 2.03 and 1.74, respectively,
for the development of cardiotoxicity and a cumu-
lative incidence of cardiotoxicity in nearly 10% of
those on carfilzomib.39,40 PI use is associated
with decreased GLS without change in LVEF, indi-
cating subclinical cardiac dysfunction41 and early
detection of CTRCT,38 but the amount of pub-
lished data is minimal.

Echocardiography in vascular endothelial
growth factor inhibitors
VEGF-Is are used to treat a variety of malignancies
by inhibiting tumor angiogenesis. Numerous
VEGF-Is are cardiotoxic, causing hypertension
and myocardial dysfunction.42 Hypertension is
thought to be driven via inhibition of endothelial ni-
tric oxide production. The myocardial dysfunction
is less well understood but thought to include a
multitude of effects leading to inhibition of cardio-
protective cellular mechanisms, coronary micro-
vasculature destabilization, and decreased
density of myocardial capillaries.43 Although
LVEF effects have been inconsistent, STE moni-
toring in patients receiving various VEGF-Is
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showed significant decrease in GLS from baseline
both during treatment44 and up to 6 months
following treatment.45,46

Echocardiography in tyrosine kinase inhibitors
TKIs are a diverse group of agents that target TK
molecules in various cellular functions. By target-
ing specific pathways, TKIs can be tailored for
specific types of malignancies. Because TKs are
so widely used in cellular biology, there is much
cross-reactivity with other TKs leading to “off
target” effects, including cardiotoxicity in the
form of cardiomyopathy and heart failure.47,48

Sunitinib and pazopanib, VEGF-Is acting via the
TKI mechanism, are associated with myocardial
dysfunction and demonstrate significant decrease
in GLS.45 Newer generation Bcr-abl-targeting TKIs
cause significantly lower GLS compared with first
generation, but the absolute value difference is
minimal with no comparison to baseline, limiting
the clinical relevance of this finding.49 Another
subset of TKIs, B-Raf proto-oncogene (BRAF),
and mitogen-activated protein kinase kinase
(MEK) inhibitors, are used in the treatment of mel-
anoma and are known to be cardiotoxic, most
commonly in the form of LVEF reduction (seen in
13% of patients50) and hypertension. Combination
BRAF/MEK therapy poses higher risk for LVEF
reduction, hypertension, and thromboembolic
phenomena compared with BRAF therapy
ial Security de ClinicalKey.es por Elsevier en junio 28, 2022. Para 
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alone.51,52 In TKI CTRCT, heart failure tends to
present in the first 6 months of therapy. However,
no published studies address predictive value of
GLS or other parameters.

Echocardiography in immunotherapies
Immunotherapies such as ICIs and CAR-T therapy
are used in a wide range of cancers. ICIs work by
targeting molecules that inhibit immune destruc-
tion by T-cells. Not surprisingly, this general
approach can lead to unintended inflammatory
cascade throughout the body, including cardiac
manifestations53 such as myocarditis, pericarditis,
arrhythmia, cardiomyopathy, or myocardial
ischemia. The most apparent risk factor for ICI-
cardiotoxicity is combination therapy with another
cardiotoxic agent (including another ICI).54 With
increasing recognition of the immune phenomena
associated with immunotherapy, retrospective
studies estimate myocarditis occurs in up to 1%
of patients taking ICIs.55–57 In patients that
develop ICI myocarditis, GLS is reduced even if
LVEF is not and is associated with future major
adverse cardiac events (MACE).58 There is evi-
dence of STE-detected RV dysfunction that corre-
lates with duration of ICI use, suggesting a role in
CTRCT monitoring.59

In contrast to ICIs, CAR-T therapy works by us-
ing T cells that have been harvested from the host,
reprogramming them to target tumor cells, and
reintroducing them into the host. CAR-T cardio-
toxicity manifests primarily as arrhythmia, cardio-
myopathy, or ischemic events. LVEF reduction
has been demonstrated in 5% to 10% of patients
on CAR-T therapy.60–62 To our knowledge, there
are no published studies evaluating strain imaging
in patients receiving CAR-T therapy. Thus, the rate
of cardiac toxicity is likely underestimated.

Echocardiography in radiation therapy
Radiation has long been used as a cancer therapy.
Cardiotoxicity arises from direct cellular damage
of the myocardium and endothelial tissue of the
heart and vasculature within the field of radiation.
Cardiotoxicity can manifest as hypertension, coro-
nary artery disease (CAD), valvular disease, peri-
carditis, myocarditis, cardiomyopathy, or
arrhythmia.63 Cardiotoxicity risk is increased in pa-
tients with total exposure of greater than 15 Gy
and increases with increasing doses.64 Strain im-
aging, GLS mostly, has been used to evaluate
CTRCT following radiotherapy (RT) to the chest.
Numerous studies show subclinical cardiac
dysfunction after initiation of chest RT (in the
absence of other cardiotoxic therapies) for the
treatment of breast cancer in both acute and
follow-up periods of up to 3 years.65–71 Higher
Descargado para Anonymous User (n/a) en National Library of Health a
uso personal exclusivamente. No se permiten otros usos sin autoriza
radiation doses66–68,70,71 and left-sided breast ra-
diation67,68 are associated with larger decreases
in GLS. The apical region72 and subendocardial re-
gion of the heart receiving the most radiation65

have demonstrated earlier detection of strain
reduction, suggesting higher sensitivity for the
detection of CTRCT by assessing these regions.

3D Echocardiography

3D echocardiography is a modality that has
emerging potential in cardio-oncology. Although
not as ubiquitous as 2D echocardiography, it of-
fers superior capability in the assessment of
LVEF,4,73 providing values that agree with
CMR.74 Compared with 2D echocardiography,
3D echocardiography offers more reproducible
LVEF,10 faster and earlier strain assessment,75,76

andmore detailed structural and anatomic charac-
teristics of cardiac masses.

Echocardiography and Cardiac Masses

Echocardiography plays a pivotal role in the detec-
tion and diagnosis of cardiac masses. Although
rare, neoplastic cardiac masses carry significant
morbidity and mortality.77 Benign cardiac tumors
are more common than malignant ones. Metasta-
tic cardiac tumors, seen in 10% to 12% of patients
with a known primary cancer,78 are more common
than primary cardiac malignancy. 2D echocardi-
ography can delineate cardiac masses and certain
characteristics (size, shape, mobility, relative den-
sity, associated effusions) quite well for initial eval-
uation (Fig. 2, Panel A). However, there is limited
ability to distinguish right-sided masses, left atrial
(LA) appendage masses, extracardiac masses, tis-
sue characteristics, and type of mass.79 3D echo-
cardiography better evaluates size and anatomic
associations of cardiac masses, adding benefit in
surgical planning.76 Perfusion contrast with 2D
echocardiography enhances diagnostic utility
and has sensitivity and specificity of 93% to
100% in differentiating thrombi versus benign tu-
mor versus malignant tumor.80–82 Transesopha-
geal echocardiography (TEE) has shown high
diagnostic accuracy82 with better anatomic reso-
lution of right-sided and posterior structures,83

but it is an invasive procedure associated with
risks including those of sedation and expense.

Echocardiography in Tamponade and
Pericardiocentesis

Pericardial effusions can be due to infection, auto-
immune inflammation, direct effect of malignancy,
adverse effect of cancer therapy (radiation-
induced pericardial disease, ICI inflammation,
volume overload), postsurgical, or idiopathic.
nd Social Security de ClinicalKey.es por Elsevier en junio 28, 2022. Para 
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Fig. 2. (A) Mass identified in the RV outflow tract on echocardiography. Suspected to be a metastatic lesion from
an unknown primary source. (B) Two masses identified on CMR (horizontal long axis view). The LV mass is a met-
astatic melanoma. The RA mass is a thrombus. (C) One RV mass on CMR (short axis view), diagnosed as metastatic
melanoma with surrounding thrombus. (D) One LV mass identified on CMR (vertical long axis view), diagnosed as
a poorly differentiated synovial sarcoma.
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Pericardial effusions are readily identified on tradi-
tional 2D echocardiography, although may require
multiple views if the effusion is loculated. If poste-
rior, TEE may be required to adequately view the
effusion. Pericardiocentesis, drainage of a pericar-
dial effusion, is generally indicated for asymptom-
atic and large effusions, hemodynamically
significant effusions (ie, impending or active tam-
ponade), or fluid biopsy to aid diagnosis. Although
overt tamponade implies active hemodynamic
consequences such as hypotension, tachycardia,
dyspnea, or pulsus paradoxus from compression
of the heart, effusions at high risk for developing
tamponade cannot be readily identified on phys-
ical examination alone. Echocardiography, viewed
as the gold-standard for diagnosis, can identify
signs of compression before the presence of
symptoms. These include RA or RV collapse dur-
ing diastole, abnormal septal motion indicating
interventricular dependence, dilated inferior vena
cava without inspiratory collapse, swinging heart,
escargado para Anonymous User (n/a) en National Library of Health and Soc
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or decreased mitral early filling velocity on
doppler.84 Echocardiography-guided pericardio-
centesis, which has been used for decades, is
safe and effective in patients with cancer and
should be used before surgical drainage when
possible.85–87
Echocardiography in Cardiac Amyloidosis

Cardiac amyloidosis is a group of conditions that
result in the infiltration and expansion of myocar-
dial extracellular space with amyloid protein de-
posits. Although various proteins can misfold and
deposit, amyloid from transthyretin (ATTR) and
amyloid from immunoglobulin light chains (AL) ac-
count for 95% of cases. Cardiac amyloidosis usu-
ally manifests clinically as heart failure (preserved
ejection fraction more often than reduced ejection
fraction), restrictive cardiomyopathy, and dys-
rhythmias. Typical 2D echocardiographic findings
include ventricular wall hypertrophy (concentric
ial Security de ClinicalKey.es por Elsevier en junio 28, 2022. Para 
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more common in AL, asymmetric more common in
ATTR), diastolic and/or systolic dysfunction,
restrictive LV filling, biatrial enlargement, valvular
thickening, and a “sparkling” texture of the
myocardium.9,88 Two-dimensional STE often re-
veals a characteristic pattern of reduced GLS
with apical sparing, due to segmental differences
in total amyloid mass distribution,89 with a re-
ported sensitivity of 93% and specificity of 82%
for cardiac amyloidosis when compared with LV
hypertrophy controls.90 The combination of GLS
values with apical sparing and serum T-troponin
offers better sensitivity and specificity.91 One
recent study92 found a GLS/Ejection Fraction
(EF) ratio greater than 4.1 to be a strong predictor
of cardiac amyloidosis, with an OR of 35.57.
Although echocardiography is the universal initial
imaging modality when suspicious for cardiac
amyloidosis, it cannot reliably distinguish between
amyloidosis and other causes of hypertrophy.
Thus, echocardiography alone is not sufficient for
diagnosis.
Practical Use of Echocardiography in Everyday
Clinical Practice

Each institution and case will have varying proto-
cols for which views and data are obtained on
echocardiogram. The following has been sug-
gested for comprehensive initial echocardio-
graphic assessment in screening for CTRCT: 2D
LVEF via Simpson biplane method or 3D LVEF,
2D or 3D GLS, 2D or 3D LV systolic volume, RV
function markers (such as tricuspid annular plane
systolic excursion, RV fractional area change, RV
ejection fraction [RVEF], RV free wall strain), veloc-
ity of tricuspid regurgitation.9 Suggested echocar-
diographic surveillance protocols for patients on
anthracycline therapy and trastuzumab therapy
can be found in Fig. 3 and Fig. 4, respectively.
Suggested echocardiographic surveillance proto-
cols for patients on radiation therapy, targeted
therapy, or immunotherapy can be found in Ta-
ble 2. Recommendations for targeted therapies
and immunotherapy are less defined due to the
relative dearth of data in novel agents. Individual
risk assessment and joint decision making is para-
mount in developing a patient-centered screening
plan. Regardless of therapy, baseline echocardi-
ography before initiation of therapy should be ob-
tained in all intermediate and high-risk patients
and can be considered in low-risk patients. Addi-
tionally, any time there are signs or symptoms of
cardiotoxicity, echocardiography should be ob-
tained, and referral to a cardio-oncologist should
be considered.
Descargado para Anonymous User (n/a) en National Library of Health a
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Cardiac MRI

Cardiac MRI and left ventricular ejection
fraction
Although CMR is not deployed for routine
screening in cardio-oncology, it offers superior
imaging in tissue characterization, volume as-
sessments, spatial resolution, and potentially
strain imaging. Fig. 1 illustrates the relative utility
of CMR in various parameters. CMR can investi-
gate most adverse cardiac effects from cancer
therapies and allows the specific assessment of
RV and LV function, ventricular and atrial vol-
umes, ventricular and LA deformation, myocardial
mass, pericardial disease, fibrosis, infiltrative tis-
sue, edema, and inflammation.9,93 Measurement
of LVEF is considered the gold standard due to
excellent accuracy and precision.6,94 CMR is
used for LVEF measurement when there are
poor echocardiographic windows or echocardi-
ography is equivocal or unreliable. Given the
poor agreement of 2D echocardiography with
CMR-derived LVEF, CMR should be used any
time highly accurate LVEF quantification is
needed, especially if 3D echocardiography is not
available.5,95
Cardiac MRI strain imaging
Similar to echocardiography, CMR-derived LVEF
lacks the sensitivity to detect early myocardial
dysfunction in CTRCT. Cardiac deformation quan-
tification via strain imaging techniques is available
in some clinical CMR laboratories and is useful in
detection of subclinical myocardial dysfunction.
Techniques include CMR reference tagging,
phase velocity mapping, displacement encoding
with stimulated echoes, strain encoded (SENC)
imaging (Fig. 5), and feature tracking (FT). CMR
reference tagging is the most validated and
considered gold standard for CMR strain imaging;
however, CMR-FT is gaining traction due to ease
of clinical use.93,96,97 Analogous to STE but with
better resolution,98 CMR-FT is a postacquisition
processing method that can be applied to images
obtained for LVEF assessment, requiring no addi-
tional scanner time.96 CMR-FT shows good repro-
ducibility in global strain measurements, provided
the same software package is used.99,100 The po-
tential for early detection and prognostication in
CTRCT by CMR strain has been demonstrated in
patients receiving various cardiotoxic chemother-
apies,101,102 and is discussed further below.
CMR-FT has even shown promise in evaluation
of LA strain, which, along with MRI measured LA
volume, could represent an important marker for
potential development of atrial arrhythmias and
clot formation.98,103
nd Social Security de ClinicalKey.es por Elsevier en junio 28, 2022. Para 
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Fig. 3. Suggested echocardiographic surveillance protocol of cardiotoxicity in patients on anthracycline therapy.
Low risk features include age 18 to 50 years, cumulative dose less than 200 mg/m2 doxorubicin (or equivalent), no
preexisting or new CVD risk factors. Intermediate features include age 50 to 65 years, cumulative dose 200 to
400 mg/m2 doxorubicin (or equivalent), 1 to 2 preexisting or new CVD risk factors. High-risk features include
age less than 18 or greater than 65 years, cumulative dose greater than 400 mg/m2 doxorubicin (or equivalent),
any combination of cardiotoxic cancer therapies, underlying CVD, history of CTRCT. CAD, coronary artery disease;
CMR, cardiovascular magnetic resonance imaging; CTRCT, cancer therapy-related cardiotoxicity; CVD, cardiovas-
cular disease; Echo, echocardiography; mo, month.
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Cardiac MRI T1 and T2 mapping
T1-weighted imaging (Fig. 6) reflects the inherent
intracellular and extracellular makeup of tissue.
Unitless values of intensity (compared with a refer-
ence “region of interest” within the same image)
are assigned to each pixel but are only compara-
ble within the same image. T1 is lengthened
(brightened) by water, edema, and inflammation;
it is shortened (darkened) by iron, fat, and
contrast.104 T1 mapping is a relatively new CMR
application that allows for creation of color maps,
where each colored pixel represents a quantified,
parametric, tissue-specific T1 value of the corre-
sponding voxel that is comparable across im-
ages.105 This allows sensitive detection of subtle
T1 changes within the myocardium, often repre-
senting early stages of disease. T1 mapping reli-
ably distinguishes regional and diffuse fibrosis
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(scar),106 edema,107 and infarction.108 It has shown
promise in detecting numerous cardiac disease
states.98,109,110 Late gadolinium enhancement
(LGE; see Fig. 6), conversely, only visualizes
regional fibrosis well.98 T1 mapping solves this lim-
itation while providing a contrast-free alternative
for fibrosis detection. T1 mapping is primarily
used for evaluation of the LV, but there are se-
quences that can evaluate fibrosis of the LA, with
possible application in cancer therapies causing
atrial arrhythmias.111 Contrast T1 imaging is use-
ful, however, in quantifying extracellular volume
(ECV), which correlates histologically112 with the
excess collagen deposition of fibrosis.
T2-weighted imaging (see Fig. 6), like T1, is

reflective of the intracellular and extracellular
makeup of tissue. T2 time is increased by free wa-
ter and most helpful in distinguishing edema and
ial Security de ClinicalKey.es por Elsevier en junio 28, 2022. Para 
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Table 2
Suggested echocardiographic and CMR surveillance protocols of cardiotoxicity for patients
undergoing targeted therapy, immunotherapy, or radiation therapy

Suggested Clinical Imaging Surveillance Protocols for CTRCT in Various Cancer Therapies

Class Echocardiography Cardiac MRI

All classes � Consider baseline for all in-
termediate and high risk
patients before initiation of
therapy

� Any time there are signs or
symptoms concerning for
possible CTRCT

� Consider with abnormal
echo or poor visualization

� Consider if clinical suspicion
for CTRCT persists despite
normal/equivocal echo

� Unexplained CVD

PI � Periodically if history of
other cardiotoxic cancer
therapy, personal CVD or
risk factors, or specifically
taking carfilzomib

� Consider with abnormal
echo or poor windows/
visualization

� Unexplained CVD

VEGF-I and TKI (including
BRAF, MEK, and VEGF
inhibitors with TKI
mechanism)

� High risk patients on TKI:
consider screening Echo
every 1–3 mo during
therapy

� Intermediate risk patients
on TKI: consider every 6–
12 mo during therapy

� Intermediate or greater risk
of CAD before initiation of
TKI: consider stress echo

� All patients on VEGF-I, high
risk in particular: consider
echo every 3–6 mo during
therapy

� High-risk patients on com-
bination BRAF/MEK ther-
apy: consider echo every 1–
3 mo during therapy

� Low or intermediate risk
patients on BRAF or BRAF/
MEK therapy: consider echo
at 6 mo, then every 6–12 mo
while on therapy

� Low threshold to move to
CMR after echo

� With any cardiac symptoms,
suspicious elevation in
troponin, or ECG change

� Consider if concern for
ischemic cardiotoxicity

� Unexplained CVD

Immunotherapies (ex. ICIs,
CAR-T cell therapies,
allogeneic stem
transplantation)

� High risk or taking other
cardiotoxic therapy
(including 2nd ICI): serial
echo reasonable

� In high risk patients, first
echo should be obtained
within 1-2 months after
initiation of therapy

� If LV function abnormal
prior to initiation of ICI,
every 3-6 months for dura-
tion of therapy

� Consider anytime screening
ECG or serum biomarkers
are abnormal

� Low threshold to move to
CMR after echo

� With any cardiac symptoms,
suspicious elevation in
troponin, or ECG change

� Consider if concern for
ischemic cardiotoxicity

� Unexplained CVD

(continued on next page)
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Table 2
(continued )

Suggested Clinical Imaging Surveillance Protocols for CTRCT in Various Cancer Therapies

Class Echocardiography Cardiac MRI

RT � High-risk patients: 1–2 y af-
ter completion of therapy
and every 5–10 y following

� Intermediate risk or lower:
every 5–10 y after therapy
completion

� If concern for radiation-
induced myocardial or
pericardial disease despite
normal or equivocal echo

� Unexplained CVD

Abbreviations: BRAF, B-Raf proto-oncogene; CAD, coronary artery disease; CAR-T, chimeric antigen T-cell therapy; CMR,
cardiovascular magnetic resonance imaging; CTRCT, cancer therapy-related cardiotoxicity; CVD, cardiovascular disease;
ECG, electrocardiogram; Echo, echocardiography; ICI, immune checkpoint inhibitor; LV, left ventricular; MEK, mitogen-
activated protein kinase kinase; mo, month; RV, right ventricular; TKI, tyrosine kinase inhibitor; VEGF-I, vascular endothe-
lial growth factor inhibitor; y, year.
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inflammation, proving to be comparable to Lake
Louise criteria for diagnosis of myocarditis.113 T2
mapping can now be created, just as T1 mapping
can,104 with good reproducibility.114 However, it
has not been as thoroughly studied in CTRCT as
has T1 mapping.
Fig. 4. Suggested echocardiographic surveillance protocol
Low risk features include age 18 to 50 years, no preexisting
age 50 to 65 years, 1 to 2 preexisting or new CVD risk f
greater than 65 years, any combination of cardiotoxic
CAD, coronary artery disease; CMR, cardiovascular magne
cardiotoxicity; CVD, cardiovascular disease; Echo, echocard
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Cardiac MRI in anthracyclines
Anthracycline cardiotoxicity is characterized by
myocardial dysfunction that in its most severe pre-
sentation manifests as heart failure with reduced
ejection.28 Although CMR is more sensitive and ac-
curate in LVEF assessment than echocardiography,
of cardiotoxicity in patients on trastuzumab therapy.
or new CVD risk factors. Intermediate features include
actors. High-risk features include age less than 18 or
cancer therapies, underlying CVD, history of CTRCT.
tic resonance imaging; CTRCT, cancer therapy-related
iography; mo, month.
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Fig. 5. (A) Representative screenshot of CMR (SENC) image in short axis view with overlying endocardial (yellow)
and epicardial (green) borders. (B) MyoStrain LV and RV longitudinal strain with corresponding heat map, and
absolute values of each individual segment. (C) MyoStrain LV and RV circumferential strain with corresponding
heat map, and absolute values of each individual segment. CMR, cardiovascular magnetic resonance imaging;
LV, left ventricular; RV, right ventricular; SENC, strain encoded.
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it is not sensitive enough for CTRCT screening.109

CMR strain imaging, while not as extensively stud-
ied or as readily available as echocardiographic
strain imaging, shows a similar promise in early
detection and prediction of CTRCT96 via both sys-
tolic115–119 and diastolic120measurements. Because
anthracycline CTRCT is characterized by diffuse
fibrosis,31 LGE is seen in just 6% of patients.121

Numerous studies have demonstrated that T1 map-
ping and ECV quantification detect fibrosis after
anthracycline therapy, representing an avenue for
early diagnosis of CTRCT.118,122–125 One prospec-
tive study118 showed elevated T1 and T2 mapping
values in patients on anthracycline therapy
compared with controls 3 months after therapy initi-
ation but only elevated T1 more than 12 months af-
ter therapy initiation. This suggests that initial
edema/inflammation eventually progresses to
fibrosis. The authors created criteria for detection
of cardiotoxicity in these patients, which led to
Fig. 6. Representative images of (A) late gadolinium enhan
myocardial native T2 in a patient with suspected targeted
diac magnetic resonance imaging. Red arrows in panels (B
tively; the pink outline in panel (B) denotes a region of in
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diagnostic accuracy of 84% for detection of CTRCT,
outperforming both GLS and troponin alone. More
studies are needed to elucidate ideal threshold
values for optimum diagnostic and prognostic abil-
ity. Published data on T2mapping in anthracyclines,
although minimal, shows early edema and inflam-
mation118,126 after administration, indicating early
signs of CTRCT, with excellent sensitivity.127 There
is encouraging data for the utility of T2 mapping in
CTRCT in various animal models,128–130 but human
studies remain relatively sparse. Other CMR-derived
measurements have been studied in anthracycline
use. LA enlargement has been associated with
increasing anthracycline doses, potentially offering
a marker of diastolic dysfunction.131 Decrease in
myocardial mass after anthracycline therapy has
been repeatedly demonstrated,95,121,132,133 which
is associated with increased risk of MACE121 and
HF symptoms.133
cement, and elevated (B) myocardial native T1, and (C)
cancer therapy (TKI) cardiotoxicity, as visualized by car-
) and (C) indicate areas of elevated T1 and T2, respec-
terest (ROI) in the septum.
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Cardiac MRI in HER2/Neu therapy
CMR strain parameters have shown promising abil-
ity to predict the development of CTRCT in patients
on trastuzumab therapy. One prospective study
demonstrated that a 15% relative decrease in
tagged-CMR GLS, tagged-CMR global circumfer-
ential strain (GCS), and CMR-FT correspond to
increased odds of CTRCT of 47%, 50%, and 87%,
respectively.134 Multiple other studies have shown
a decrease in variousCMR-measured strain param-
eters, often with persistence up to 12 months. Re-
covery by 18 months is frequently seen,
highlighting the reversibility of trastuzumab cardio-
toxicity.135–137Diastolic function has beenassessed
with both strain and LV diastolic filling rates, but
these data are inconsistent.137,138 CMR evaluation
of LGE highlights a key difference in the pathogen-
esis of trastuzumab from anthracyclines. Although
LGE is uncommon in anthracycline cardiotoxicity
due to diffuse fibrosis, LV lateral wall LGE enhance-
ment is seen in 94% to 100%139,140 of patients
treated with trastuzumab who had reduced LVEF.
Thisparallels theknowledge that trastuzumabcardi-
otoxicity primarily affects the LV. There is CMR evi-
dence to add to echocardiographic evidence34

that RV myocardial dysfunction is also seen,
althoughmoresubtle thanLVdysfunction.141Animal
studies show increasedT1andT2values in subjects
receiving trastuzumab with eventual recov-
ery.142–144 Human data show similar findings,145

but clinical utility in early detection and prediction
ofCTRCT is limiteddue to temporal variability.101,146

Cardiac MRI in proteasome inhibitors
Case reports represent the bulk of literature
covering the heterogeneous CMR findings in PI
cardiotoxicity. Fibrosis indicated by LGE is the
most common finding, seen mostly at the basal
and inferior portions of the septum.147–149

Conversely, 2 patients receiving both carfilzomib
and bortezomib developed significant but revers-
ible LVEF reduction with wall motion abnormalities
without LGE.37 The only prospective study we are
aware of studied 11 patients with CV risk factors
but no preexisting CV disease for up to 6 months
after bortezomib therapy with echocardiography
and CMR. All imaging parameters, including echo-
cardiographic GLS and CMR LGE, were
normal.150 More data is needed for proper under-
standing of CMR findings in PI-associated CTRCT.

Cardiac MRI in tyrosine kinase inhibitors and
vascular endothelial growth factor inhibitors
There is scant published data on CMR findings in
VEGF-Is and TKIs, mostly in the form of case re-
ports. Many overlap as they involve TKIs that
inhibit VEGF pathways. One prospective study
escargado para Anonymous User (n/a) en National Library of Health and Soc
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evaluated cardiotoxicity of 90 patients in phase I
trials of a VEGF-I monoclonal antibody, VEGF-I
TKI, or a kinesin inhibitor.151 Out of 90 patients,
10 developed cardiotoxicity. Of these 10 patients,
2 were taking the VEGF-I TKI and 6 were taking
the VEGF-I monoclonal antibody. The only patient
with a reduced EF was taking the VEGF-I TKI.
None of the 10 patients had LGE on CMR. One
case report of sunitinib-induced cardiomyopathy
included CMR evaluation that showed no LGE
or resting perfusion defects.152 We are not aware
of any published data pertaining to CMR strain,
T1 mapping, or T2 mapping in relation to cardio-
toxicity of TKIs or VEGF-Is. Because of the pro-
pensity of some TKIs to invoke atrial
arrhythmias, such as ibrutinib, LA evaluation
with LGE, T1 and T2 mapping, and CMR strain
could be beneficial and warrants further study.
Hypertension and vascular effects of therapies
that inhibit VEGF pathways make CAD and
myocardial ischemia an important adverse effect
to monitor for. Along with stress and perfusion im-
aging, CMR offers techniques with the ability to
quantify myocardial viability.6,98

Cardiac MRI in immunotherapy
CMR is the gold-standard noninvasive diagnostic
tool formyocarditis, themost important cardiotoxic
effect of immunotherapy. The Lake Louise Criteria
(LLC), introduced in 2009 for the diagnosis of non-
ICI myocarditis, require clinical suspicion of
myocarditis plus 2 of the following: regional or
global myocardial increase in T2-weighted images,
increased global myocardial early T1 gadolinium
enhancement, or� 1 focal lesion with nonischemic
regional LGE.153 The emergence of T1 andT2map-
ping and ECV quantification has outdated the orig-
inal criteria, leading some groups to use modified
LLC to incorporate these parameters to increase
diagnostic accuracy.55,154,155 One study found
100% of ICI myocarditis cases met original LLC
or had abnormal T1 or T2 imaging.155 A meta-
analysis of non-ICI myocarditis patients found
nativeT1andT2mappingandECVprovidecompa-
rable diagnostic performance to LLCwith native T1
having higher sensitivity than LLC for non-ICI
myocarditis. It is important to note the underlying
inflammatory mechanisms of ICI myocarditis are
not necessarily comparable to non-ICImyocarditis.
Additionally, diagnostic specificity is challenging in
ICI myocarditis due to inherent heterogeneity,
stemming from varying levels of inflammation in
varying cardiac structures.156 This heterogeneity
is reflected in the literature in both clinical presenta-
tions and imaging findings.157–159

Reduced LVEF on CMR is not a sensitive
finding for ICI myocarditis, reported in just 39%
ial Security de ClinicalKey.es por Elsevier en junio 28, 2022. Para 
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to 50% of patients.155,158–160 Strain imaging via
CMR-FT has demonstrated significant reduction
of LV-GLS in all ICI myocarditis patients, with
even larger reduction in those with reduced
LVEF.158 Although LA strain has demonstrated
additional prognostic value when combined with
LV strain and LLC161 in non-ICI myocarditis, this
was not seen in ICI myocarditis. In ICI myocar-
ditis, LGE has been reported in 48% to 80% of
patients.56,157–159 LGE occurs in noncoronary
distributions, but location varies by case.159 Pres-
ence of LGE is an independent predictor of mor-
tality in ICI myocarditis158 but has not been
associated with MACE.159 Interestingly, in one
study,159 LGE was seen in 21.6% of patients
when CMR was obtained before day 4 of admis-
sion and 72% when obtained on or after that.
Thus, LGE prognostic value might differ depend-
ing on the timing of CMR acquisition.

Qualitative T1 and T2 lack adequate sensitivity
compared with quantitative mapping.155,158,162 A
retrospective155 study that evaluated T1 and T2
mapping in patients with ICI myocarditis found
elevated values compared with controls in 78%
and 43% of the patients, respectively. Elevated
T1 values were independently associated with
MACE and lower MACE-free survival. No patients
with normal T1 values had MACE, suggesting a
clinically important negative predictive value.
Although abnormal T2-mapping has been associ-
ated with MACE in non-ICI myocarditis,163 this is
not reflected in ICI myocarditis.155,159 Increased
ECV is also associated with MACE and death in
non-ICI myocarditis,164,165 although no published
data addresses this in ICI myocarditis.

Cardiac MRI in radiation therapy
Cardiotoxicity from RT has a wide spectrum of
manifestations, all stemming from direct macro-
vascular and microvascular damage. Literature
surrounding radiation can be difficult to interpret,
as most studies involve patients who, in addition
to RT, have received anthracyclines and/or trastu-
zumab. Radiation cardiotoxicity can lead to reduc-
tion in LVEF detectable by CMR. This is seen
transiently at 6 months with resolution at
2 years,166 and, in survivors, many years after ther-
apy.167 LA volume assessment reveals an associ-
ation between LA size and radiation dose,
suggesting a possible early marker of diastolic
dysfunction.131 CMR strain imaging for the detec-
tion of subclinical cardiac dysfunction in patients
who received radiation is not as well studied. In
one study, there is a transient decrease in CMR-
derived strain at 6 and 12 months that recovers
by 24 months.166 Other studies in humans and
rats have similar findings, but it is unclear if there
Descargado para Anonymous User (n/a) en National Library of Health a
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is a correlation between GLS reduction and radia-
tion dose.168,169 Fibrosis indicated by LGE has
been well-documented following RT; however,
studies are vastly heterogeneous, reporting LGE
incidence of 0% to 100%.168,170–173 Multiple
studies demonstrate LGE presence in areas that
received the highest radiation doses.170,172,173

Studies of T1 mapping post-RT are sparse and
inconsistent. Some show elevated T1 mapping
values in areas of higher radiation,172,174 whereas
others found either no elevation of T1 values168

or no correlation with radiation dose.171 There is
minimal published data on T2 mapping post-RT.

CMR offers sensitive and detailed structural and
tissue characterization of pericardial toxicity and its
associated hemodynamic consequences. LGE of
the pericardium indicates active pericarditis,
whereas chronic constrictive pericarditis will not
enhance. CMR tagging can identify pericardial ad-
hesions. Real-time cine imaging during respiration
can reveal hemodynamic consequences of
constrictive pericarditis, such as ventricular inter-
dependence. Real-time phase contrast imaging
can be useful in detecting effects of respiration on
flow through the mitral and tricuspid valves.6,63,104

CMR can also be helpful in evaluation of valvular
pathologic conditions inducedby radiation toxicity,
generally not seen for 10 to 20 years after therapy.
CMR is particularly useful in visualizing the pulmo-
nary valve,which canbechallenging via echocardi-
ography. CAD and ischemic heart disease
secondary to radiation therapy are also assessable
by CMR via perfusion imaging and coronary artery
visualization.6,63,98,104 CMR can even play a role in
prevention of cardiotoxicity. Through various tech-
niques under investigation, CMR shows promise in
preparatory and real-time imaging to improve
safety and precision of RT175 and radiosurgery,176

reducing total radiation exposure.
Potential Role of Stress Perfusion and Other
Cardiac MRI Imaging Techniques

Numerous cancer therapies increase risk of
vascular disease, as does malignancy itself.
Contrast-enhanced myocardial stress perfusion
has excellent diagnostic performance in the detec-
tionof ischemicdisease.177However, screening via
stress-perfusion CMR without symptoms does not
provide additional benefit in cardiotoxicity diag-
nosis or management.178 Pulse wave velocity, an
MRI method of quantifying arterial stiffness, is
elevated during and after breast cancer treatment
with various anticancer therapies179,180 and could
represent a method of risk stratification. Four-
dimensional flow MRI can provide flow and pres-
sure parameters of the vasculature. Its role in risk
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stratification is still under exploration.181 Real-time
CMR has shown benefit in enhancing precision of
radiation targeting to reduce total radiation expo-
sure175,176 and increasing diagnostic yield of endo-
myocardial biopsy.182

Cardiac MRI and Cardiac Masses

Thesuperior tissuecharacterizationandspatial reso-
lutionofCMRmakes it thepreferredmethodof imag-
ing for intracardiac and pericardial masses (see
Fig. 2, Panels B-D). CMR is particularly helpful in
confirmation and further characterization when
echocardiography is not sufficient.183 Balanced
steady-state free precession (SSFP) is the primary
method for detailed anatomic description. T1-
weighted or T2-weighted double inversion recovery
imaging with or without fat saturation is useful in tis-
sue characterization of masses. Gadolinium
enhancement is helpful in assessing tumor vascu-
larity and associated myocardial fibrosis.184 CMR
performs well at distinguishing nontumors from tu-
mors and benign tumors from malignant
ones.185,186Withawider fieldof view,CMRcancatch
pericardial and extracardiac masses missed by
echocardiography. Additionally, CMR outperforms
echocardiography in predicting ultimate tumor diag-
nosis as confirmed by pathology. CMR has fewer
false positives and can eliminate the need for biopsy
by ruling out a mass seen on echocardiography.183

Cardiac MRI in Tamponade and
Pericardiocentesis

Although echocardiography is generally sufficient
to diagnose pericardial effusion and tamponade,
CMR can offer further details in the assessment
of pericardial disease. CMR can identify loculated
or posterior effusions, pericardial thickening, and
pericardial masses where echocardiography often
cannot. As described above, CMR is certainly
capable of detecting signs of tamponade6,63,104;
however, it is generally unnecessary unless echo-
cardiography is unavailable or CMR is to be ob-
tained for another reason. One of the more
helpful applications of CMR in pericardial disease
is the ability to distinguish constrictive pericarditis
(thickened pericardium, interventricular depen-
dence) from restrictive cardiomyopathy (diastolic
dysfunction, large but normally contoured atria,
thickened myocardium, normal pericar-
dium).187,188 CMR does not play a role in percuta-
neous pericardiocentesis but can aid in planning
for surgical drainage of a pericardial effusion.

Cardiac MRI in Cardiac Amyloidosis

CMR, with its fine tissue characterization, plays an
important role in cardiac amyloidosis screening,
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diagnosis, and surveillance of disease burden.
LGE is almost invariably seen in cardiac amyloid-
osis, with the typical patterns being diffuse suben-
docardial (representing earlier stages) and diffuse
transmural (representing later stages). RV LGE is
also seen ingreater than90%ofpatients. Transmu-
ral LGE is more common in ATTR than AL189 and
also carries prognostic value.190 Native T1 values
are markedly elevated in cardiac amyloid, and T1
mapping is particularly helpful when amyloid renal
disease precludes the use of gadolinium.162 ECV
quantification is a valuable tool given the underlying
pathologic mechanisms of amyloidosis.191 ECV
values are markedly elevated in cardiac amyloid-
osis, often indicating greater than 40% ECV. Serial
measurement of ECV is reliable,192 prognostic,193

and indicates disease progression or response to
therapy.194–196 T2 mapping, of which there is little
published data in regards to amyloid, shows higher
values in amyloidosis compared with controls.
However, there is little difference in AL and
ATTR.197 Although LGE, T1 mapping, and ECV all
provide valuable roles in cardiac amyloidosis, a
recent meta-analysis suggests that ECV provides
the highest diagnostic and prognostic capability
of the 3.198 Regardless, all should be included in
any cardiac amyloidosis evaluation.
Practical Use of Cardiac MRI in Everyday
Clinical Practice

Guidelines do not recommend routine screening
for CTRCT via CMR unless echocardiography is
not feasible due to poor windows or CMR is
needed for other indications.5 Additionally, if echo-
cardiography is normal or equivocal, but clinical
suspicion for cardiotoxicity remains high, CMR
should be obtained. CMR protocols for CTRCT
evaluation differ between institutions and individ-
ual cases. Commonly used sequences include
cine balanced SSFP, strain imaging through
myocardial tagging or other methods, phase
contrast flow, native T1 and T2 sequences with
respective parametric mapping, postcontrast T1
ECV mapping, first pass arterial perfusion, inver-
sion recovery, and 4D flow.93,199 Suggested
CMR surveillance protocols for patients on anthra-
cyclines and trastuzumab can be found in Figs. 3
and 4, respectively. Suggested CMR surveillance
protocols for patients on radiation therapy, tar-
geted therapy, and immunotherapy can be found
in Table 2. Again, individual risk assessment and
joint decision-making is a crucial part in devel-
oping a patient-centered surveillance plan. Pa-
tients should be referred to a cardio-oncologist
any time there are signs or symptoms of
cardiotoxicity.
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� When using echocardiography to measure
LVEF, remember there is limited precision.
Values can vary up to 10% between studies.

� A normal EF does not rule out the possibility
of CTRCT.

� When interpreting deformation values,
remember that threshold numbers and strict
normal ranges have not been widely agreed
upon. Relative change from baseline is a bet-
ter datapoint to follow.

� Multidisciplinary clinics can minimize patient
stress, enhance communication, and increase
patient access to guideline and evidence-
based screening/treatment.

� Echocardiography alone is not sufficient to
diagnose myocarditis. CMR should be ob-
tained anytime there is a question of
myocarditis.

� Normal EF and lack of LGE do not rule out
myocarditis.

� Although appropriate surveillance practices
allow us to catch and treat CTRCT early, opti-
mizing modifiable risk factors (diet, exercise,
smoking, hypertension, and so forth) is
equally important.

� Educating patients on signs and symptoms of
CTRCT is important for patient empowerment
and home monitoring of symptoms.

� Consult with an imaging or cardio-oncology
specialist before obtaining echocardiography
and/or CMR to ensure all needed parameters/
sequences are acquired. This can prevent
repeated scans and optimize available clinical
data.

Cardiovascular Imaging in Cardio-Oncology 469
Future Directions and Ongoing Clinical Trials

Cardio-oncology has seen a boom in research
during the past 10 years. The more we learn, the
more our gaps in knowledge become evident.
Strain imaging via echocardiography represents
our best early imaging biomarker for CTRCT,
and the addition of serum biomarkers can in-
crease diagnostic and prognostic value. Most of
the available data, however, are in observational
studies of patients exposed to anthracyclines,
trastuzumab, or radiation. More prospective
studies with larger cohorts are needed in patients
exposed to all groups of cardiotoxic cancer ther-
apies, especially novel therapies. The LATER
CARDS study will provide a large prospective
dataset of echocardiographic findings and serum
biomarkers in the understudied pediatric
population.200

CMR, although offering better imaging sensi-
tivity and specificity for most cardiac pathologic
conditions, is more difficult to clinically implement
and has not been as robustly studied as echocar-
diography. Future research should aim for larger,
prospective studies evaluating traditional and
emerging CMR protocols. Patients on targeted
and immunotherapies are understudied compared
with anthracyclines, trastuzumab, and radiation
and should be a major focus of research as well.
The CARTIER study is a prospective study of
elderly patients on cardiotoxic chemotherapy
who will receive serial CMR before each cycle of
treatment and with follow-up after treatment
completion.127 The CareBest prospective study,
currently underway, will enroll greater than 2000
patients with breast cancer and study various
CMR parameters in a short CMR protocol201. Simi-
larly, other CMR-based trials across various can-
cer drug-classes are underway, which should
illuminate the role of trackable subclinical disease
in the development of limiting CVD.

Machine learning is a growing research tool with
much potential in cardio-oncology. It allows for
identification of similar groups buried within the
noise of highly heterogenous populations. Ma-
chine learning has been used to identify potentially
cardioprotective variants in cardiac injury pathway
genes among pediatric cancer survivors with
anthracycline-induced CTRCT202. It has also
been used to identify unique asymptomatic
diastolic dysfunction phenotypes based on echo-
cardiographic parameters, each with distinct
long-term outcome risks.203 It is natural to foresee
the incredible value of machine learning to sift and
organize the vast amount of hard data collected
with echocardiography and CMR into clinically
useful CTRCT prediction tools6. Some
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combination of serum biomarkers and echocar-
diographic strain parameters is the intuitive place
to start given our current knowledge.

Finally, research should also focus on our ability
to implement CTRCT screening protocols. Only
30% to 40% of patients receive optimal screening
via echocardiography.204 Implementing user-
friendly guidelines and clinical tools, development
of dedicated cardio-oncology programs andmulti-
disciplinary clinics, improved patient and provider
education of CTRCT, and development of quicker
and cheaper imaging protocols could increase pa-
tient participation in CTRCT screening. Continued
improvement of CTRCT screening protocols has
the potential to positively impact survival and out-
comes in the ever-growing population of patients
with cancer.
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