
Artif icial Intel l igence in
Pathomics and Genomics

of Renal Cell Carcinoma

J. Everett Knudsen, BSE, Joseph M. Rich, BS, Runzhuo Ma, MD*
KEYWORDS

� Genomics � Pathomics � Artificial intelligence � Machine learning � Kidney neoplasms

KEY POINTS

� Artificial intelligence (AI) models, using techniques such as convolutional neural networks and logis-
tic regressions, have shown promise in renal cell carcinoma diagnosis, grading, and subtyping.

� AI has outperformed traditional methods in identifying kidney cancer biomarkers and subtype clas-
sification, particularly in clear cell renal cell carcinoma.

� Despite progress, challenges remain, including the need for consensus on best practices, compu-
tational power for large-scale models, and the creation of a ground-truth training set for model
development.
INTRODUCTION the likelihood of patient survival. Luckily, clinical
Broadly defined, artificial intelligence (AI) is the
ability of a computer to model some form of human
interaction. AI as a concept can be traced as far
back as third-century China with the invention of
a humanlike machine that seemed as if it was
meant to perform simple humanlike tasks.1 Since
the 1950s, AI has progressed at a blinding speed,
as human innovation in the world of computers has
skyrocketed. From social media to finance to soci-
ology, AI has left a marked and profound impact
on society. In the field of urology, AI (to its broadest
definition) is in practice every day as surgeons
perform prostatectomies and nephrectomies with
surgical robots, but AI is also finding a home in
the diagnosis, grading, treatment, and survival
predictability of cancer.1 In the United States
alone, there were an estimated 81,800 cases of
renal cell carcinoma (RCC), resulting in approxi-
mately 15,000 deaths.2 On identification of a renal
mass, physicians need accurate, reliable methods
for determining tumor subtype, grade, stage,
responsiveness to pharmaceutical treatment, and
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applications of AI have resulted in the inception
of genomics and pathomics—2 fields with broad,
impactful applications in the diagnosis and treat-
ment of RCC.

Genomics and pathomics arose when machine
learning (ML) algorithms were applied to gene
expression patterns and pathology images,
respectively. Genomics can be broadly defined
as the application of ML to expressions of genes
and proteins within cells of interest. Useful out-
comes of genomics include specific phenotype
or genotype identification, patient stratification us-
ing ML-pinpointed biomarkers, understanding
gene function, and mapping the temporal
biochemical significance of gene expression over
time.3 Genomics in RCC is usually leveraged at a
preoperative or postoperative time point to help
physicians tailor treatment options or plan for up-
coming surgeries. In a similar vein, pathomics
emerged when AI and ML were applied to digital
pathology images. Images are more than just vi-
sual objects—they can be quantified using color
scales and filtered to generate numerically
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Knudsen et al48
determinate edge patterns. Similarly to gene
expression data, quantified images can be fed
into ML algorithms to predict patterns of interest.
Pathomics can be thought of as computers
learning to recognize patterns from whole-slide
pathology images and then making useful predic-
tions after viewing novel images.4 The following re-
view seeks to outline the progress and
applications of genomics and pathomics in RCC.
ARTIFICIAL INTELLIGENCE IN RENAL CELL
CARCINOMA PATHOMICS

Pathomics is the application of ML algorithms to
digital pathology slides in order to extract patterns
and understand relationships that might not be
readily evident to human pathologists. Over the
last few decades, computer hardware and soft-
ware have become faster, more efficient, and
capable of storing large volumes of digital informa-
tion. Applied to the world of pathology, this means
pathologists can now digitize whole-slide images
(WSIs) and store them for later use. When digi-
tized, images represent a wealth of quantifiable
data in the form of color values, edge detection,
pixel intensity, morphology, topology, and much
more. Such information can then be fed into ML al-
gorithms to assist pathologists in diagnosing and
subtyping various clinical conditions4 (Fig. 1).
Pathomics specific to RCC includes determining
specific subtypes, assigning a Furman grade to tu-
mors, providing cancer staging for patients, and
predicting survival outcomes in patients diag-
nosed with RCC (5Table 1).
Various models have been developed that seek

to shed light on the aforementioned categories. A
large number of these models are considered
Fig. 1. The common process of using AI in pathomics.
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convolutional neural networks (CNNs), which, at
their core, are multilayered data processing pipe-
lines that allow computers to extract features
from images.5 Computer vision is the most
commonly used AI modeling approach in patho-
mics because it allows computers to detect pat-
terns of interest from image data. The differences
between CNNs lie in the number of layers avail-
able, the sharing of information between layers,
and the overall efficiency of the CNN itself.6

Classic supervised models such as Random For-
ests (RFs), support-vector networks (SVNs), and
logistical regressions have also been developed
for use in pathomics. These models are reliant on
human-labeled ground-truth examples.1 RF
models improve feature selection by allowing for
further building of expandable decision trees in
subspaces.7 SVNs have also been developed for
WSI image classification. These are more
simplistic models that map nonlinear data onto a
linear feature selection space to predict a binary
outcome.8 As such, these models are limited to
diagnosis between benign and malignant lesions
(ie, binary) rather than subtyping or Fuhrman
grading (ie, multitier). Logistical regression
modeling is a simple yet highly effective technique
for classifying binary outcomes that can then be
applied to novel data for classification of items of
interest—in this case, benign versus malignant
RCC.9 There are also multiclass regression for
subtyping or staging.
Artificial Intelligence Models for Renal Cell
Carcinoma Subtyping

RCC is actually a collection of kidney neoplasms
that arise from different parts of the nephron.
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Table 1
Summary of studies using artificial intelligence in renal cell carcinoma pathomics

Study Application Specific Aim(s) Sample Models Performance Metrics

Azuaje et al,79

2019
Diagnosis Connected H&E WSIs with

protein expression using
ML

WSIs: 783 (259 normal, 524
tumor); Prot: 194 (84
normal, 110 tumor)

RF, CNN, and FCNN Accuracy Prot: 0.98
Accuracy WSIs: 095
AUC Prot: 0.99
AUC WSIs: 0.92

Chanchal et al,22

2023
Fuhrman Grading Created shared residual

channel (SRC)-CNN with
better performance

3442 WSI patches SRC CNN Accuracy: 0.9014
F1 score: 0.8906

Cheng et al,80

2020
Diagnosis and

Subtyping
Distinguished between
TFE3-RCC and ccRCCWSIs
using ML

148 WSIs from cases with
TFE3-RCC or ccRCC

LR, SVM with
linear kernel,
SVM with Gaussian
kernel, and RF

AUCs:
LR: 0.873
RF: 0.848
SVM-L: 0.842
SVM-G: 0.894

Cheng et al,81

2018
Survival Prediction

from Tumor
Microenvironment

Examined tumor
microenvironment in
pRCC and predicted
stage and risk index

190 TCGA samples 856 ROIs
for model development

SSAE CNN Binary outcome for 5-y
survival:
Stage: 0.63
Subtype: 0.66
Predicted risk index AUC:

0.78

Fenstermaker
et al,11 2020

Diagnosis, Subtyping,
and Grade

Created ML model to
distinguish between
normal tissue, ccRCC,
pRCC, and cpRCC as well
as assign Fuhrman grade

42 TCGA WSIs CNN with 5 fully
connected layers

Accuracy:
Diagnostic: 0.994
Subtype: 0.975
Tumor Grade: 0.984
Diagnostic Sens.: 1.0
Diagnostic Spec.: 0.971
Diagnostic AUC: 0.98

Gondim et al,15

2023
Subtyping Created a WSI patch

classifier using Google
AutoML Vision and
deployed model on web-
based API for clinical
usage

252 WSIs (197 for path
classifier and 55 for WSI-
level tumor classification)
298,071 unique patches

Google AutoML
Vision

AuPRC: 0.939

(continued on next page)
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Table 1
(continued )

Study Application Specific Aim(s) Sample Mod Performance Metrics

Holdbrook
et al,77 2018

Fuhrman Grading Created model to classify
low- vs high-grade ccRCC

59 patients; 94 training
WSIs, and 20 test WSIs

Ada ost CNN feature
d ction; SVM for
h gram polar
g ient; AdaBoost
fo ombined

F-scores ranged from 0.78
to 0.83

Kalra et al,26

2020
TCGA Search

Function
Created ML-based TCGA
WSI search function

30,000 TCGA image
database covering 25
anatomic sites and 32
cancer subtypes

Yot l image search
al ithm

Accuracy:
Bladder urothelial

carcinoma 93%
Kidney RCC 97%
Ovarian serous

cystadenocarcinoma
99%

Prostatic
adenocarcinoma 98%

Skin cutaneous
melanoma 99%

Thymoma 100%

Khoshdeli
et al,19 2018

Diagnosis and
Grading

Compared performance of
2 different methods of
CNN to determine
subtype and grade of
RCC

2461 images: 796 normal,
271 fat, 42 blood, 784
stroma, 84 low-grade
tumors, 484 ccRCC

Goo Net CNN;
Sh ow CNN

GoogLeNet:
Precision: 0.99
Recall: 0.98
F1-score: 0.99

Shallow CNN:
Precision 0.94
Recall: 0.90
F1-score: 0.92

Kruk et al,21 2017 Fuhrman Grading Used a wavelet
transformation
preprocessing step
followed by ML
modeling to assign
Fuhrman grade to ccRCC
WSIs

94 ccRCC images SVM ith Gaussian
ke el; Breiman RF

Average Sens.: 94.3%
Average Spec.: 98.6%
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Lu et al,17 2021 Subtyping Developed a CLAM deep-
learning model for
subtyping RCC based on
WSI-level labels. Adapted
to smartphone
microscopy

884 WSIs: 489 ccRCC, 284
pRCC, 111 cpRCC; BWH
135 WSIs-46 ccRCC, 46
pRCC, 43 cpRCC

CLAM deep-learning
model

Average AUC:
0.991 � 0.004 (sd.)

Ohe et al,24 2023 Phenotyping and
Survival Prediction

Developed ALEXNET model
to distinguish between
clear and mixed/
eosinophilic ccRCC and
predict survival rate.

TCGA 435 WSIs, 95 WSIs for
validation

Deep CNN called
ALEXNET

Average AUC: 0.929 (95%
CI 0.88–0.98)

Average survival rate:
Mixed/eosinophilic

54.3%
Clear 80.9%

Tabibu et al,13

2019
Diagnosis, Subtyping,

and Survival
Prediction

Developed CNN ML model
for RCC diagnosis and
subtyping. Correlated
these results for HR
prediction

1027 ccRCC, 303 pRCC, 254
cpRCC, 379, 47, 83
normal slides from each
subtype

CNN with DAG-SVM
on the fully
connected CNN layer;
Lasso-regularized
Cox for survival

Accuracy: ccRCC vs benign:
93.39%

cpRCC vs benign: 87.34%
Average accuracy for all
subtyping 94.07%

Lasso-Cox HR: 2.265 (95%
CI 1.5343–3.343)

Tian el al,20 2019 RCC Grading and
Survival Prediction

Developed Lasso-
regularized Cox model to
assign Fuhrman grade to
ccRCC and predict HR

305 ccRCC WSIs from TCGA Lasso regression
model using linear
regression with L1
regularization; Cox
proportional hazard
model for survival
prediction

Accuracy: 83.3% grade
prediction

Sens.: 84.6% grade
prediction

Spec.: 81.3% grade
prediction

Avg. AUC: 0.84
HR: 2.05 (95% CI 1.21–3.47)

Abbreviations: CI, confidence interval; H&E, hematoxylin and eosin; HR, hazard ratio; SSAE, stacked sparse autoencoder.
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Knudsen et al52
Each subtype of RCC has distinct patterns of gene
expression and histologic features. Of the sub-
types of RCC, the 3 most common subtypes are
clear cell RCC (ccRCC), papillary RCC (pRCC),
and chromophobe RCC (cpRCC).10 Besides the
RCC subtypes, oncocytoma, metanephric ade-
noma, and fat-poor angiomyolipoma are benign
conditions that present similarly to RCC. As
such, physicians are interested in distinguishing
between benign andmalignant neoplasms and be-
tween RCC subtypes using histologic images.
Research in pathomics has provided a variety of
models targeted toward this very task.
Diagnosis of kidney cancer starts with a pa-

tient’s presenting symptoms and subsequent
medical imaging to look for kidney masses. After
mass detection, neoplasms may be biopsied by
a needle or, when appropriate, removed entirely
with full or partial nephrectomy.10 WSIs are then
generated from biopsy or resected tumor sam-
ples. In the world of pathomics, Fenstermaker
and colleagues created a CNN capable of distin-
guishing between normal renal parenchyma and
malignant tissue. Data were obtained from 42 pa-
tients who had samples stored in the National In-
stitutes of Health’s The Cancer Genome Atlas
Data Access Portal (TCGA), a WSI database
used by many cancer researchers.11,12 Tabibu
and colleagues also created a CNN with support
vector machine (SVM) layer to classify normal
versus malignant kidney tissue.13 In 2021, Zhu
and colleagues created a CNN capable of classi-
fying normal kidney parenchyma, oncocytoma,
and RCC.14 Gondim and colleagues then pro-
duced a model in Google AutoML Vision that could
also distinguish metanephric adenoma from the
aforementioned kidney tissue types.15

Besides distinguishing between benign and ma-
lignant neoplasms, subtyping of RCC has been a
great focus in RCC pathomics. The previously
mentioned CNNs created by Tabib and colleagues
and Fenstermaker and colleagues were also
capable of distinguishing between ccRCC,
pRCC, and cpRCC.13 Ghaffari Laleh and col-
leagues and Gondim and colleagues also pro-
duced models with similar subtyping
capabilities.15,16 Focusing on an extremely rare
RCC subtype, Cheng and colleagues used logistic
regression, SVM, and RF to distinguish between
TFE3 Xp11.2 translocation RCC (TFE3-RCC) and
ccRCC.
Finally, Lu and colleagues have developed a

model that also uses deep learning but requires
far less time by trained pathologists to label the
training dataset. Using a method called
clustering-constrained-attention multiple-instance
learning (CLAM), WSIs are labeled at the image
Descargado para Biblioteca Medica Hospital México (bibliom
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level rather than in smaller patches. These WSI la-
bels then allow the model to look for regions of in-
terest, which caused the pathologist to assign the
label in the first place. Therefore, CLAM ap-
proaches reduce the time necessary to label slides
in a spatial format and reduce noise in the training
dataset. The model by Lu and colleagues was
capable of binary normal versus malignant predic-
tions and subtyping classification predictions
and outperformed classic weakly supervised
approaches.17
Artificial Intelligence Models for Renal Cell
Carcinoma Fuhrman Grading

When diagnosed with RCC both patients and phy-
sicians are also concerned with grading of the tu-
mor, which gives an idea of the aggressiveness
associated with the specific neoplasm. The most
widely used grading scale is the Fuhrman system,
which assesses nuclear morphology as a prog-
nostic indicator for RCC.10 The Fuhrman scale as-
signs 4 grades, with a higher grade indicating a
worse prognosis. Similar to RCC subtyping, Fuhr-
man grading models use a variety of model types
including CNNs, logistic regressions, RFs, SVMs,
multiple-instance learning models, and CLAM
models. These models are, again, considered
computer vision approaches because they allow
the computer to “see” nuclear morphology and
assess severity.
In 2014, Yeh and colleagues used a Kernel

regression model to determine nuclear size varia-
tions and then correlate these size variations with
Fuhrman grades. The model was able to distin-
guish between low- (Fuhrman grades 1 and 2)
and high-grade (Fuhrman grades 3 and 4) with
high accuracy.18 Khoshdeli and colleagues
created a shallow CNN and a deep CNN based
on GoogLeNet to distinguish between normal tis-
sue, low-, and high-grade ccRCC. They found
that both models were capable of making such
distinctions, but the GoogLeNet-based model out-
performed the shallow CNN.19 Tian and col-
leagues presented a Lasso model that was
capable of predicting a 2-tiered Fuhrman grade
for ccRCC based on 26 model features.20 In
2017, Kruk and colleagues presented a model
capable of assigning Fuhrman grades 1 to 4 rather
than the high- and low-grade distinctions seen in
previous studies. This model used wavelet trans-
formation in a preprocessing step to reduce noise
and improve edge detection. SVM and RF classi-
fiers were then applied to the preprocessed
WSIs to assign a Fuhrman grade to WSIs. High ac-
curacy for both SVM and RF classifiers was
achieved using only 11 model features.21
exico@gmail.com) en National Library of Health 
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AI in Pathomics and Genomics 53
Fenstermaker and colleagues also presented a 4-
tiered Fuhrman grading model in which they used
a CNN with a learned first layer, a pixel
compressor, and several further layers with full
sharing of information.11 Further, Chanchal and
colleagues have also developed the Renal Cell
Carcinoma Grading Network (RCCGNet), which
is a CNN with a shared residual block that was
trained on 722 RCC WSIs. The model assigns a
5-tiered grade in that it can distinguish between
normal tissue as well as between Fuhrman grades
1 and 4.22 Each advancement made by re-
searchers in pathomics represents further
advancement toward AI helping pathologists un-
derstand the severity of patients’ disease with
high confidence.
Artificial Intelligence Models for Renal Cell
Carcinoma Survival Prediction

For patients with any form of neoplastic disease,
prognosis is arguably the most important metric
that they would like to understand. Survival predic-
tion is, perhaps, the thing that is of utmost clinical
relevance when it comes to pathomics and geno-
mics. In RCC pathomics, several models have
been developed that seek to assign a quantifiable
value to survival likelihood with the hope that phy-
sicians can use these predictions to provide better
counseling and support to their patients. For re-
searchers in pathomics, development of a survival
prediction algorithm is reliant on the collection of
WSIs taken from resected or biopsied tumor spec-
imens and on patient factors such as age, biolog-
ical sex, treatment course, and postoperative
survival outcomes. WSI and patient outcome infor-
mation are then correlated to develop a model
capable of predicting survival after viewing novel
pathology images.20

As previously discussed, Tian and colleagues
developed a Lasso model to predict and assign
RCC Fuhrman grades from WSIs. The 160 WSI
samples (42 training, 116 validation) used in this
study were pulled from TCGA, which also includes
deidentified patient information important for sur-
vival predictability. Tian and colleagues then con-
structed crude and adjusted Cox proportional
hazard models and validated them using the addi-
tional 116 training WSIs. The Cox models were
capable of predicting an overall survival percent-
age.20 In a similar vein, Tabibu and colleagues
also predicted survival using a similar approach
as Tian and colleagues. Tabibu and colleagues
created a CNN capable of determining RCC sub-
type, and this CNN detected several features of in-
terest that were also useful for predicting survival.
They calculated the risk index of each patient
Descargado para Biblioteca Medica Hospital México (b
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using lasso-regularized Cox modeling for each
feature used in the subtyping classifier. Tumor
shape and nuclei shape features were significantly
associated with patient survival. Chen and col-
leagues took a different approach in which they
used a digital pathology software called QuPath
to select a variety of features based on cell
morphology and create a ML-based pathomics
signature (MLPS) for each WSI analyzed. They
then used Cox survival regression analysis to pre-
dict disease-free survival23; this is the first instance
of MLPS generation used to predict survival in a
patient population. Ohe and colleagues also
developed a survival prediction algorithm targeted
toward predicting prognosis in clear versus eosin-
ophilic subtypes of ccRCC. They created a deep
CNN from 435 TCGA ccRCC WSIs that distin-
guished between clear and eosinophilic pheno-
types in ccRCC and assigned an AI score to
each phenotype. Kaplan-Meier survival analysis
was able to predict worse survival rates in patients
with mixed/eosinophilic-predominant subtypes
versus subtypes. Patients with higher AI scores
as determined by the deep CNN had worse
survival prognosis, which was validated by real-
world survival outcomes.24 A final survival predic-
tion model was developed by Cheng and
colleagues. For this model, researchers focused
on classifying the topographic features of the tu-
mor microenvironment in pRCC. Historically,
pRCC is not as studied asmore common subtypes
of RCC such as ccRCC, so this group hoped to
shed more light on how the tissue surrounding
the tumor affects prognosis. They used an unsu-
pervised approach with a neural network called a
stacked sparse autoencoder for feature extrac-
tion, then used K-means clustering and Delaunay
triangulation for the identification of nuclei
morphology patterns. Features from WSI images
were then used to build a lasso-regularized Cox
regression model to predict risk indices for pa-
tients. Certain tumor microenvironment topologies
increased risk in pRCC.25
Clinical Applications of Artificial Intelligence
in Renal Cell Carcinoma Pathomics

As discussed earlier, RCC pathomics has given
physicians a wide variety of models capable of
determining RCC subtype, grade, and survival
prediction. However, it is essential that pathomics
moves from theoretic exercises to real-world, clin-
ical applications in order to be useful when it
comes to treating patients. Of the models outlined
earlier, a few have provided the first steps toward
clinical applications beyond just the development
of AI models. In addition to improved efficiency
ibliomexico@gmail.com) en National Library of Health 
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Knudsen et al54
and applicability to binary and subtyping tasks, Lu
and colleagues’ CLAM model generated WSI
heatmap overlays that were able to show patholo-
gists the regions of interest that led the model to
assign a specific subtype. These heatmaps are
highly clinically relevant because they allow pa-
thologists to quickly target areas of a slide that
show abnormal cellular architecture or nuclear aty-
pia, meaning pathologists’ cognitive loads are
reduced.17 Lu and colleagues were also able to
feed their model WSIs taken by smartphone cam-
eras, with the model producing similar results to
those taken by typical light microscopy. Applica-
tions such as these might be deployed in
resource-limited areas where either expert pathol-
ogists or highly technical equipment is not readily
available. Lu and colleagues imagine a scenario
in which a physician in a rural area could submit
a digitized biopsy specimen to an online applica-
tion programming interface (API) and receive a
subtype in a matter of seconds rather than sending
it to be read by pathologist.17 Web-hosted APIs for
pathologic diagnostic aid could help pathologists
efficiently and effectively assign diagnoses in the
future.
Another clinical application that extends beyond

RCC is a model developed by Kalra and col-
leagues that is capable of searching all the WSIs
uploaded to TCGA. By building a WSI-based
search function, pathologists might be able to
pull WSIs from uploaded patient samples and
compare them with a novel sample they are work-
ing with. In this way, they might be able to view
other examples of specific subtypes or morphol-
ogies before assigning a diagnosis to a new pa-
tient case.26
ARTIFICIAL INTELLIGENCE IN RENAL CELL
CARCINOMA GENOMICS

AI models have been used in a variety of genomic
problems including gene expression analysis,
transcription factor binding site identification,
exon splicing patterns, finding disease-causing
genetic variants, and predicting chromatin struc-
ture, among a wide array of additional applica-
tions.27–31 Genomics lends itself nicely to ML
approaches due to the availability of patterns in
genomics data, large dataset sizes, and ability to
combine model results with prior knowledge and/
or experimental validation. Historically, linear
models have had success in supervised (eg,
regression, SVMs, RF) and unsupervised (eg,
K-means, principal component analysis (PCA),
t-distributed stochastic neighbor embedding [t-
SNE]) learning tasks in bioinformatics due to their
simplicity and robustness.32–36 More recently,
Descargado para Biblioteca Medica Hospital México (bibliom
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with increasing advances in both biological data
and computing power, deep learning has been
gaining traction in this field as a means of uncover-
ing complex genomic relationships.
Artificial Intelligence Models for Genomics

Some of the most popular deep-learning models
for supervised learning in genomics include fully
connected neural networks, convolutional neural
networks, recurrent neural networks, and graph
convolutional networks3 (Fig. 2). Each architecture
has pros and cons involving computational cost,
invariance, interpretability, and prediction quality.
Fully connected networks are the standard

feedforward neural network in which all nodes of
each layer are connected to all nodes of each
adjacent layer. In the context of genomics, the
input for a neural network is the one-hot encoding
of a DNA sequence. Nodes take as input the
weighted average of all nodes from the previous
layer, and the result is passed through a (likely)
nonlinear activation function before the process
is repeated for the following layer. The size of the
final layer of the network corresponds to the value
or number of classes being predicted. These net-
works have been used in a wide range of genomic
applications including gene expression, splicing
patterns, and sequence analysis.27–29

Convolutional neural networks pass small filters
(ie, low-dimensional matrices) with shared param-
eters as sliding windows over input data, allowing
for translation invariance (ie, relative position of a
portion of data does not alter computation with
the filter). The dot product between a portion of
input data and the filter is performed, and then
the filter slides to the next section of input data.
Each filter represents a small pattern, which in ge-
nomics possesses input data comprised of ge-
netic sequences, which could identify specific
motifs. One of the main benefits of this sliding win-
dow approach includes saving on computational
costs as a result of parameter sharing. Because
these filters possess relatively understandable
qualities to human interpretation, CNNs also
possess a degree of explainability by visualizing
the output of a filter, finding which sequence maxi-
mally activates a filter, or nullifying a filter and
measuring the impact on the model’s predic-
tions.37–39 The semantic value possessed by these
filters allows domain knowledge to affect filter
design, including cases where certain filters are
intentionally initialized in order to seek out specific
motifs. Some applications of CNNs include pre-
dicting transcription factor binding sites, DNA
methylation states, microRNA (miRNA) targets,
and pharmacogenomic properties.6,40–43
exico@gmail.com) en National Library of Health 
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Fig. 2. Popular neural network architectures in genomics. (A) Fully connected feedforward neural network shows
a genomic sequence as input data and binary classification output. Each input sequence is represented as a string
of numbers through numerical encoding (eg, one-hot, binary, ordinal, learned embeddings), where each number
serves as an input feature (x1-xn, where n is the number of features). Only the first 3 input features are shown. (B)
Recurrent neural network shows individual nucleotides of a sequence as input data (x<1>-x<3>), with calculation of
subsequent hidden layer (N) based on both input at that layer (x<n>) and activation from the previous layer
(a<n�1>). (C) Autoencoder demonstrates encoding and decoding layers with potential for dimensionality reduc-
tion. (D) Convolutional neural network shows input data as (one-hot encoded) sequence with convolution oper-
ation, pooling layers, data flattening, and fully connected layers resulting in multiclass classification output. All
figures show input layer (orange), hidden layers (gray), and output layer (green).
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Recurrent neural networks pass information from
temporally earlier informationas input to thenetwork
trained for the subsequent data input value, thus
allowing the network to possess memory. This
memory property allows the network to retain time
invariance (ie, is not the absolute position of an input
sequence that determines prediction, but rather the
context of the sequence inwhich the input appears).
Some applications of RNNs include single-cell DNA
methylation states,44 retinol-binding protein bind-
ing,45 and DNA accessibility.46,47

Graph convolutional networks apply deep
learning to graphical input data. These networks
apply convolution operations and subsequent
nonlinear activation functions to neighboring
groups of nodes to predict behaviors relating to in-
teractions. Applications include protein-protein
interaction modeling and gene expression network
analysis.48–50

A popular deep-learning model for unsupervised
learning includes autoencoders. These models
use the same data as both input and output, with
a hidden bottleneck layer that forces reproduction
of input data with removal of redundant features.
Autoencoders can be applied to impute missing
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data and for dimensionality reduction among other
uses.51–53

To address problems of small or homogeneous
datasets, 2 popular data augmentation techniques
include transfer learning and generative models.
Transfer learning involves pretraining a model
with another dataset to provide initial parameter
values, which may improve model predictions
compared with random initialization.54 Generally,
the larger the transferred dataset and the more
similar to the user’s dataset, the better the pre-
dicted performance boost. Transfer learning has
shown promise in biological image classification
and sequence-based prediction of chromatin
accessibility.55,56 Generative models include vari-
ational autoencoders (VAEs) and generative
adversarial networks (GANs). VAEs are autoen-
coders with probabilistic encoding, allowing for
variations in decoding and data generation. VAEs
have had success in RNA-seq analysis and pre-
dicting drug response.57,58 GANs are designed
adversarially, in which a generator tries to “trick”
a discriminator into confusing generated data as
being real. GANs have been used in sequence
generation and scRNA-seq simulation.59–61
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Model interpretability remains an ongoing chal-
lenge in deep learning due to the obscure meaning
of each parameter’s influence on model predic-
tions. Genomics provides no exception to the dif-
ficulty of the interpretability problem, yet it
underscores the problem’s importance due to
explainability of predictions often being essential
to uncover biological meaning in relationships or
pathways. Numerous approaches to interpret-
ability have been explored in genomics. In addition
to CNN-specific node-based strategies enumer-
ated earlier, some architecture-agnostic methods
for tackling interpretability include implementation
of attention mechanisms to focus on regions of
particular interest based on prior knowledge, in-
silico mutagenesis (observing degree of change
in model prediction based on induced point muta-
tion in the data), motif-embedding (observing de-
gree of change in model prediction after
artificially embedding a motif in an unnatural loca-
tion), gradient magnitude calculation (where higher
magnitude indicates high degree of importance of
that region), and feature interaction identification
through simulated mutagenesis.39

In RCC in particular, AI has been used in a variety
of ways. PCA has been used to cluster RCC by im-
mune subtypes and weighted correlation network
analysis with RF to predict gene expression of dis-
tinguishing hub genes.62 Four supervised learning
algorithms—J48, RF, SMO, and Naı̈ve Bayes—
could discern early versus late-stage ccRCC based
on transcriptomic signature, and feature selection
predicted 62 of the most important distinguishing
genes between the 2 groups.63 t-SNE analysis
revealed a mitochondrial genetic signature that
spanned histopathologic subgroups and predicted
worse survival for patients with RCC.64 The Min-
Redundancy and Max-Relevance algorithm was
used to pick a profile of 13 genes highly correlated
with RCC patient outcomes.65 Other combinations
of supervised and unsupervised learning help pre-
dict unique genetic subtypes and gene signatures
of patients with RCC, with the TCGA-KIRC popula-
tion as a popular dataset for input.
Artificial Intelligence in Identifying Renal Cell
Carcinoma Biomarkers

The application of AI has shown promising results,
particularly in biomarker identification and subtype
classification. Recent studies have proposed
novel methods that leverage AI for kidney cancer
biomarker identification and subtype classifica-
tion, demonstrating superior performance
compared with traditional methods.
Liu and colleagues presented a study on the use

of bioinformatics tools and a neural network model
Descargado para Biblioteca Medica Hospital México (bibliom
and Social Security de ClinicalKey.es por Elsevier en febrero 1

permiten otros usos sin autorización. Copyright ©2024. 
for identifying biomarkers in ccRCC.66 The investi-
gators used a 2-step approach. First, they identi-
fied differentially expressed genes (DEGs)
between ccRCC and normal renal tissues using
data from the Gene Expression Omnibus (GEO)
database. They then constructed a protein-
protein interaction network of the DEGs and
screened for hub genes using cytoHubba. Ten
hub genes were identified, including AURKB,
CCNA2, TPX2, and NCAPG, which were found to
be highly expressed in ccRCC compared with
normal renal tissue. In the second step, the inves-
tigators used a neural network model to verify the
relationship among these genes. The model was
trained using data from 10 ccRCC tumor samples
and 10 normal kidney tissues. The results from the
neural network model showed strong correlations
between the hub genes, validating their potential
as biomarkers for ccRCC. The study demon-
strated the potential of AI in enhancing the identi-
fication and verification of biomarkers in ccRCC.
AI was used to analyze DNA methylation and

gene expression data as well. Malouf and col-
leagues used a supervised clustering approach
to analyze promoter DNA methylation and gene
expression using a 56 genes epi-signature in
TCGA dataset of ccRCC and chromophobe sam-
ples.67 This approach allowed them to identify
distinct clusters based on the methylation patterns
and gene expression profiles of the samples.
Furthermore, unsupervised clustering was used
to analyze DNA methylation using CpG sites
located in promoter CpG islands and outside pro-
moter CpG islands. This analysis revealed 2 epi-
clusters with distinct characteristics. One cluster
(C1) contained almost all tumors with benign po-
tential, whereas the other cluster (C2) contained
tumors with potential malignant behavior.
Pirmoradi and colleagues used miRNA data,

which are often high-dimensional and contains
many irrelevant and redundant features.68 To
address this, the researchers used a filter method
for feature selection, specifically the Arithmetical
Mean Geometric Mean measure. This method,
with its low computational cost, effectively iden-
tifies the most discriminant miRNAs as significant
features, thereby enhancing the performance of
disease or subtype classification. Then the study
introduces a self-organizing deep neuro-fuzzy sys-
tem for the classification task. This system is
designed to overcome common challenges in the
field, such as the curse of dimensionality, low sam-
ple numbers, and unbalanced data. Remarkably,
the proposed classifier achieved an average clas-
sification accuracy of 93.2%, sensitivity of 92.4%,
and specificity of 98.1% in test data. These results
indicate the system’s ability to classify kidney
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cancer subtypes with high accuracy based on
complex rules obtained using deep-learning algo-
rithms. Another group applied the tensor decom-
position (TD)-based unsupervised feature
extraction method to analyze messenger RNA
(mRNA) and miRNA expression profiles.69 The
AI-driven analysis identified miRNA signatures
and their associated genes, which were found to
be involved in cancer-related pathways. More-
over, 23 genes were significantly correlated with
the survival of patients with ccRCC. The investiga-
tors demonstrated that the results are robust and
does not highly depend on the databases
selected. Compared with traditional supervised
methods tested, TD achieves much better perfor-
mance in selecting prognostic miRNAs and
mRNAs; this suggests that integrated analysis us-
ing the TD-based unsupervised feature extraction
technique is an effective strategy for identifying
prognostic signatures in cancer studies.
Artificial Intelligence and Renal Cell
Carcinoma Liquid Biopsy

Liquid biopsy is a noninvasive diagnostic tool that
is gaining traction in the management of RCC. It in-
volves the analysis of circulating tumor cells, circu-
lating tumor DNA, and other biomarkers present in
body fluids, such as blood. Liquid biopsy offers a
real-time snapshot of the tumor’s genetic land-
scape, allowing for early detection, monitoring dis-
ease progression, and assessing treatment
response. Combining with AI, it holds significant
promise for personalized medicine in RCC,
enabling clinicians to tailor treatment strategies
based on the unique molecular profile of each pa-
tient’s tumor.

Iwamura and colleagues presented a study on
the use of AI for diagnosing urologic diseases,
including RCC, based on blood sample.70 The
study analyzed immunoglobulin N-glycan signa-
tures from 100 serum subjects with RCC. The
data were used in a supervised ML model to
establish a scoring system that gave the probabil-
ity of the presence of RCC. The results indicated
that the RCC score could be a promising
biomarker for the early diagnosis of RCC and for
differentiating between invasive renal pelvis can-
cer and RCC. The score showed excellent diag-
nostic accuracy at any pathologic stage.
However, further external validation trials are
needed to validate the urologic disease-specific
scoring system in routine clinical practice.

Manzi and colleagues used AI techniques in
conjunction with lipidomics for the early detection
of ccRCC.71 The researchers developed an ML
model that was trained to identify patterns in the
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lipid profiles of patients, which could potentially
indicate the presence of ccRCC. The model was
tested and validated using an independent set of
patient data, demonstrating promising results in
terms of accuracy, sensitivity, and specificity.
The investigators also attempted to apply this
model to other types of RCC, although the sample
size for these types was limited. The results of this
study suggest that this ML approach could be a
valuable tool for early ccRCC diagnosis, pending
further validation in larger andmore diverse patient
cohorts.

Artificial Intelligence and Renal Cell
Carcinoma Staging

Bhalla and colleagues used AI techniques to clas-
sify early and late-stage patients of ccRCC based
on gene expression data.72 The study used ML for
feature selection, reducing the number of features
from 19,166 to 64 using a software package called
Weka. They also developed prediction models us-
ing SVM and RFs and evaluated their performance
using 10-fold cross-validation. The researchers
also presented a Web platform called CancerCSP,
where users could provide gene expression data
and predict whether the cancer was in the early
or late stage. This application of ML provided bet-
ter insights to understand the mechanisms
responsible for metastasis in various cancers.

Artificial Intelligence and Renal Cell
Carcinoma Survival Prediction

Recent studies have demonstrated the use of AI in
developing prognostic models for RCC. These
models leverage large-scale genomic data to
identify differentially expressed genes and signa-
tures that can predict disease progression and pa-
tient survival.

Chen and colleagues used ML techniques to
develop a prognostic model for patients ccRCC.73

The researchers identified 333 DEGs between
ccRCC and normal tissues from the GEO data-
base. They used univariate Cox regression anal-
ysis to retrieve the survival-related DEGs and
further used multivariate Cox regression with the
LASSO penalty to identify potential prognostic
genes. A 7-gene signature was identified,
including APOLD1, C9orf66, G6PC, PPP1R1A,
CNN1G, TIMP1, and TUBB2B. The seven-gene
signature was evaluated in the training set, internal
testing set, and external validation using data from
the ICGC database. The Kaplan-Meier analysis
showed that the high-risk group had a significantly
shorter overall survival time than the low-risk
group in the training, testing, and ICGC datasets.
The researchers concluded that the 7-gene
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signature can serve as an independent biomarker
for predicting prognosis in patients with ccRCC.
Singh and colleagues have developed a ML

model to predict the progression of pRCC from
early to late stages using RNA sequencing
data.74 The team used a ML pipeline incorporating
different feature selection algorithms and classifi-
cation models. They identified 80 genes that are
consistently altered between stages by different
feature selection algorithms, which are related to
cellular components such as centromere, kineto-
chore and spindle, and biological process mitotic
cell cycle. The AI model developed in this study
demonstrates the potential of ML in providing
valuable insights into the progression of pRCC.
THE INTERACTION BETWEEN PATHOMICS
AND GENOMICS AND THE EMERGENCE OF
MULTIOMICS

The integration of AI with multiomics data is revo-
lutionizing the field of RCC. Recent studies have
demonstrated the potential of ML and deep-
learning techniques in extracting meaningful
insights from complex biological data, including
genomics, proteomics, and pathomics.
Singh and colleagues used AI techniques to

investigate the methylation patterns of pRCC and
their relationship with gene expression using mul-
tiomics data.75 ML models were used to analyze
gene expression (RNA), DNA methylation, and
clinical information. AI techniques facilitated the
analysis of various representations of methylation
data and enabled functional enrichment analysis
to uncover biological processes associated with
PRCC. The findings highlight the potential of AI in
enhancing our understanding of pRCC by inte-
grating multiomics data.
Ning and colleagues focused on improving the

prediction of prognosis in ccRCC using multiomics
data.76 They sought to address the limitations of
traditional methods that relied on hand-crafted
features and single-modal data. Drawing inspira-
tion from the success of CNNs in medical image
analysis, they proposed a novel framework that
combines deep features extracted from computed
tomography/histopathological images with eigen-
genes derived from functional genomic data. This
approach outperformed models based on single-
modality features, effectively stratifying patients
into high- and low-risk subgroups. The study
also explored the relationship between deep im-
age features and eigengenes, offering insights
into the interpretation of deep image features us-
ing genomic data.
Holdbrook and colleagues presented an auto-

mated image-based system that leveraged AI to
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classify ccRCC slides by quantifying nuclear pleo-
morphic patterns.77 The system, which quantified
nuclear patterns, was tested on tissue slides
from 59 patients, with results correlating to a multi-
gene assay-based scoring system. The AI used a
“Fraction Value” (FV) score, with a high correlation
found between the FV predicted and the multigene
score.
Ing and colleagues developed an ML approach

to identify latent vascular phenotypes that could
predict the outcome of renal cancer.78 They used
a 2-step framework for quantitative imaging of tu-
mor vasculature to derive a spatially informed,
prognostic gene signature. The algorithms they
developed classified endothelial cells and gener-
ated a vascular area mask in hematoxylin and
eosin micrographs of ccRCC cases from TCGA.
The investigators successfully applied digital im-
age analysis and targeted ML to develop prog-
nostic, morphology-based, gene expression
signatures from the vascular architecture. This
novel morphogenetic approach has the potential
to improve previous methods for biomarker
development.
Azuaje and colleagues used a deep-learning

CNN to find prognostic correlations between pat-
terns of protein expression and histopathology im-
ages.79 They found that certain proteomics
patterns cause visually appreciable changes in pa-
thology slide findings; this is another step toward
connecting gene and protein expression patterns
with pathomics modeling and will help patholo-
gists make faster, more robust diagnoses in the
future.
These studies underscore the transformative

potential of AI in RCC research, particularly in the
realm of multiomics data integration and prognosis
prediction. The application of AI in this context
could significantly enhance diagnostic accuracy,
enable personalized treatment strategies, and ulti-
mately improve patient outcomes.
CHALLENGES AND FUTURE DIRECTION

In this narrative review, the authors have dis-
cussed a wide array of AI models and their various
applications to problems in RCC. Both pathomics
and genomics models can help diagnose malig-
nant disease and predict survival in RCC, but there
are still a few challenges to overcome. As demon-
strated by the number of models outlined in this re-
view, there are a wide variety of computational
approaches to consider when undergoing model
development. However, there is no consensus on
the best approach—some models may offer slight
performance edges over others, but these en-
hancements are not something that patients
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� AI has been used to assist in pathological
renal cell carcinoma cancer diagnosis, subtyp-
ing, Fuhrman grading, and survival predic-
tion in the research setting.

� A synergetic integration of AI and genetics
assists basic science research in identifying
renal cell carcinoma biomarkers, classifying
genetic subtypes, and enabling multiomics.
This powerful integration also holds promise
in clinical application such as liquid biopsy.

� While AI carries substantial potential to sup-
port clinicians with the pathologic diagnosis
and genomic classification of renal cell carci-
noma, it is imperative toproceedwith rigorous
clinical trials and obtain FDA approval.
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coming into the urology clinic will necessarily un-
derstand. To bridge this gap, researchers must
make sure to ground the theory behind their
work in practical clinical applications. The first
steps are being made in the right direction, but
we encourage researchers and physicians to
work together to understand how theoretic models
can be deployed in real-world scenarios to make
greater impacts on patient care. Secondly, pro-
jects in pathomics and genomics also require an
enormous amount of computing power to predict
outcomes of interest. Institutions and hospital
groups are often resource-limited and might lack
the computational power necessary to deploy
and maintain large-scale clinical models. There-
fore, computational needs might be met by the
use of commercially available servers such as
Google AutoML Vision, which allows for the web-
based development and deployment of clinical AI
models.15 Another limitation of AI modeling gener-
ally is the need to construct a ground-truth, hu-
man-verified training set for model development.
For pathomics and genomics, this is a time- and
labor-intensive task, especially as more and
more tumor WSIs are generated and novel genes
are discovered. In pathomics, approaches in WSI
labeling with CLAM computing lighten the work-
load, but ground-truth training set development
still represents a bottleneck.17 Finally, the perfor-
mance of AI models highly depends on the training
data, which may result in unexpected bias. For
example, in genomics, race may limit the general-
izability of a fully trained AI model when applied to
patients coming from a minority racial group. More
diverse datasets can mitigate bias in this regard.
SUMMARY

The intersection of AI models with histopathology
images and gene expression patterns has pro-
duced the rapidly expanding fields of pathomics
and genomics, respectively. Applications of
pathomics and genomics in RCC have given re-
searchers and clinicians new tools for diagnosis
and subtyping of kidney tumors. It has also
allowed for the development of more robust sur-
vival prediction models that, in the future, can
help patients and their families better understand
the prognosis of a new RCC diagnosis. ML has
also helped uncover new gene expression pat-
terns specific to different subtypes and grades of
RCC. These models are helping researchers better
understand the biological origins of RCC as well as
uncover potential avenues for treatment, particu-
larly targeted medical therapies. Pathomics and
genomics are also being used in combination,
thanks to the ability of AI model to deal with
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multimodal data. With AI, patients and physicians
should look forward to the future discoveries and
innovations to come in the growing fields of patho-
mics and genomics, to shed light in the field of
RCC.
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