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Engineering bacteria for cancer immunotherapy 
Jesse G Zalatan1, Lorenzo Petrini2 and Roger Geiger2,3   

Bacterial therapeutics have emerged as promising delivery 
systems to target tumors. These engineered live therapeutics 
can be harnessed to modulate the tumor microenvironment or 
to deliver and selectively release therapeutic payloads to 
tumors. A major challenge is to deliver bacteria systemically 
without causing widespread inflammation, which is critical for 
the many tumors that are not accessible to direct intratumoral 
injection. We describe potential strategies to address this 
challenge, along with approaches for specific payload delivery 
and biocontainment to ensure safety. These strategies will pave 
the way for the development of cost-effective, widely applicable 
next-generation cancer therapeutics. 
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Introduction 
Bacterial infections have been known to result in spon-
taneous tumor regression for over 4000 years [1]. Bac-
terial lipopolysaccharide (LPS) is the major active 
component that triggers the release of potent cytokines, 
including TNF-α, which causes hemorrhagic necrosis of 
tumors [2]. Apart from their ability to stimulate the im-
mune system, certain anaerobic bacteria possess the 
unique ability to selectively colonize tumors. This at-
tribute makes them promising candidates for the de-
livery of therapeutic payloads to tumors [3–5]. When 
bacteria are administered intravenously, most are cleared 
from the blood within hours and only a few reach tumors 
and other tissues. Bacteria residing in healthy tissues are 

then cleared within a few days, whereas bacteria residing 
in tumors rapidly proliferate, reaching densities of 108– 
109 colony-forming units (CFUs) per gram of tumor 
tissue [6–8]. This CFU range is equivalent to the 
number of bacteria that are contained in 1 mL of an 
overnight E. coli culture [9]. 

When employing bacteria as a drug delivery system, 
their potent immunostimulatory effects that cause sys-
temic inflammation are typically unwanted. Therefore, 
Salmonella typhimurium mutants that have a defect in 
LPS synthesis, causing minimal inflammation, have 
been selected for clinical developments [6,10]. Although 
intravenous administration of these live bacterial ther-
apeutics was well-tolerated in cancer patients, efficient 
tumor colonization was not achieved. Out of 25 patients, 
only one exhibited substantial tumor colonization with a 
count of 109 CFUs per gram of tumor tissue [6]. How-
ever, despite successful colonization, the S. typhimurium 
strain used in this study did not demonstrate any ther-
apeutic effects. 

In this review, we will discuss strategies to improve the 
colonization of tumors with bacteria as well as ap-
proaches to engineer bacteria such that they stimulate 
antitumor immune responses for therapeutic applica-
tions. We will address safety aspects related to the se-
lective release of therapeutic payloads in tumors as well 
as biocontainment strategies. 

Strategies to improve tumor colonization 
Live bacterial therapies can be delivered via in-
tratumoral injection, but most tumors are not readily 
accessible. Therefore, intravenous administration is a 
more practical route. However, this method is associated 
with several challenges, including low bacterial survival 
in circulation and poor accumulation within tumors. 

Targeting tumor vasculature 
Tumor colonization by intravenously administered bac-
teria is typically efficient in preclinical rodent models, 
but clinical trials showed that human tumors are more 
difficult to colonize [6]. Factors contributing to the re-
duced efficiency in patients compared with mice may 
include differences in tumor architecture and vascu-
lature [11]. Most preclinical studies use transplanted 
tumor models, in which cancer cells are injected 
into syngeneic mice and grow quickly into tumors with a 
large hypoxic and necrotic core. This core provides 
an immune-privileged environment where anaerobic 
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bacteria can thrive and become concentrated between 
live and necrotic tissue [8]. 

The vascular network of transplanted tumors in mice is 
typically more fragile than that of spontaneous tumors. 
Spontaneous tumors arise from genetic mutations or 
exposure to carcinogens and grow slowly over months, 
more closely resembling human tumors. A comparison of 
tumor colonization by intravenously administered bac-
teria between transplanted and spontaneous tumors 
showed that the latter contained 10,000-times fewer 
bacteria [12]. Interestingly, colonization of spontaneous 
tumors was significantly improved by administering a 
vasculature-disrupting agent (VDA), Combretastatin A4 
Phosphate (CA4P), beforehand. The VDA facilitates 
bacterial escape from the vasculature into tumors and 
causes necrosis of tumor tissue, thereby expanding 
the niche in which bacteria can thrive (Figure 1). 
Similar observations were made in a rhabdomyosarcoma 

transplant model in rats [13]. While tumors larger than 
3 cm3 can be efficiently colonized, smaller tumors that 
inherently have less hypoxia and little or no necrosis are 
difficult to colonize. Administration of a VDA to the rats 
induced necrosis in small tumors and strongly improved 
their colonization with bacteria. There are different 
types of VDAs that specifically destroy existing tumor 
blood vessels. These include microtubule-destabilizing 
drugs, flavonoids with antivascular functions, and drugs 
targeting endothelial cell receptors [14]. Several VDAs, 
including the aforementioned CA4P, are being tested in 
clinical trials and may in the future potentially be com-
bined with bacterial therapies. 

To understand and further improve bacterial coloniza-
tion of tumors, we can draw on concepts from the field of 
nanomedicine. For instance, the leaky vasculature and 
impaired lymphatic drainage of tumors, nanomedicines, 
or macromolecules in general, can accumulate in tumors, 

Figure 1  

Current Opinion in Biotechnology

Illustration of different concepts to improve tumor colonization with therapeutic bacteria. Shown is a vascularized tumor with a necrotic core in which 
bacteria grow. 
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a phenomenon known as the enhanced permeability and 
retention effect (EPR) [15]. However, the EPR effect is 
highly variable between different tumor types with some 
spontaneous tumors and metastasis exhibiting less na-
noparticle accumulation [16]. For example, stiff tumors 
in which blood vessels are squeezed and therefore poorly 
perfused do not readily accumulate nanoparticles. To 
overcome this challenge, focused ultrasound (FUS) in 
combination with contrast agents can be applied to 
achieve sonopermeation of solid tumors and metas-
tases [17]. 

Removing the existing tumor microbiome 
To harbor therapeutic bacteria, human tumors require 
hypoxic, immune-privileged regions. However, ther-
apeutic bacteria probably need to compete for these 
niches, which may already be colonized by other mi-
crobiota. Indeed, recent studies demonstrated that 
human tumors are colonized by a diverse microbiome  
[18,19] consisting of intracellular and extracellular bac-
teria whose composition differs between tumor types 
and potentially influences disease progression [20]. 
Mapping the distribution of microbiota in human oral 
squamous cell carcinoma and colorectal cancer showed 
that bacteria colonize microniches that are poorly vas-
cularized and immunosuppressive because T cells are 
kept out of these niches [21]. However, bacteria were 
also found in larger hypoxic areas of tumors. For ex-
ample, needle aspiration biopsies of the necrotic centers 
of cavitating lung tumors contained pathogenic bacteria, 
including Klebsiella pneumoniae and nonpathogenic bac-
teria such as Bifidobacterium [22]. Given that tumors are 
most likely inhabited by a microbiome, removing it 
could create room for the colonization of therapeutic 
bacteria. Indeed, in one study, it was found that pre-
treatment of mice with a cocktail of antibiotics slightly 
enhanced the colonization of their tumors upon systemic 
administration of bacteria [23]. However, it remains to 
be determined whether improved colonization out-
weighs the potentially negative impact of antibiotics on 
cancer patients receiving immunotherapy [24]. 

Approaches to direct bacteria toward tumors 
To improve tumor colonization, strategies are being 
developed to direct bacteria toward tumors by applying 
external magnetic fields. Magnetic responsiveness can 
be achieved by functionalizing commonly used strains 
such as Escherichia coli Nissle 1917 (EcN) with magnetic 
nanoparticles [25]. Another option is to use magneto-
tactic bacteria, such as Magnetospirillum magneticum, 
which naturally produce magnetic iron oxide nanocrys-
tals. By applying rotating magnetic fields, bacterial tor-
ques are generated, causing the bacteria to tumble along 
blood vessels, which increases their chance of crossing 
the vascular endothelium and entering tumors [26]. This 
procedure increased the colonization of transplanted 
tumors threefold 24 h after intravenous injection of 

bacteria. Rotating magnetic fields can be generated at 
clinically relevant scales, which, in the future, may allow 
for the directing of magnetically responsive bacteria to 
deeply situated tumors. 

Shielding bacteria from an immune attack 
Using live bacteria as cancer therapeutics raises concerns 
about toxicity since bacterial LPS is a potent inducer of 
host-derived inflammatory mediators. With the dis-
covery that a component of LPS, referred to as lipid A, is 
responsible for most of its inflammatory activity and the 
identification of the msbB gene that is involved in lipid- 
A synthesis [27], a mutant msbB S. typhimurium strain 
was developed that is far less immunogenic [10]. This 
strain was used in clinical trials and was well-tolerated  
[6]. Similarly, an EcN strain with a defect in the msbB 
gene was tolerated by Bagg Albino mice in tenfold 
higher doses than wild-type strains [28]. 

To temporarily shield EcN from an immune attack, 
elegant inducible synthetic gene circuits were devel-
oped that regulate bacterial encapsulation, a process by 
which bacteria produce a protective layer of poly-
saccharides that helps the bacteria to evade the immune 
system. Bacteria were designed to subsequently lose the 
capsule, which resulted in effective clearance in vivo [7]. 
This strategy enabled a tenfold increase in maximum 
tolerated dose of bacteria. Another approach to shield 
bacteria from the immune system is to pack them into 
apoptotic bodies, but this approach can only be applied 
to intracellular bacteria. When injected intravenously, 
apoptotic bodies containing bacteria are cleared much 
slower than bacteria that are not surrounded by a 
membrane. Apoptotic bodies also cause less inflamma-
tion and exhibit improved accumulation in tumors [29]. 

Bacterial chassis and controlled payload 
delivery 
There are several facultative or obligate anaerobic bac-
teria that colonize tumors. S. typhimurium is perhaps the 
best-studied species and was used in most clinical trials 
involving bacteria for cancer treatment [30,31]. How-
ever, the probiotic EcN is emerging as a popular chassis  
[32]. Unlike S. typhimurium, which can to some extent 
also colonize healthy organs in mouse models, EcN ex-
clusively accumulates in tumors [8] and has a well-es-
tablished human safety record [33]. In addition, its 
ability to be readily engineered and its susceptibility to a 
broad range of antibiotics makes it a promising strain for 
therapeutic payload delivery. 

EcN localizes and persists in tumors but has no or only 
moderate antitumor activity [34,35]. Therefore, EcN was 
engineered in numerous ways to enhance its antitumor 
activity. This includes the introduction of payloads such 
as cytotoxic factors that kill cancer cells [36], checkpoint 
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inhibitors that unleash immune responses to tumors  
[37–39], cytokines that activate immune cells [38,40], 
chemokines that attract immune cells to tumors [41], 
enzymes that produce agonists of innate immune re-
ceptors [35], synthetic antigens for Chimeric antigen 
receptor (CAR) T cells killing, [42], and neoantigens as a 
vaccine for antitumor immunity [43]. Payload protein 
release in these examples was achieved with a variety of 
methods, including secretion tags and programmed cell 
lysis. In addition, releasing a small molecule to meta-
bolically modulate the tumor microenvironment can 
support effective antitumor immune responses [34]. In 
this study, EcN was engineered to continuously convert 
the metabolic waste product ammonia into L-arginine, 
which enhances the antitumor functionality of T cells 
synergistically with immune checkpoint blockade. In 
general, metabolic modulation of tumors is nontoxic and 
can be combined with the delivery of other therapeutic 
payloads. As research in this area continues, the list of 
payloads and strategies for engineering EcN is likely to 
expand and strains will be developed that combine 
several payloads and features. 

Another chassis that recently gained interest is 
Staphylococcus epidermidis, a skin commensal that natu-
rally colonizes the skin. When S. epidermidis is applied to 
the mouse skin, it drives a local increase of T cells 
preempting infections in colonized tissue [44]. In a re-
cent study, S. epidermidis was engineered to induce 
tumor-specific immune responses within the context of 
natural skin colonization [45]. 

Genetic circuits for spatial control of payload delivery 
Many of the payloads delivered by bacteria to tumors are 
toxic. Precise control over payload production and re-
lease could potentially maximize therapeutic effects 
while minimizing systemic toxicity (Figure 2). Inducible 

payload production can also provide an effective me-
chanism to separate efficient cell growth from high-level 
payload production [35,46]. The potentially burdensome 
effects of heterologous biosynthesis pathways are well- 
understood in the metabolic engineering field, and new 
inducible control strategies are being actively devel-
oped [47,48]. 

A variety of genetic circuits can be used to implement 
synthetic sense-and-respond programs for cancer tar-
geting [46]. Tumor-specific growth or therapeutic pay-
load production can be placed under control of 
promoters that respond to characteristic features of the 
tumor microenvironment, such as low O2 levels, low pH, 
or lactate [49,50]. New strategies have also been re-
ported for bacteria to detect specific, tumor-associated 
DNA sequences [51]. 

Alternatively, bacteria can be engineered to express or 
release their payload in response to external stimuli 
using chemically inducible or temperature-sensitive 
promoters. For example, bacteria colonizing a mouse 
tumor could activate reporter gene expression from an 
arabinose-inducible promoter when arabinose was in-
jected intravenously [8]. Another approach involves 
engineering bacteria to sense local increases in tem-
perature, which can be induced in tumor tissue by 
FUS. Temperature-actuated circuits have been de-
veloped to enable the expression and release of ther-
apeutic nanobodies or Interferon-gamma in response to 
a brief thermal stimulus (42 °C) [39,40]. Additionally, 
bacteria can be functionalized with liposomes con-
taining a chemotherapeutic and indocyanine green, 
which can absorb near-infrared light and convert it into 
heat. This process causes on-demand release of the 
chemotherapeutic through changes in the lipid mem-
brane [25]. 

Figure 2  

Current Opinion in Biotechnology

Illustration of concepts for spatial payload delivery. 
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Another promising approach is to leverage the me-
chanism by which bacteria sense population density, 
which increases upon successful colonization of tumors. 
To this end, a synthetic biology approach was used to 
engineer EcN with a synchronized lysis circuit that un-
dergoes intratumoral quorum lysis to release its payload 
locally. This approach bypasses the difficulty of se-
creting proteins in E. coli [52], and ensures that cargos 
are only released where bacteria can grow to relatively 
high density, such as in a tumor. In preclinical transplant 
tumor models, this approach has demonstrated anti-
tumor efficacy when used with anti-CD47 and anti-PD-1 
nanobodies as therapeutic payloads [37,38], and with a 
synthetic antigen to tag tumor cells for Chimeric antigen 
receptor (CAR) T cells killing [42]. In these studies, 
mice tolerated the bacteria, and there was no indication 
of systemic toxicity from the therapeutic payload. No-
tably, in the synthetic antigen strategy, bacteria were 
successfully delivered both intratumorally and in-
travenously. However, humans have heightened im-
mune responses to bacterial LPS compared with mice  
[53], and further optimization will likely be necessary for 
intravenous delivery in human systems. 

Biocontainment for clinical applications 
Biocontainment is critical for bacteria engineered to colonize 
human tissue (Figure 3). An effective biocontainment 
strategy should prevent escape into the environment or 
other human hosts, and should include kill switches to 
prevent uncontrolled growth in patients [54,55]. In principle, 
both goals can be accomplished with synthetic auxotrophies, 
where genetic modifications prevent the bacteria from syn-
thesizing an essential metabolite. In practice, however, 
horizontal gene transfer between bacteria often allows es-
cape. To overcome this challenge, a recent report used a 
dual-auxotrophy strategy with an engineered EcN strain 
(SYNB1891) that produces stimulator of interferon genes 
(STING) agonists [35]. Auxotrophy for thymidine prevents 
escape into the environment, while auxotrophy for diami-
nopimelic acid, a cell wall component, prevents proliferation 
in mammalian hosts. This strain can be injected 

intratumorally and functions as a short-term im-
munostimulant. In a Phase-I clinical trial, this strain was 
tolerated in patients and produced upregulation of immune 
activation genes [56]. 

Alternative biocontainment approaches could allow safe 
proliferation with long-term tumor colonization and con-
tinuous payload release. For example, genetically recoded 
E. coli can be engineered with multiple dependencies for 
the synthetic amino acid bisphenylalanine bi-
sphenylalanine (bipA) [57]. The absence of bipA halts 
proliferation, and these bacteria show undetectable escape 
from bipA dependency. More recently, a recoded E. coli 
was engineered to eliminate horizontal gene transfer into 
and out of the engineered bacteria [58]. First, the Ser co-
dons TCG and TCA were replaced with synonymous Ser 
codons across the entire genome and engineered Leu 
tRNAs were delivered that recognize TCG/TCA. Next, 
synthetic genetic constructs were coded using TCG/TCA 
for essential Leu residues. This approach ensures that any 
genetic material invading into the engineered strain will be 
mistranslated with S- > L mutations. Further, synthetic 
genes transferred out to other organisms will be mis-
translated with L- > S mutations. In a therapeutic setting, 
this approach would ensure that genes coding for toxic 
payloads cannot escape into the native microbiome. While 
genome recoding provides robust biocontainment, these 
approaches were prototyped in an E. coli K12 derivative. 
Implementation in potential therapeutic strains such 
as EcN or S. typhimurium would require substantial strain 
engineering, although initial recoding efforts have been 
performed in S. typhimurium [59]. Alternative genetic kill 
switches could potentially be portable between multiple 
strains. For example, a chemically inducible Clustered 
Regularly Interspaced Short Palindromic Repeats-based 
kill switch was constructed in EcN using redundant cir-
cuits to achieve stability [60]. 

Future perspectives 
Bacterial therapeutics can be engineered as multi-
functional systems that target tumors, modulate the 

Figure 3  
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Illustration of strategies for biocontainment. HGT, Horizontal gene transfer. bipA, bisphenylalanine. delta-thyA, auxotrophy for thymidine. delta-dapA, 
auxotrophy for diaminopimelic acid. 
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metabolic environment, and selectively release anti-
tumor drugs or immunostimulatory molecules within a 
single therapeutic agent. However, to fully harness the 
potential of bacterial therapeutics, several challenges 
need to be addressed, including efficient colonization 
upon intravenous administration, controlled payload 
delivery to minimize off-target toxicities, as well as 
biocontainment strategies. 

To achieve successful tumor colonization upon in-
travenous administration, further research may focus on 
engineering bacteria for improved tumor homing. 
Different treatments may be explored to enhance bac-
terial escape into tumors and to expand hypoxic niches 
in tumors to provide an environment for bacterial 
growth. Emerging strategies to control bacteria with self- 
regulating genetic circuits, sense-and-respond functions, 
or external stimuli may prove instrumental for successful 
therapeutic applications. 
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