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The Ultrasound Physician Branch of the Chinese Medical Doctor Association sought to develop evidence-based
recommendations on the operational standards for 2-D shear wave elastography examination of musculoskeletal
tissues. A consensus panel of 22 Chinese musculoskeletal ultrasound experts reviewed current scientific evidence
and proposed a set of 12 recommendations for 13 key issues, including instruments, operating methods, influenc-
ing factors and image interpretation. A final consensus was reached through discussion and voting. On the basis
of research evidence and expert opinions, the strength of recommendation for each proposition was assessed
using a visual analog scale, while further emphasizing the best available evidence during the question-and-answer
session. These expert consensus guidelines encourage facilitation of the standardization of clinical practices for
collecting and reporting shear wave elastography data.
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Introduction

Elastography, particularly the latest 2-D shear wave elastography
(SWE) technology, has rapidly advanced with respect to its applica-
tions in muscles, tendons, ligaments, skin and peripheral nerves. Two-
dimensional SWE is commonly used to evaluate the biomechanical and
structural properties of musculoskeletal tissue. Compared with superfi-
cial glandular tissue and abdominal visceral organs, musculoskeletal
tissue exhibits more obvious anisotropy, which means it has distinct
structural properties. The elasticity of muscle and tendons changes
with different muscle activation states [1,2]. Therefore, no standard-
ized operation can significantly affect the accuracy of shear wave
velocity measurements. Consequently, clinical guidance on operational
standards is urgently needed to enhance measurement accuracy and
establish a foundation for further promotion and application. The
World Federation for Ultrasound in Medicine and Biology (WFUMB)
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and the European Federation of Societies for Ultrasound in Medicine
and Biology (EFSUMB) have produced some guidelines on the method
used to examine SWE ultrasound in clinical applications [3−7]. Some
research articles have emphasized the significance of manipulation
methods when using SWE in musculoskeletal tissue [8−13]. However,
there is still a lack of comprehensive guidance that focuses specifically
on SWE examination techniques for musculoskeletal tissues. To this
end, the Ultrasound Physician Branch of the Chinese Medical Doctor
Association organized Chinese musculoskeletal ultrasound experts to
form an expert consensus on the operational standards for 2-D SWE
examination of musculoskeletal tissues.
Methods

This study was conducted by the Ultrasound Physician Branch of the
Chinese Medical Doctor Association, which organized an expert group
composed 22 Chinese musculoskeletal ultrasound experts with experi-
ence in SWE. Their mean work experience in ultrasound was 23.45 ±
3.78 y (range: 14−30 y), and in SWE, 10.14 ± 3.21 y (range: 5−15 y)
(see expert group in Appendix S1 [online only]).The purpose of this
study was to establish key technical issues regarding the application of
2-D SWE in musculoskeletal ultrasound examination, identify and evalu-
ate available evidence and provide recommendations based on evidence
and expert opinions.

The Work Group held two task force meetings. At the initial working
group meeting, the experts reached consensus on key issues related to
the operation and interpretation of images in musculoskeletal ultra-
sound examination with 2-D SWE. Thirteen issues were selected as the
focus of the study, including instruments, operating methods, influenc-
ing factors and image interpretation (see research questions in
Appendix S2 [online only]).

Two experts (L.Q. and X.H.) systematically searched for articles on
the application of SWE in musculoskeletal tissue (see search strategy in
Appendix S3 [online only]) to find relevant research evidence as com-
prehensively as possible. After two experts (J.Z. and X.H.) screened the
titles and abstracts of all articles using pre-determined inclusion and
exclusion criteria, four experts (J.Z., D.T., H.L. and J.L.) independently
reviewed the full text of potentially relevant articles. Studies on the use
of 2-D SWE in the musculoskeletal tissues published in English up to Jan-
uary 2023 were included. Musculoskeletal tissues included were
muscles, tendons, joints, peripheral nerves, skin and other soft tissues.
Study types included randomized controlled trials, systematic reviews,
controlled clinical trials, cohort, case−control and diagnostic studies.
Studies were considered for inclusion when they provided information
on the methodology, figures and study results of SWE in musculoskeletal
tissue. The articles that did not meet the aforementioned criteria, espe-
cially those that did not provide a detailed description of SWE examina-
tion methods, were excluded. Each included article was assessed with
respect to quality using the revised tool for the Quality Assessment of
Diagnostic Accuracy Studies (QUADAS-2) for guidance [14,15].

At the second meeting, the expert group proposed 12 recommenda-
tions for 13 clinical questions based on the results of the literature
review and reached a final consensus through discussion and voting.
Recommendation for a particular question was approved if >75% of the
experts voted in favor of the recommendation at the first round. The
level of evidence of each recommendation was determined according to
the study design, using the Oxford Centre for Evidence Based Medicine
(OCEBM) 2011 criteria. The expert group anonymously provided
strength of recommendation (SOR) based on a score using a 0−10 visual
analog scale (VAS; 0 = not recommended at all, 10 = completely rec-
ommended). The score reflects the strength of research evidence and the
level of clinical expertise. Consensus was defined as a mean SOR ≥7 and
with at least two-thirds of participants having an SOR ≥7. On the basis
of the collection and review of all data, the best available evidence was
further emphasized during the question-and-answer period.
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Results

The systematic literature review yielded 5000 articles through Janu-
ary 2023, of which 2888 were duplicates. Of the remaining 2112
articles, 361 were selected based on the titles and abstracts. After the
full text was read, 112 articles were finally retained, and an additional
11 articles were found through manual searching, resulting in a total of
123 articles included.

The expert panel proposed 12 recommendations, which were dis-
cussed, and its final wording was adjusted during the closing meeting in
July 2023. The recommendations, SOR (mean VAS and 95% confidence
interval [CI]) and levels of evidence are outlined in Table 1.

Recommendation 1

When comparing shear wave velocity, it is recommended that the
same configurations be used, not only for the ultrasound equipment and
probe but also for the software and measurement depth.

Strength of recommendation
9.59 (95% CI: 9.17−10.0). The technology for generating and track-

ing shear waves, as well as the methods used for calculation, differs
among ultrasound equipment from different manufacturers, leading to
different shear wave velocities for the same detection target [16−24]. In
addition, because of differences in shear wave frequencies, different
probes for the same equipment can also affect the comparability of mea-
surement results [12,17,20,21,25−29]. The depth of the measurements
may change the shape of the focal spot and affect the magnitude of the
push, consequently affecting the frequency spectrum of the push and,
subsequently, the measurement of shear waves. For comparative evalua-
tion of the same study object and the changes in shear waves before and
after treatment, it is recommended that the same model be used for not
only the equipment and probe but also for the software and measure-
ment depth.

Recommendation 2

Pre-set conditions for musculoskeletal tissue should be used during
SWE examination. When measuring harder tissues or muscles with
increased tension, the range of the instrument may underestimate tissue
hardness or make it difficult to produce images.

Strength of recommendation
8.73 (95% CI: 8.18−9.28). The shear wave velocity of soft tissues is

generally between 1 and 10 m/s, which can be imaged and measured by
commercial ultrasound instruments in relaxed muscles, peripheral
nerves and other tissues with low shear wave velocity. However, in tis-
sues such as scars, highly fibrotic tissues, cartilage, tendons and muscles
with high tension, the shear wave velocity may exceed 15−20 m/s
[30−32]. This may be higher than the maximum range of the shear
wave velocity of commercial ultrasound instruments, resulting in under-
estimated shear wave velocity or difficulty in imaging [13,33−38]. The
pre-set conditions for musculoskeletal tissue generally set the range of
shear wave velocity to the highest range of the instrument (Fig. 1).

Recommendation 3

For SWE of superficial tissues, it is recommended that higher-fre-
quency linear array probes be used.

Strength of recommendation
8.91 (95% CI: 8.52−9.29). The penetration depth of high-frequency

linear array probes is limited, but currently, wideband probes such as
18 MHz linear array probes are commonly used to obtain good spatial
resolution of musculoskeletal tissue within a 3 cm depth. Probes with
different frequencies have different excitation pulse frequencies, and
ational Library of Health and Social Security de ClinicalKey.es por Elsevier en 
 autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.



Table 1
Recommendations for operational standards for SWE of musculoskeletal tissues

Recommendation SOR, mean VAS
(95% CI)

Level of
evidence

1. When comparing shear wave velocity, it is recommended that the same configurations be used, not only for the ultrasound equipment
and probe but also for the software and measurement depth.

9.59 (9.17−10.00) III

2. Pre-set conditions for musculoskeletal tissue should be used during SWE examination. When measuring harder tissues or muscles with
increased tension, the range of the instrument may underestimate tissue hardness or make it difficult to produce images.

8.73 (8.18−9.28) III

3. For SWE of superficial tissues, it is recommended that higher-frequency linear array probes be used. 8.91 (8.52−9.29) III
4. The patient’s position should be selected based on the purpose of the examination, as the position and posture of the joint can affect

tissue tension.
9.59 (9.17−10.00) IIb

5. Prior to obtaining SWE, high-quality grayscale images should be acquired. The musculoskeletal tissue thickness and the distribution of
color blood flow in the region of measurements should be estimated prior to elastography measurement.

9.45 (9.07−9.83) III−Ⅳ

6. During SWE examination, the measurements should be selected after the image is stable for a few seconds, that is, typically 5 s, to
ensure the homogeneity and stability of the elastography. Additionally, care should be taken to avoid artifacts caused by probe jitter
or patient movement during imaging.

9.41 (8.94−9.88) III−Ⅳ

7. In examination of musculoskeletal soft tissue, application of pressure to the skin by the probe should be avoided. For superficial tis-
sues, a certain thickness of ultrasound gel pad or coupling agent can be used, and the probe should not directly contact the skin.

9.14 (8.58−9.69) III−Ⅳ

8. In examination of tissues such as muscles, tendons and nerves, the ultrasound beam should be perpendicular to the examined tissue.
Notably, the measurements vary with the orientation of the probe, and measurements along the long-axis orientations are preferred.
In measurement of shear wave velocity along the long axis of muscle fibers or nerves, the angle between the ultrasound beams and the
structure should not exceed 20°.

9.09 (8.68−9.50) III−Ⅳ

9. The optimal depth for detecting targets with high-frequency linear array probes is 1−3 cm and should not exceed 4 cm. For very
superficial tissues, ultrasound gel pads or coupling agents should be used to increase the distance between the probe and the target.

9.23 (8.84−9.61) III

10. The size of the ROI should be set based on the target, as it affects the shear wave measurements. The mean value is preferred for evalu-
ating the overall elasticity of tissue, while for localized lesions, the mean or maximum value should be selected as needed.

9.36 (8.96−9.76) III

11. The shear wave measurements should be expressed as shear wave speed (unit: m/s) and not stiffness (Young’s modulus or shear modu-
lus in pascals).

9.45 (9.07−9.83) III−Ⅳ

12. When shear wave measurements are conducted, it is recommended that measurements in the pseudo-image area, near bones and at the
edges of the elasticity images are avoided.

9.73 (9.48−9.97) III

Categories of evidence: Ia, evidence for meta-analysis of randomized controlled trials; Ib, evidence from at least one randomized controlled trial; Ⅱa, evi-
dence from at least one controlled study without randomization; IIb, evidence from at least one other type of quasi-experimental study; III, evidence from
non-experimental descriptive studies, such as comparative studies, correlation studies and case−control studies; IV, evidence from expert committee reports
or opinions or clinical experience of respected authorities, or both.
CI, confidence interval; ROI, region of interest; SOR, strength of recommendation; SWE, shear wave elastography; VAS, visual analog scale (0−10; 0 = not
recommended at all, 10 = fully recommended).

Figure 1. Shear wave elastography of the Achilles tendon during ankle dorsiflexion, revealing a maximum shear wave elastography of 16.3 m/s, which exceeds the
range limit of the instrument. This image was acquired with the SL15-4 probe of the Supersonic Aixplorer.
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Figure 2. Shear wave velocity of the biceps brachii muscle was measured using high-frequency probes of different frequencies (a: 15 MHz probe, b: 10 MHz probe),
and the mean values measured with 15 and 10 MHz probes were 1.7 and 1.8 m/s, respectively. However, the 15 MHz probe can provide better grayscale ultrasound
resolution. These two images were acquired with the SL15-4 and SL10-2 probes of the Supersonic Aixplorer, respectively.

J. Zhu et al. Ultrasound in Medicine& Biology 50 (2024) 175−183
high-frequency probes have greater attenuation. Higher-frequency
probes generate lower shear wave velocities [12,13,24,28,39,40]. How-
ever, clinical practice has revealed that there are no significant differen-
ces between different high-frequency linear array probes of the same
instrument for superficial tissues less than 3 cm in depth within the fre-
quency range of 4−18 MHz [24,39]. Notably, the color coverage range
of elastic maps obtained using high-frequency probes is reduced
[13,28]. However, the current evidence is limited to studies on in vitro
models or media with low shear wave velocities, and further research is
needed to explore the differences between tissues with higher shear
wave velocities such as tendons and ligaments (Fig. 2).

Recommendation 4

The patient’s position should be selected based on the purpose of the
examination, as the position and posture of the joint can affect tissue
tension.

Strength of recommendation
9.59 (95% CI: 9.17−10.0). The position and posture of the joint

affect tissue tension, including muscle, tendon and nerve tension, which
in turn affect shear wave measurements [10,29,31,41]. Shear wave
178
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measurements are correlated with muscle activity level and tension, and
shear wave velocity is linearly correlated with tissue tension. An
increase in load will boost the shear wave velocity [42−47]. Shear wave
velocity differs under different tension states, with the lowest shear
wave measurements observed when muscles are relaxed [3,7,48−50].
Different limb positions also affect the tension of surrounding nerves,
resulting in changes in shear wave measurements [51,52] (Fig. 3).

Recommendation 5

Prior to obtaining SWE, high-quality grayscale images should be
acquired. The musculoskeletal tissues thickness and the distribution of
color blood flow in the region of measurements should be estimated
prior to elastography measurement.

Strength of recommendation
9.45 (95% CI: 9.07−9.83). The generation, tracking and calculation

of shear waves are based on grayscale ultrasound images, so it is neces-
sary to obtain the optimal grayscale image first [3,7,10,12,40,53]. Clear
grayscale images also facilitate accurate sampling of the region of inter-
est (ROI). As the shear wavelengths are greater than the tissue thickness
leading to guided wave propagation, the shear wave speed will decrease
ational Library of Health and Social Security de ClinicalKey.es por Elsevier en 
 autorización. Copyright ©2024. Elsevier Inc. Todos los derechos reservados.



Figure 3. Shear wave measurements of biceps brachii muscle under different tension states indicated that the measurement increased with increasing tension.
(a) Relaxed biceps brachii muscle. (b) Contracted biceps brachii muscle. These two images were acquired with the SL15-4 probe of the Supersonic Aixplorer.

Figure 4. Shear wave velocity in areas with obvious blood flow is significantly lower than that of surrounding tissues. This image was acquired with the SL10-2 probe
of the Supersonic Aixplorer.
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in thin-layer structures. The velocity of guided waves can be well mea-
sured by the machine but overestimated, as it no longer satisfies clinical
methods for volumetric elastic waves [54−57]. Different shear wave
measurements are observed within the same target because of varying
blood flow distribution, and congestion can increase tissue viscosity,
affecting shear wave measurements [58] (Fig. 4).
Recommendation 6

During SWE examination, the measurements should be selected after
the image is stable for a few seconds, that is, typically 5 s, to ensure the
homogeneity and stability of the elastography. Additionally, care should
be taken to avoid artifacts caused by probe jitter or patient movement
during imaging.
Strength of recommendation
9.41 (95% CI: 8.94−9.88). Although SWE values can be quantita-

tively calculated using 2-D SWE technology within milliseconds [59],
the usual acquisition time requires several seconds, that is, typically 5 s,
to ensure the stability of elastography [60]. Some studies have shown
that there is no significant difference in 2-D SWE values obtained at dif-
ferent acquisition times (5, 10, 15 and 20 s) (p > 0.05) [61]. However,
longer acquisition times during the operation allow better stability in
179
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elastography. On the other hand, an excessive acquisition duration may
lead to motion artifacts caused by the operator or the patient [12].

Shear wave elastography technology is extremely sensitive to
dynamic artifacts that may be caused by the patient or operator [12].
Shear waves propagate laterally at a velocity much lower than that of
longitudinal waves, which makes them more sensitive to tissue microen-
vironmental changes. SWE measurements should be performed while
the patient remains strictly at rest.
Recommendation 7

In examination of musculoskeletal soft tissue, application of pressure
to the skin by the probe should be avoided. For superficial tissues, a cer-
tain thickness of ultrasound gel pad or coupling agent can be used, and
the probe should not directly contact the skin.
Strength of recommendation
9.14 (95% CI: 8.58−9.69). The pressure generated by the probe may

introduce a non-linear response, resulting in an overestimation of meas-
urements [7,20,53,62,63]. Therefore, the probe should apply the mini-
mum pressure possible during SWE [13,61,64]. For superficial tissues or
lesions, ultrasound gel pads or a large amount of coupling agents should
be used, which will not affect the measurement [3,6,65,66] (Fig. 5).
ational Library of Health and Social Security de ClinicalKey.es por Elsevier en 
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Figure 5. (a) An ultrasound gel pad is placed between the probe and the skin. (b) The probe directly contacts the skin, resulting in a significant increase in shear wave
measurements. These two images were acquired with the SL15-4 probe of the Supersonic Aixplorer.
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Recommendation 8

In examination of tissues such as muscles, tendons and nerves, the
ultrasound beam should be perpendicular to the examined tissue. Nota-
bly, the measurements vary with the orientation of the probe, and meas-
urements along the long-axis orientations are preferred. In measurement
of shear wave velocity along the long axis of muscle fibers or nerves, the
angle between the ultrasound beams and the structure should not
exceed 20°.

Strength of recommendation
9.09 (95% CI: 8.68−9.50). As a result of the apparent anisotropy of

muscles, tendons and peripheral nerves, the shear wave velocity is
higher in the direction along the longitudinal axis of myofibers. When
the ultrasound beam propagates perpendicular to the fiber direction, the
shear wave velocity is lower because of the presence of multiple tissue
interfaces, leading to increased measurement variability
[1,6,12,13,20,32,47,61,67−71]. When the ultrasound beam is parallel
to the fibers, the shear wave velocity will be less affected by viscosity
[1,2,57,72]. However, it is difficult to ensure that the ultrasound beam
is always parallel to the fibers for each target because of anatomical and
disease-related factors; furthermore, the measurements are also rela-
tively reliable when the angle does not exceed 20° [24,73−76]. Notably,
for small structures such as peripheral nerves, even slight angle varia-
tions can significantly affect shear wave measurements [77].

Recommendation 9

The optimal depth for detecting targets with high-frequency linear
array probes is 1−3 cm and should not exceed 4 cm. For very superficial
tissues, ultrasound gel pads or coupling agents should be used to
increase the distance between the probe and the target.

Strength of recommendation
9.23 (95% CI: 8.84−9.61). The reliability of detecting deeper targets

is reduced because of attenuation of the excitation pulse and tracking
Figure 6. Shear wave measurements with different ROI sizes: (a) 3 mm ROI; (b) 6 mm
the Supersonic Aixplorer. ROI, region of interest.
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wave, and it is difficult for high-frequency linear probes to detect shear
waves in deep tissues [12,20]. At a depth of 4 cm, the variability of the
measurements significantly increases, while the variability within 3 cm
is relatively small [19,29,65,66,71,78]. Shear waves can be generated at
a certain depth (generally 4 mm) [31,79] and ultrasound gel pads or a
large amount of coupling agents should be used when examining skin
and superficial tissues to minimize the influence of probe pressure (see
Recommendation 6).
Recommendation 10

The size of the region of interest (ROI) should be set based on the tar-
get, as it affects the shear wave measurements. The mean value is pre-
ferred for evaluating the overall elasticity of tissue, while for localized
lesions, the mean or maximum value should be selected as needed.
Strength of recommendation
9.36 (95% CI: 8.96−9.76). There are no uniform criteria for the size of the

ROI, and it can be set according to the purpose of the examination
[3,6,7,13,27,67]. However, attention should be given to the heterogeneity of
musculoskeletal tissue.When the ROI is too large, there is a greater chance of
including muscle fascia and dense collagen fibers, which may increase the
maximum value of the shear wave measurement. Nevertheless, studies sug-
gest that there is no significant difference in the mean value [56,61] (Fig. 6).
Thewidth of theROI has a greater impact on themeasurement than its height
[27].When localmeasurements are used to evaluate the shearwave elasticity
of the overall tissue, a larger ROI and the mean value of the shear wave mea-
surement should be used [12,43,80].
Recommendation 11

The shear wave measurements should be expressed as shear wave
speed (unit: m/s) and not stiffness (Young’s modulus or shear modulus
in pascals).
ROI; (c) 8 mm ROI. These three images were acquired with the SL15-4 probe of
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Strength of recommendation
9.45 (95% CI: 9.07−9.83). Currently, commercial shear wave instru-

ments can provide both shear wave velocity (m/s) and Young’s modulus
value (kPa) simultaneously. After the system calculates the shear wave
velocity for each pixel, Young’s modulus E can be calculated using the
formula

E � 3ρV2
s

where E is the elastic modulus, ρ is the tissue density, Vs is the shear
wave velocity and the coefficient 3 is a constant related to Poisson’s
ratio. Acoustic radiation force is applied to induce the deformation of tis-
sue and generate shear waves propagating laterally. By measurement of
the shear wave velocity, the elastic modulus of tissues can be quantita-
tively measured.

The assumption for this formula, however, is that the medium is a
homogeneous and isotropic elastomer [3,6,7,13,40]. Although the liver
is anisotropic, it can reach an approximate first-order isotropy. Musculo-
skeletal tissue is obviously anisotropic tissue with large differences in
density, clear boundaries and shapes and does not satisfy the conditions
of the Young’s modulus formula. Moreover, because of an order-of-mag-
nitude change in Young’s modulus after conversion, the variability of
the measurement also increases [81].

Recommendation 12

When shear wave measurements are conducted, it is recommended
that measurements in the pseudo-image area, near bones and at the
edges of the elasticity images are avoided.

Strength of recommendation
9.73 (95% CI: 9.48−9.97). Regular vertical stripe-like artifacts often

appear in shear wave elasticity images, resulting in an abnormal
increase in shear wave measurements at this location. The possible rea-
son is that this is the location of the excitation pulse, which generates
interference and aliasing effects of acoustic waves [12,19,58,79,82].
Shear wave velocity is influenced by different surrounding tissues
[74,77,83,84], especially when bone tissue is present around the target,
and the measurement position should be at least 0.5 cm away from the
bone to avoid overestimation of the measurement because of shear wave
reflection. If there is adjacent bone tissue below the target, then the
attenuation of the excitation pulse may cause a decrease in shear wave
measurement [25]. The variability of measurements is also significant at
the edge of the elasticity map [85].

Discussion

Although the application of 2-D SWE in musculoskeletal tissues has
been gradually increasing, the generation and measurement of shear
waves are subject to a variety of factors because of the structure of mus-
culoskeletal tissues. Unlike superficial glandular tissues and internal
organs, musculoskeletal tissues have unique structures and functions;
for example, the direction of arrangement of muscle fibers in skeletal
muscles is related to their functions. The peripheral nerve includes struc-
tures such as the fascicle, perineurium and epineurium. Compared with
other human tissues, musculoskeletal tissue exhibits more significant
anisotropy. These components contribute to the complexity of operating,
interpreting and reporting data of SWE. These recommendations are
aimed at reducing these influences as much as possible during operation,
to facilitate further standardization of the procedures for collecting and
reporting SWE data.

Conclusion

The utility of SWE in musculoskeletal tissues has been preliminarily
recognized, although further reports with high-quality evidence are
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Descargado para Biblioteca Medica Hospital México (bibliomexico@gmail.com) en N
febrero 13, 2024. Para uso personal exclusivamente. No se permiten otros usos sin
lacking. Therefore, we have developed 12 recommendations on the
operational standards for SWE of musculoskeletal tissues. These are
based on the best available evidence and clinical expertise supported by
an expert consensus group. The main purpose of this guideline is to stan-
dardize SWE operations and further improve the scientific reliability of
measurements.
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