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Abstract: Pathology serves as a promising field to integrate
artificial intelligence into clinical practice as a powerful screening
tool. Melanoma is a common skin cancer with high mortality and
morbidity, requiring timely and accurate histopathologic diagnosis.
This review explores applications of artificial intelligence in
melanoma dermatopathology, including differential diagnostics,
prognosis prediction, and personalized medicine decision-making.
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INTRODUCTION
The societal shift toward integration of artificial intel-

ligence (AI) into daily life has been aptly dubbed the Fourth
Industrial Revolution. Between 2015 and 2020, 222 AI
medical devices were approved by the Food and Drug
Administration.1 Machine learning is 1 example of AI algo-
rithm technology that is trained to make predictions based on
pattern detection. Deep learning is a subset of machine learn-
ing capable of processing massive datasets and supplying
decision-making outputs. Deep learning is typically operated
using convolutional neural networks (CNNs), wherein image
data processing achieves a desired outcome.2,3 Pathology
serves as a promising field to integrate AI into medicine.
CNNs can be trained with pixels from digitized whole-slide
images of hematoxylin and eosin (H&E)-stained histopatho-
logic slides.

In the United States, melanoma is the fifth most
common cancer4 and the current gold standard for melanoma
diagnostics is histopathologic examination.5 Given its high
mortality and morbidity, a timely and accurate diagnosis is
essential for early intervention and outcome optimization. In
the research setting, AI has shown utility as a tool for derma-
topathologists diagnosing melanoma, highlighting a potential
adjunct for improving patient outcomes.6–13 As such, this
review aims to explore AI-dermatopathology applications in
melanoma differential diagnostics, prognosis prediction, and
related personalized medicine decision-making. Frequently
used AI terminology is defined in Table 1.

METHODS
This review investigated the available literature on

melanoma dermatopathology and AI tools. The following
Boolean search string was input to PubMed: (“melanoma”
OR “skin cancer”) AND (“dermatopathology” OR “histopa-
thology” OR “pathology”) AND (“artificial intelligence” OR
“machine learning” OR “deep learning” OR “neural network”
OR “computer vision” OR “image analysis” OR “pattern rec-
ognition”). Inclusion criteria included studies published
between 2013 and 2023, and methods involving AI technol-
ogies in melanoma dermatopathology. Articles were excluded
if they were reviews, published before 2013, or did not inves-
tigate melanoma dermatopathology AI tools. 599 studies were
selected for screening and 90 full texts were eligible for full-
text assessment. Ultimately, 34 studies were included in this
review (Figs. 1,2,3).

DISCUSSION

Differential Diagnosis
Deep learning networks have successfully identified

melanoma in digitized biopsies with accuracy similar to
expert dermatopathologists.14 Earlier methods of CNN-based
melanoma detection from H&E whole-slide images (WSIs)
worked using pixel patches from the digitized tissue samples
to train and evaluate the system. Using this method, CNNs
can find regions of interest to flag for potential melanoma
diagnoses. One example of this is Dika et al,6 wherein they
compared melanoma region-of-interest (ROI) detection by
CNNs versus expert dermatopathologists; the network and
pathologists agreed 94% of the time. When compared with
nevi identification, pathologists and deep learning networks
agreed 100% of the time. They concluded AI could be a
helpful screening tool for flagging suspicious regions in
WSIs.

De Logu et al7 later evaluated the deep learning recog-
nition of melanoma from WSIs using small image patches
from H&E slides. The deep learning system achieved an over-
all image patch classification accuracy of 96.5%, a sensitivity
of 95.7%, and a specificity of 97.7% and the system achieved
a promising F1 score of 97%. Using a CNN-based algorithm,
the authors developed a method for defining healthy and
pathologic tissues from scanned lesioned tissues. Although
the algorithm produced promising results, only melanomas
with a Breslow thickness of more than 2 mm were included.

Alheejawi et al8 used a different approach to deep learn-
ing for melanoma detection. The investigators trained a CNN
using 100 digitized H&E WSI. Their NSNet adapted-CNN
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FIGURE 1. Prisma diagram.

TABLE 1. AI Technical Terminology Definition Table

Term Definition

CNN A type of deep learning neural network commonly used for image recognition and computer vision tasks. CNNs are designed to
automatically learn and extract relevant features from input images through a series of convolutional and pooling layers

Convolution layers Layers within a CNN that perform the convolution operation. Convolution involves applying a set of filters to input data (eg, images)
to extract relevant features, such as edges, textures, or shapes

eTIL Electronic assessment of the presence of lymphocytes (immune cells) within tumor tissue

Heat map A visualization technique commonly used in deep learning and computer vision to highlight regions of interest in an image or
indicate the importance or activation of specific areas. Heat maps typically use a color gradient to represent the intensity or

concentration of a feature

Patch A patch refers to a small rectangular or square region extracted from an image. It is a subset of the original image used for analysis,
such as feature extraction, classification, or segmentation

Pixel level The level of individual pixels in an image or video. Analyzing or manipulating images at the pixel-level involves considering and
processing each pixel individually

Random forest model A machine learning algorithm that builds an ensemble of decision trees. Each tree is trained on a random subset of the training data,
and predictions are made by aggregating the predictions of individual trees

RNN A type of neural network architecture designed to process sequential data by maintaining internal memory. RNNs are widely used in
NLP and speech recognition tasks, where the order and context of the data are crucial

Segmentation mask A binary image or pixel-level annotation that identifies and labels specific regions or objects of interest within an image. It assigns a
unique value or color to each pixel or region belonging to a particular object

SSL A model learns from the data itself without any explicit human supervision

WSI Also known as virtual microscopy, it involves scanning entire glass slides containing specimens (eg, tissue samples) into high-
resolution digital images. WSI enables the viewing, analysis, and sharing of pathology slides in a digital format

NLP, natural language processing; SSL, self-supervised learning.
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first annotated nuclei as belonging to melanoma cells, non-
melanoma cells, or background.15 This allowed the
researchers to detect coarse and fine features of cells and
extracellular backgrounds to generate a segmentation mask
with more granularity. A segmentation mask refers to a binary
image or pixel-level annotation that identifies and labels spe-
cific regions or objects of interest within an image. It assigns a
unique value or color to each pixel or region belonging to a
particular object. Once the segmentation mask was applied, a
secondary melanoma region detection module used the CNN-
generated mask to predict melanoma ROI. The authors pro-
posed that this method could be more accurate than pre-
existing CNN patch-fed architectures because it first detects
the nuclei and then predicts the melanoma cells instead of
relying on patch input. This method segmented nuclei with
94% accuracy and the Dice coefficient score was 85% for
segmenting melanoma regions. From start to finish, each
CNN-generated diagnosis took around 7 minutes to
complete.8

In 2021, another group proposed a CNN model that
differentiated and annotated benign lesions versus melanoma.
The investigators collected 701 WSI of H&E-stained malig-
nant skin lesions from multiple centers. The resulting model
produced an area under the curve (AUC) of 0.971.9 In 2022,
Snyder et al10 also used CNN to differentiate H&E images of
melanocytic nevi, Spitz nevi, and malignant melanoma. Their
ultimate tile-classification model correctly predicted patches
within H&E images as belonging to melanoma cells at a
sensitivity of 93%, nevi tiles with a sensitivity of 94%, and
Spitz nevi tiles at a sensitivity of 73%. When evaluated with
unseen cases, the architecture was capable of accurately pre-
dicting diagnosis 85.7% of the time. The authors suggested
that this model could be expanded and improved using more
tissue samples from multiple centers.

One group tested Mechanomind software, a CNN
capable of diagnosing 40 skin disorders based on H&E sam-
ples. The investigators used 300 samples from the United
States and Africa. The algorithm performed with high

sensitivity and specificity. For melanoma identification,
Mechanomind achieved a sensitivity of 97.8% and a specific-
ity of 97.6%.11 Another group compared the performance of 4
neural network models in classifying melanoma versus non-
melanoma in H&E WSIs and tiles of varying pixel sizes. The
most effective model (·20, 512 · 512 pixels) produced an
AUC of 0.821 for WSl classification and 0.936 for tile-level
classification, but detected a high false-positive rate.

Screening Tool for Diagnosing Rare Lesions
Eyelid melanoma makes up ,1% of all cutaneous mel-

anomas.16 This makes correct pathologic interpretation crucial
for treatment choice and patient wellbeing. Wang et al13 devel-
oped a deep learning system to automatically detect melanoma
in the eyelid from 155 H&E-stained WSIs. The researchers
used WSIs to train and evaluate a deep learning model de-
signed to assign patch-level classifications of disease states to
regions extracted from the WSIs. The annotated patches were
used to generate WSI heat maps. Then, random forest models
produced a WSI-level diagnosis. When evaluated for patch
diagnostic capabilities, the model achieved an AUC of 0.989,
an accuracy of 94.9%, a sensitivity of 94.7%, and a specificity
of 95.3%. When the model was evaluated for evaluation of
malignant potential based on the WSI it achieved a sensitivity
of 100%, a specificity of 96.5%, an accuracy of 98.2%, and an
AUC of 0.998. Wang et al17 contributed an effective diagnostic
model that could be implemented as a supplemental tool for
pathologists in the screening of rare skin disorders. Their more
recent study aimed to address the obstacle of limited annotation
by using self-supervised learning. A CNN model was trained
and tested on patch-level classification and WSI-level diagno-
sis. The model achieved an AUC of 0.981 with an accuracy,
sensitivity, and specificity of 90.9%, 85.2%, and 96.3% for the
patch-level classification and an AUC, accuracy, sensitivity,
and specificity of 0.974, 93.8%, 75.0%, and 100%, respec-
tively. Self-supervised CNNs create an opportunity to apply
AI screening tools to rare diseases with limited training
datasets.

FIGURE 2. Pie chart depicting the country of
publication of articles included in this review.
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AI-Pathologist Differential Diagnosis
Discordance

Before AI can be adopted as a casual screening tool, it
is worthwhile to consider how it performs compared with
expert pathologists. Earlier studies have explored the discor-
dance between AI diagnosis and pathologist diagnosis. In
2019, a CNN was trained to differentiate nevi from melanoma
on H&E. Misclassification rates of the neural network were
compared with board-certified pathologists. The study re-
ported a discordance of 18% for melanoma and 20% for
nevi.18 Binary diagnostics (melanoma vs. nevi) are not reflec-
tive of a pathologist’s daily workload. Ba et al19 designed a
program to differentiate WSIs of melanoma and nevi; the
program was tested against pathologists for the identification
of melanoma and nevi. The program predicted ROI, CNN
annotation of probable melanoma patches, and the implemen-
tation of a forest-based slide-level module to produce a final
diagnosis. The program and dermatopathologists were limited
to WSIs to make diagnostic decisions. The pathologists diag-
nosed lesions with a sensitivity of 95.1% and a specificity of
96.0%. When comparing the algorithm’s performance to the
pathologists’, they found that the algorithm had similar sen-
sitivity and specificity. This held true at multiple operating
points. The investigators then applied a scoring system to
consider the harm caused by false-negatives versus false-
positives. The computer program produced a weighted error
score of 1.82%, whereas the 7 dermatopathologists ranged
between 1.36% and 7.27%.

Cazzato et al20 trained a fast random forest algorithm to
classify clusters of pixels from digitized H&E slides as
belonging to malignant melanoma or dysplastic nevi. The fast
random forest algorithm was discordant with the dermatopa-
thologist 17% of the time. This was an improvement from the
observed interpathologist variability of around 25%.
However, these results may be limited by the lack of available
clinical information that practicing pathologists would nor-
mally have access to.

Immunohistochemistry-Based Diagnosis
Immunohistochemistry is vital to the diagnosis of

lesions. In some instances, however, it may be prohibitively
expensive, take a long time, and consume finite amounts of
tissue resources. Research has been conducted to evaluate the
possibility of creating virtual immunohistochemistry assays.
Jackson et al21 trained CNNs to predict SOX10 immunophe-
notypes based on H&E slides of melanocytic neoplasms.
Upon evaluation of this CNN architecture in sorting individ-
ual nuclei, an AUC of 0.942 was achieved.

Nielson et al22 evaluated the utility of virtual immuno-
histochemistry assaying of melanoma images by training
CNN to calculate tumor burden from H&E/SOX10 stains.
The network annotated primary melanoma tumor cells and
normal cells with an accuracy of 100% and 99%, respec-
tively. The CNN calculated the tumor burden at 6% (95%
CI, 21 to 13, P = 0.10), which was discordant with the
pathologists’ tumor burden of 16% (95% CI, 4–28, P =
0.02). Tumor burden is a critical part of molecular tumor
marker interpretation, and thus treatment choice.
Overestimation of tumor burden may hinder proper treatment
protocols. As a result, patients may not be prescribed targeted
therapy, resulting in a decreased likelihood of success.22,23

Future studies may contribute relevant findings by calculating
tumor burden with CNNs trained with different stains. In
addition, they may expand generalizability to other cancer
types.

Rexhepaj et al24 developed a supervised melanoma pat-
tern recognition tool from digital tissue microarray sections.
Tissue sections were immunoassayed for Melan-A, a marker
for melanoma cells, to provide researchers with ground truth.
The resulting images were deconvoluted to separate color
channels from immunostaining and hematoxylin counterstain-
ing. Three classification methods were compared: Naïve
Bayes, random forest, and a support vector machine
(SVM). SVM was found to be the most effective at predicting
melanoma.

FIGURE 3. AI and melanoma derma-
topathology article publication by
year depicting an increase in publi-
cations in recent years. Includes only
articles discussed in this review.
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The aforementioned studies are examples of AI apply-
ing virtual immunohistochemistry as a diagnostic tool.
However, digital image analysis has also been used to find
markers not right for use as a diagnostic tool. Koh et al25 used
a digital image analysis algorithm to compare cyclin D1
expression in immunohistochemically stained tissues in
superficial spreading melanoma and compound nevi.
Results showed no difference in cyclin D1 levels between
lesion groups. Digital immunohistochemistry is a promising
diagnostic tool that could be further evaluated for differenti-
ating melanoma and nevi through different markers.
However, it would be necessary to further compare the virtual
immunohistochemistry marker to the conventional immuno-
histochemistry marker. This is to ensure the continuity of the
traditional mechanisms. Future studies could try this method
using CNNs and PReferentially expressed Antigen in
MElanoma to produce virtual immunohistochemistry assays
capable of diagnosing melanoma.26

Prognostic Potential
AI can learn how to correlate image patterns with

prognostic outcomes. Earlier studies have used transfer
learning to research AI’s ability to predict breast cancer recur-
rence and response to neoadjuvant chemotherapy based on
magnetic resonance imagings.27,28 AI could be used to predict
melanoma disease-free survival based on whole-slide images
resulting in further optimized and individualized treatment
protocols. Comes et al29 investigated a deep learning model
trained to learn prognostic biomarkers from WSIs. The goal
of this experiment was to predict 1-year disease-free survival
in cutaneous melanoma patients. When evaluated for prog-
nostic power, the model had an AUC of 69.5% and median
accuracy of 72.7%.

Kulkarni et al30 presented a deep neural network for
predicting melanoma metastasis and recurrence based on dig-
ital H&E images. The network was trained by pooling sam-
ples from 108 patients from 4 institutions. The model used
CNN combined with a recurrent neural network (RNN). The
CNN was trained to annotate features in H&E digital images.
Then, the RNN analyzed the CNN feature sequence. Distant
metastatic recurrence was selected as the binary classifier to
predict disease-specific survival. The pipeline was then eval-
uated with patients from Yale School of Medicine (YSM) and
Geisinger Health Systems (GHS). This method produced an
AUC of 0.905 (P, 0.0001) for the YSM cohort and 0.880 (P
, 0.0001) for the GHS cohort.

Brinker et al31 investigated the concept of a digital bio-
marker to predict lymph node metastasis using deep learning
analysis of H&E slides. The CNN was trained using variables
associated with lymph node positivity status: patient age,
tumor thickness, and ulceration. These features were matched
to H&E slides from melanoma patients with lymph node
involvement or without lymph node involvement. Results
showed that it was possible to predict lymph node involve-
ment from H&E slides. However, the researchers concluded
that this method requires additional research before it be-
comes clinically relevant.

Automated electronic tumor-infiltrating lymphocytes
(TILs) assessment is another area of deep learning prognostic

investigation. In 1 study, electronic TILs (eTILs) quantifica-
tion was evaluated for its prognostic value as a way to define
the risk of melanoma relapse after surgery. The investigators
analyzed samples from 785 patients diagnosed with mela-
noma between 1994 and 2019 from 5 different institutions.
The software used to analyze the images, QuPath, applied a
machine learning algorithm to name distinct types of cells on
H&E digitized slides. The machine-defined TILs variables
included the proportion of TILs to tumor cells, the ratio of
TILs over total cells, the proportion of TILs to stromal cells,
and the density of TILs over the tumor region. The
researchers also used 11 different antibodies for immunoflu-
orescence staining to investigate TIL immunophenotypes
(CD34+, CD68+, CD56+, CD66b+, FOXP3+, CD8+,
CD14+, CD3+, CD45+, CD20+, and CD4+). The tumor,
stroma, and background components were annotated with cell
segmentation deep learning. Results showed that the assess-
ment of TILs through the use of eTILs quantification deep
learning method can be used to stratify the risk of melanoma
relapse after surgical treatment. They found that eTIL scores
can be prognostic markers in primary melanoma patients.
Increased eTIL proportion within the tumor environment
was associated with improved prognosis for stage I and II
diseases. The study also identified molecular TIL subtypes.
These were predominantly CD3+, CD8+, or CD4+ T cells.32

Before eTILs scores can be clinically implemented to guide
treatment decisions more research is needed to confirm these
findings in a clinical trial. Future studies could also evaluate
eTILs’ predictive value for immunotherapy response. This
approach could potentially enhance machine learning’s prog-
nostic abilities.

Zormpas-Petridis et al33 designed an algorithm called
SuperCRF. Their model used H&E images of melanoma sam-
ples. The investigators used a deep learning network to clas-
sify cells. Using SuperCRF, the researchers found that certain
ratios of immune cells to other cells in the tumor microenvi-
ronment were associated with poor survival rates in mela-
noma patients. SuperCRF showed that an elevated ratio
of lymphocytes to all lymphocytes within the stromal com-
partment correlated with a worse prognosis. In addition,
SuperCRF also showed that a high ratio of stromal cells to
all cells was associated with poor survival in melanoma
patients. Overall, SuperCRF is a valuable tool that could help
doctors and researchers enhance their understanding of the
tumor microenvironment, find reliable predictors of survival,
and predict patient response to therapy.

Mitosis Detection
Mitotic rate has been shown to have utility as a

prognostic tool in melanoma.34,35 Although the American
Joint Committee on Cancer no longer includes mitotic rate
as a component for staging, computer-assisted models could
enhance pathologists’ accuracy and consistency in mitotic
figure detection, thus ensuring more efficient and accurate
treatment plans and prognostic predictions.36

In 2017, Andres et al37 designed and evaluated
iDermatoPath, a tool trained to detect mitoses in H&E stains
of melanoma. The system detected the tumor region, anno-
tated mitoses, and ranked them into risk categories. When
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compared with tumor region ground truth, iDermatoPath
achieved a dice coefficient of 0.72. In addition, the tool
achieved an accuracy of 83% for mitosis detection.
Although this tool may accurately identify mitotic bodies, it
is pertinent to continue training the tool with pathologist-
annotated slides to improve the dice coefficient and improve
agreement between the computer-generated image and the
pathologist ground truth image.

Nofallah et al38 compared 2 pre-existing CNN models,
ESPNet and DenseNet, for the detection of mitotic nuclei
versus non-mitotic nuclei on skin biopsy images. The
ESPNet and DenseNet models achieved high accuracy, sen-
sitivity, and specificity in classifying mitoses. DenseNet per-
formed slightly better than ESPNet, but not at a level that was
statistically significant. DenseNet and ESPNet were then
compared with 2 other state-of-the-art models, ResNet and
ShuffleNet, using the publicly accessible MITOS breast
biopsy dataset. DenseNet achieved the highest F score of
the 4 architectures tested, whereas ResNet was the most effi-
cient architecture. The paper shows that CNNs can accurately
detect mitotic figures in WSIs from multiple cancer types.
This could be a diagnostic and prognostic tool for patholo-
gists and researchers. This paper also shows that architecture
designed for mitotic identification can be evaluated and tested
on multiple cancer types.

Hale et al39 used a model to detect immunopositivity in
mitotically active cells using 2 mitosis-specific antibodies.
The study compared manual and computer-assisted methods
to detect and measure mitotic rates in melanoma cells. Tissue
sections were stained with antibodies antimitotic protein
monoclonal-2 (MPM-2) and antiphosphohistone-H3 (PHH3)
to visualize mitotic figures. PHH3 mitotic rate was more
closely correlated with progression-free survival after
computer-assisted image analysis (P = 0.02). No advantage
was clear over conventional mitotic rate determination by
MPM-2 or PHH3 regardless of the detection method.

Couetil et al40 used multiple machine learning tech-
niques to analyze melanoma H&E images and identify pre-
dictors of metastasis and survival. Tissue samples came from
multicenter cohorts with stage I-III melanoma. Features asso-
ciated with improved survival included major axis length
distribution entropy and major axis length SD. Major axis
length distribution corresponds to increased cell size varia-
tion. This can be interpreted as an increase in cellular hetero-
geneity (inflammatory cells, tumor cells, and stromal cells).
Major axis length bin 4 represents the length of the major axis
of tumor cells. The pipeline achieved F1 scores of 0.72 and
0.73 for predicting melanoma survival and metastasis risk,
respectively. The results show that machine learning models
can accurately and sensitively predict 5-year survival and
metastasis risks using interpretable features of cellular and
nuclear morphology. Image feature extraction could 1 day
help clinicians find patients at elevated risk of metastasis for
increased surveillance and improved precision treatment.

Personalized Medicine
AI may help physicians predict patient response to

individualized treatments. Hu et al41 used deep learning to
predict immune-checkpoint blockade response in melanoma

based on H&E images. The CNN was able to differentiate
anti-PD-1 responders versus nonresponders with an AUC of
0.778 (95% CI, 63.8–90.5).

B-raf proto-oncogene (BRAF) mutation is a relevant
prognostic component of melanoma diagnosis.42–44 Targeted
BRAF inhibitor therapies have improved outcomes in patients
with advanced late-stage melanoma.45 Testing for BRAF is
becoming an increasingly important component of treatment
selection. Currently, BRAF mutations are detected via Sanger
sequencing, polymerase chain reaction, mass spectrometry,
immunohistochemistry, and next-generation sequencing.
Figueroa-Silva et al46 tested 3 machine learning platforms
(XGBoost, LightGBM, and ANN) to predict the presence of
BRAF V600E mutations based on histopathologic and clini-
cal features including Breslow thickness, age at diagnosis,
mitoses, morphology, ulceration, pigmentation, epidermal
hyperplasia, and melanoma nest formation rate. BRAF-
positive melanomas had greater Breslow thickness and mito-
ses. The researcher’s highest-performing machine learning
algorithm (XGBoost) produced an AUC of 0.704.
Interestingly, the machine learning models incorrectly pre-
dicted that 5 patients had the BRAF V600E mutation.
Further genomic analysis revealed that of those 5 patients, 4
had different BRAF mutations including BRAF V600E/E2/D
and BRAF K601E. Although less common, these mutations
are also relevant clinical variables. This study suggests AI
could be a sensitive screening tool for BRAF mutations, thus
it is another example of AI aiding in enhanced individualized
therapy and improved prognostics.

Mund et al47 introduced an innovative technique called
deep visual proteomics (DVP), which combines submicron
resolution imaging, AI interpretation and phenotyping of
WSI, and evaluation with ultrasensitive proteomics. The
researchers designed this model using tissue from malignant
tissue biopsies including melanoma. Based on AI cell type
interpretation, investigators extracted cells and/or nuclei via
lasers. They evaluated intracellular proteins through mass
spectrometry. Using this method, researchers could link cer-
tain proteins to specific cells or cellular components while
tracking their location within the tissue. Researchers also used
DVP to find changes in proteins as the melanoma progressed.
DVP data can be applied to explore proteome variation at the
phenotypic level. This will contribute to the development of
highly personalized medicine and improved prognosis. A
complete summary of AI models explored in this review is
provided in Table 2.

CONCLUSIONS
The argument for AI inclusion in clinical practice

should not be to replace the role of the pathologist. The
limited number of dermatologic conditions used to train
models emphasizes the fact that AI is not a replacement for
expert pathologists. Instead, AI could be developed in such a
way that it becomes a highly beneficial tool for screening,
reducing workloads, and decreasing interobserver differ-
ences, particularly in analyzing the more complex and time-
consuming diagnoses pathologists face.48 This is especially
helpful in cases where tissue availability is limited, making
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TABLE 2. Characteristics of AI Models Used in Review Studies

Article Title
Lead
Author

Year
Published AI Model

Training and Validation
Dataset/Patches/WSIs/No.

of Patients (n) Pixel Level

Internal
Validation

Performance
Metrics

External
Validation

Dataset/WSIs/No.
of Patients (n)

External
Validation

Performance
Metrics

Detection of malignant
melanoma in H&E-
stained images using
deep learning
techniques

Alheejawi 2021 INS-Net CNN 70 H&E-images/4 WSIs 960 · 960 px N/A 15 H&E images/4
WSIs

Dice
Coefficient:

nuclei
segmentation
(89.17), nuclei
classification
(86.48),
melanoma

segmentation
(85.10),
melanoma
detection
(85.10)

iDermatoPath: a novel
software tool for mitosis
detection in H&E-
stained tissue
sections of malignant
melanoma

Andres 2017 iDermatoPath 7 WSIs 105 · 105 px Mitosis
detection
accuracy

(81.4%), non-
mitosis detec-
tion accuracy

(84.1%)

78 WSIs Dice coefficient
(0.72), accuracy

(83%)

Objective assessment of
tumor infiltrating
lymphocytes as a
prognostic marker in
melanoma using
machine learning
algorithms

Aung 2022 NN192 n = 139 0.4986 mm ·
0.4986 mm

N/A n = 764 AUC: 0.793

Diagnostic assessment
of deep learning for
melanocytic lesions
using whole-slide path-
ologic images

Ba 2021 CNN 781 WSIs 0.25 mm ·
0.25 mm

Weighted Error
Scoring: deep

learning
algorithm

(1.82%), mean
weighted error

(4.61%)

104 WSIs Specificity
(97.3%),
sensitivity
(96.5%)

Deep learning approach
to predict sentinel
lymph node status
directly from routine
histology of primary
melanoma tumours

Brinker 2021 AutoPrognosis 200 WSIs 256 · 256 px N/A 88 WSIs AUC:
Unmatched

cases (61.8%),
matched cases

(55.0%)

Performance of
automated classification
of diagnostic entities in
dermatopathology
validated on multisite
data representing the
real-world variability of
pathology workload

Brodsky 2022 CNN N/A 0.26 lm/px N/A 300 H&E images Sensitivity
97.8%, 100%,
99%; specificity

of 97.6%,
97.9%, 100%
for melanoma,
nevi, basal cell
carcinoma
respectively

Dermatopathology of
malignant melanoma in
the era of artificial
intelligence: a single
institutional experience

Cazzato 2022 Fast random
forest algorithm

125 WSI/n = 63 1280 · 1080
px

Accuracy
(92%),

sensitivity
(85%),

specificity
(99%)

N/A Discrepancy
(17%)

A deep learning model
based on whole-slide
images to predict
disease-free survival in
cutaneous melanoma
patients

Comes 2022 ResSVM,
DenseSVM,

InceptionSVM

CPTAC-CM/n = 43 224 · 224 px AUC: 57.3% n = 11 AUC: ResSVM
(64.7%),

DenseSVM
(64.8%),

InceptionSVM
(64.9%)

Predicting melanoma
survival and metastasis
with interpretable
histopathologic features
and machine learning
models

Couetil 2022 CNN 90 WSIs 512 · 512 px N/A 126 WSI/n = 90 F1 scores: 0.72,
0.73

(continued on next page )
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TABLE 2. (Continued ) Characteristics of AI Models Used in Review Studies

Article Title
Lead
Author

Year
Published AI Model

Training and Validation
Dataset/Patches/WSIs/No.

of Patients (n) Pixel Level

Internal
Validation

Performance
Metrics

External
Validation

Dataset/WSIs/No.
of Patients (n)

External
Validation

Performance
Metrics

Machine learning to
predict overall short-
term mortality in cuta-
neous melanoma

Cozzolino 2023 Logistic
Regression
classifier,

Support-Vector
Machine,
Random
Forest,
Gradient

Boosting, k-
Nearest

Neighbors,
Deep Neural
Network

n = 2646 N/A N/A n = 265 Accuracy: Deep
Neural network
(91%), random
forest model

(88%)

Recognition of
cutaneous melanoma on
digitized
histopathologic slides
via artificial intelligence
algorithm

DeLogu 2020 CNN 3518 patches/60 WSIs 299 · 299 px N/A 40 WSIs/791 patches
of healthy tissue, 1122
patches of pathologic

tissue

Accuracy
(96.5%),
sensitivity
(95.7%),
specificity
(97.7%), F1
score (96.5%)

Advantages of manual
and automatic
computer-aided com-
pared to traditional his-
topathologic diagnosis
of melanoma: A pilot
study

Dika 2022 CNN N/A 0.23 mm/px N/A 70 H&E images Discrepancy
(19%)

Machine learning
techniques in predicting
braf mutation status in
cutaneous melanoma
from clinical and
histopathologic features

Figueroa-
Silva

2022 Random
Forest, Support

Vector
Machine, and

Extreme
Gradient
Boosting

n = 106 N/A AUC: 87.8% N/A N/A

Mitotic rate in
melanoma: prognostic
value of
immunostaining and
computer-assisted
image analysis

Hale 2013 Computer-
assisted image

analysis

380 WSIs/n = 190 N/A P = 0.02 N/A N/A

Pathologist-level
classification of
histopathologic
melanoma images with
deep neural networks

Hekler 2019 CNN 595 H&E images N/A N/A 100 H&E images AI-pathologist
diiscordance:

19%

Deep learning
outperformed 11
pathologists in the
classification of
histopathologic
melanoma images

Hekler 2019 CNN 595 H&E images N/A N/A 101 H&E images Sensitivity
(76%),

specificity
(60%), accuracy

(68%)

Using deep learning to
predict anti-PD-1
response in melanoma
and lung cancer patients
from histopathology
images

Hu 2021 CNN 190 H&E images 256 · 256
tiles

N/A 109 H&E images AUC: 77.8% on
54 melanoma
H&E samples.,
64.5% on 55
lung cancer
samples

Multiphoton
microscopy of the
dermoepidermal
junction and automated
identification of
dysplastic tissues with
deep learning

Huttunen 2020 GoogLeNet
CNN

1.2 million WSI 75 · 25 mm N/A 108 WSIs Specificity
(95.2%),
sensitivity
(95.8%),
accuracy
(95.4%)

A machine learning
algorithm for simulating
immunohistochemistry:
development of SOX10
virtual IHC and

Jackson 2020 vIHC CNN 16,309 H&E images 500 · 500 px N/A 1813 H&E images AUC (0.9422),
sensitivity
(91.62%),
specificity
(85.66%)
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TABLE 2. (Continued ) Characteristics of AI Models Used in Review Studies

Article Title
Lead
Author

Year
Published AI Model

Training and Validation
Dataset/Patches/WSIs/No.

of Patients (n) Pixel Level

Internal
Validation

Performance
Metrics

External
Validation

Dataset/WSIs/No.
of Patients (n)

External
Validation

Performance
Metrics

evaluation on primarily
melanocytic neoplasms

Deep learning for the
detection of anatomical
tissue structures and
neoplasms of the skin
on scanned
histopathologic tissue
sections

Kriegsmann 2022 EfficientNetV2 101,313 image tiles/n = 1334
patients

395 · 395 px Matthews
correlation
coefficient
(0.96750)

27,239 tiles/n = 347 Accuracy: 84%

Deep learning based on
standard H&E images
of primary melanoma
tumors identifies
patients at risk for
visceral recurrence and
death

Kulkarni 2020 CNN n = 108 N/A N/A n = 104 AUC: 0.905
(YSM), 0.880

(GHS)

Application of deep
learning on the
prognosis of cutaneous
melanoma based on
full-scan pathology
images

Li 2022 Deep learning
(VGG-19),
machine
Learning
(SVM)

248 WSIs/n = 42 patients N/A 5-fold cross-
validation learn-
ing rate (0.01)

64 WSIs/n = 11
patients

Accuracy: deep
learning
(0.769);
machine

learning (0.65)

Deep learning approach
to classify cutaneous
melanoma in a whole-
slide image

Li 2023 EfficientNetB1
CNN

66 WSIs 224 · 224 px,
512 · 512 px,
768 · 768 px,
1024 · 1024

px

Adaptive
moment
estimation
(ADAM)
optimizer

learning rate
(0.001)

90 WSIs AUC: 0.821
(whole-slide
image level),

0.936 (tile level)

Automated diagnosis
and localization of
melanoma from skin
histopathology slides
using deep learning: a
multicenter study

Li 2021 CNN 596 WSIs 224 · 224 px Learning rate
(0.1)

105 WSIs AUROC: 0.971

Deep visual proteomics
defines single-cell iden-
tity and heterogeneity

Mund 2022 Unsupervised
phenotype

finder model,
deep learning,

machine
learning

nucleAIzer 3 0.22 mm/px,
5.86 mm/px

F1 scores:
melanoma
nucleus
(0.5498),
melanoma
cytoplasm
(0.5336)

N/A N/A

Computer-assisted
annotation of digital
H&E/SOX10 dual
stains generates high-
performing convolu-
tional neural network
for calculating tumor
burden in H&E-stained
cutaneous melanoma

Nielsen 2022 CNN 19 WSIs 512 · 512 px N/A 6 WSIs Sensitivity
(88.8%),
specificity
(94.4%),
accuracy
(92.6%)

Machine learning
techniques for mitoses
classification

Nofallah 2021 ESPNet,
DenseNet,
ResNet, and
ShuffleNet
CNNs

6 WSIs 101 · 101
patches

Precision, recall,
and F-score:

ESPNet (0.961,
0.976, 0.968),
DenseNet

(0.984, 0.968,
0.976)

MITOS/6 WSIs Precision, recall,
F-score:

ESPNet: (0.916,
0.866, 0.890),
DenseNet

(0.939, 0.916,
0.927), ResNet
(0.931, 0.807,

0.865),
ShuffleNet

(0.968, 0.753,
0.847)

A texture-based pattern
recognition approach to
distinguish melanoma
from non-melanoma cells
in histopathologic tissue
microarray sections

Rexhepaj 2013 Naïve Bayes
Network,

Random Forest
classifier,

Support Vector
Machine

Melan-A_DISCOVERY/
n = 264

N/A N/A n = 157 AUC: 0.663–
0.734

(continued on next page )
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diagnosis potentially more difficult. In addition, deep learn-
ing networks may have valuable utility to ensure correct,
cost-effective, and prompt diagnosis in cases where referring
clinicians may have less experience, such as eyelid
melanoma.

Dermatopathology AI differential diagnosis pipelines
could promote medicine’s smart technologic advancement as
a smart screening tool for benign and malignant lesions. Deep
learning could improve patient quality of life through the risk

reduction of harm caused by false positives and false nega-
tives. In addition, future AI differential diagnostic studies
could evaluate bias in lesion detection on samples derived
from patients with different Fitzpatrick tones.

Pathologists could use these models to increase their
confidence in diagnosing difficult cases. Future research
could examine the impact of deep learning output on clinical
decision-making and patient well-being. Furthermore, incor-
porating AI in genetic mutation detection and screening

TABLE 2. (Continued ) Characteristics of AI Models Used in Review Studies

Article Title
Lead
Author

Year
Published AI Model

Training and Validation
Dataset/Patches/WSIs/No.

of Patients (n) Pixel Level

Internal
Validation

Performance
Metrics

External
Validation

Dataset/WSIs/No.
of Patients (n)

External
Validation

Performance
Metrics

Histologic screening of
malignant melanoma,
spitz, dermal, and
junctional melanocytic
nevi using a deep
learning model

Snyder 2022 CNN ResNet50 22 WSIs 256 · 256 px N/A 39 WSIs Accuracy:
irrelevant
(96%),

melanoma
(93%),

melanocytic
nevi (94%),
Spitz nevi
(73%)

Computer-aided
assessment of
melanocytic lesions by
means of a mitosis
algorithm

Sturm 2022 Computer-
aided diagnosis

102 WSIs N/A N/A N/A Accuracy: 89%,
excluding
nevoid

melanoma
(n = 89),

comparable with
and without the
use of AI (89%

vs. 90%)

Automated
identification of
malignancy in whole-
slide pathologic images:
identification of eyelid
malignant melanoma in
gigapixel pathologic
slides using deep learn-
ing

Wang 2020 Deep learning
system

44 WSIs N/A N/A 111 WSIs Patch Level:
AUC (98.9%),

accuracy
(94.9%),
sensitivity
(94.7%),
specificity

(95.3%); WSI
Level: AUC
(99.8%),
accuracy
(98.2%),
sensitivity
(100%),
specificity
(96.5%)

Prediction of early-stage
melanoma recurrence
using clinical and histo-
pathologic features

Wang 2022 Support Vector
Machine,
Gradient
Boosting,
Random

Forest, Logistic
Regression,
Multilayer
Perceptron

1172 WSIs N/A Recurrence
classification
AUC (0.845),
time-to-event

prediction AUC
(0.853)

548 WSIs AUC:
recurrence

classification
(81.2%), time-
to-event pre-
diction (82%)

Superpixel-Based
Conditional Random
Fields (SuperCRF):
incorporating global and
local context for
enhanced deep learning
in melanoma
histopathology

Zormpas-
Petridis

2019 SuperCRF
CNN

432 tiles 2000 · 2000
px

Accuracy
(97.7%) at

29,997 super px,
Accuracy

(97.1%) at 1798
super px

290 tiles Accuracy:
96.48%

Self-supervised learning
mechanism for
identification of eyelid
malignant melanoma in
pathologic slides with
limited annotation

Wang 2022 SSL CNN PCam dataset N/A AUC (0.981) ZJU-2 dataset AUC: WSI-
level (97.4%),
patch-level
(98.1%)
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through the dermatopathologic route could reduce the diag-
nostic burden and prohibitive costs patients may experience.

There is still ample room for improvement in computer-
aided diagnostic tools before they can be implemented
outside of a research setting. Sturm et al49 used WSI to study
H&E-stained melanocytic skin lesions using an AI mitosis
detection algorithm for melanocytic lesion diagnosis. It was
concluded that the mitosis algorithm can be used to evaluate
melanocytic skin lesions; however, it does not yet have utility
in a clinical setting because the algorithm produces too many
false-positive mitoses. In the future, AI could be regarded as a
tool to observe the unobservable with the human eye. Moving
forward, standardized approaches could be taken to develop a
general model that could reduce intermodel variability. To do
this, AI algorithms must be trained using massive amounts of
data. Kriegsmann et al50 sought to address the lack of publicly
available annotated data and learning models designed to
differentiate common skin cancers based on H&E images.
They developed a curated dataset that could be used by other
researchers to train and test future learning models. Future AI
dermatopathology exploration should focus on the develop-
ment of randomized clinical trials. This is especially essential
when samples from independent institutions are tested on
models trained on curated datasets.

AI use in clinical decision-making and research raises
ethical concerns. Bias is a significant issue. A well-designed
and balanced training set is crucial for accurate, precise, and
helpful AI output. As of now, it is impossible to supply bias-
free data sets. As such, AI outputs are currently bound to be
affected by these biases.51 These biased outputs may have
profound consequences. As an example, a dataset used to
train an AI algorithm may not perform as well for certain
populations if it does not supply enough representative and
accurate data or if it holds harmful data. The result may be an
escalation in the disparities that already exist in health care
and research. There could be consequences associated with
this biased practice. These consequences could range from
exacerbating health care disparities in historically marginal-
ized communities to inaccurately diagnosing diseases at an
early stage of development. To ensure patient well-being, it is
essential to develop methods to mitigate bias in input–output
before AI implementation in clinical practice.

Explainability is another concern for AI in health care
and research settings. Patients and health care providers
should understand how AI algorithms arrive at their decisions
to assess their reliability and accuracy when making diagno-
ses and choosing treatments. The inability to understand how
an AI system arrives at its decision has been termed the
“black box problem.” Without explainability, can providers
and researchers truly educate patients such that they can give
informed consent? Sauter et al52 investigated the utility of
automated concept-based explanation in comprehending
CNN image analysis wherein results showed that automated
concept-based explanation could be an effective tool for ana-
lyzing CNN decision-making and enhancing researcher/
physician diagnostic and treatment decisions while improving
the transparency of CNNs. When mechanisms are properly
understood and data sets are used responsibly, AI could opti-
mize pathology workflows, enhance diagnostic accuracy, help

the provider engage in prognostic prediction, and find indi-
vidualized treatments. AI has the potential to revolutionize
medicine and help health care workers prioritize patient
well-being.
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