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Transcranial magnetic stimulation (TMS) is a type of noninvasive neurostimulation used increasingly often in clinical medicine. While most
studies to date have focused on TMS’s ability to treat major depressive disorder, it has shown promise in several other conditions including
post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI). As different treatment protocols are often used across studies, the
ability to predict patient outcomes and evaluate immediate and long-term changes using imaging becomes increasingly important. Several
imaging features, such as thickness, connectedness, and baseline activity of a variety of cortical and subcortical areas, have been found to
be correlated with a greater response to TMS therapy. Intrastimulation imaging can reveal in real time how TMS applied to superficial areas
activates or inhibits activity in deeper brain regions. Functional imaging performed weeks to months after treatment can offer an understand-
ing of how long-term effects on brain activity relate to clinical improvement. Further work should be done to expand our knowledge of imag-
ing features relevant to TMS therapy and how they vary across patients with different neurological and psychiatric conditions.
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Abbreviations: TMS transcranial magnetic stimulation, PTSD post-tra
compulsive disorder, rTMS repetitive TMS, EEG electroencephalogra
umatic stress disorder, TBI traumatic brain injury, OCD obsessive-
m, fMRI functional magnetic resonance imaging, PET positron

emission tomography, DTI diffusion tensor imaging, DLPFC dorsolateral prefrontal cortex, ACC anterior cingulate cortex, rACC rostral
anterior cingulate cortex, sgACC subgenual anterior cingulate cortex, DMN default mode network, vmPFC ventromedial prefrontal cortex,
SPECT single-photon emission computed tomography, HF-rTMS high-frequency repetitive transcranial magnetic stimulation, GMV gray
matter volume, rCMRGlu regional cerebral glucose metabolic rate, rCBF regional cerebral blood flow
BACKGROUND
N on-invasive neurostimulation refers to a set of tech-
nologies and techniques that use externally applied
electrical or magnetic fields to modulate neuronal

excitability (1,2). Transcranial magnetic stimulation (TMS)—
the most commonly used noninvasive neurostimulation
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method—employs a generator which produces brief, high-
intensity currents that travel through a wire coil positioned
over the head to create a magnetic field perpendicular to the
coil (3). This rapid change in the magnetic field induces an
electrical current that travels into and through subjacent brain
tissue (Fig 1) (4). As detailed in the following section, using
different stimulation frequencies can potentiate or attenuate
neuronal excitability and thus modulate neural network
activity on a broad scale (5).

Although TMS has been FDA-approved only for treat-
ment of major depression, obsessive-compulsive disorder
(OCD), migraine with aura, anxiety with comorbid depres-
sion, and smoking cessation in the United States, it is under
investigation for many other disorders, including post-trau-
matic stress disorder (PTSD), traumatic brain injury (TBI),
and their sequelae (Table 1) (6�8). As TMS becomes used
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Fig 1. A current (yellow arrows, superior) runs through the TMS coil
to generate a magnetic field (purple lines) perpendicular to the coil.
This rapidly changing magnetic field creates an electric current (yel-
low arrows, inferior) that travels into subjacent brain tissue, changing
neuronal excitability. Stimulation of different surface structures mod-
ulates neuronal excitability in a variety of deeper brain structures.
(Color version of figure is available online.)
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increasingly in the clinical realm, neuroradiologists may be in
a unique position to investigate and interpret the pre-, intra-,
and post-stimulation structural and functional findings of
TMS in patients with neuropsychiatric disorders. Evaluation
of the imaging correlates of TMS could help clinicians and
TABLE 1. Disorders and Associated Anatomical Areas Targeted by

Type of Disorder Condition

Psychiatric Major depressive disorder* (40)
Post-traumatic stress disorder (102)
Obsessive-compulsive disorder* (103)
Anxiety with comorbid major depressiv
disorder* (104)

Movement Parkinson’s disease (105)
Multiple sclerosis (106)
Amyotrophic lateral sclerosis (24)
Spasticity (107)

Brain damage and
neurorehabilitation

Aphasia (66)
Paralysis (67)
Consciousness disturbance (68)

Other Headache (108)
Migraine with aura* (109)
Alzheimer’s dementia (110)

Dizziness (111)
Spinal cord injury (112)
Epilepsy (113)
Tinnitus (114)
Chronic pain (115)
Smoking cessation* (116)

* Only FDA-approved conditions treated by TMS in the USA as of 2022.
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patients predict treatment outcomes including long-term
effects on brain function (9,10). Our goals in this review are
to: (1) provide a brief explanation of TMS technology to the
radiology community; (2) update readers on the current state
of TMS therapy in the clinical realm; and (3) explore the role
of imaging in TMS therapy. We hope to extend radiologists’
understanding of the role they may play in TMS’s continued
development, growth, and implementation.
DEVICES AND TECHNIQUES USED IN TMS

Coils used in TMS have evolved from their initial large, cir-
cular shape that stimulated a large, ill-defined area of cortex
to new sizes and shapes such as figure-eight, double cone,
and Hesed coils (Fig 2), optimized to narrowly target deeper
brain structures (11�13). The generated pulse that produces
the magnetic field may be monophasic, with a short, fast first
phase and a long, slow second phase, or biphasic, with two
equal phases of opposite polarity (14). Biphasic pulses are
used often clinically in what is referred to as repetitive TMS
(rTMS). (15,16) This type of TMS relies on repeated low-
frequency (�1 Hz) neuronal stimulation to effect long-term
depression of activity (17). At high frequencies (�5 Hz),
rTMS may result in long-term potentiation of neuronal activ-
ity (18). When repeated over days to weeks, such stimulation
at low or high frequency can have durable effects and be
effective in treating motor, mood, behavioral, and cognitive
disorders (19). Other types of TMS, such as paired-pulse
TMS (20,21, theta burst stimulation (22), and the triple
TMS

Superficial Brain Region(s) Stimulated

DLPFC
DLPFC, M1
DLPFC

e DLPFC

DLPFC, M1
M1
M1
M1
Right Broca’s area homolog
M1
Right DLPFC
Left M1
Occipital lobe
DLPFC, Broca’s area, Wernicke’s area, somatosensory
association cortices

Left DLPFC
M1, thoracic spine (T8), premotor cortex
Epileptogenic foci (variable)
Auditory cortex
M1
Left DLPFC
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Fig 2. Multiple coil types have been used for TMS, including the
original circular coil (top left), the figure-of-eight coil (top middle),
double cone coils (top right), and Hesed (H) coils (bottom). H coils
are larger than previous coil types, contour the shape of the skull,
and are used most often today to target deeper brain structures.
(Color version of figure is available online.)

Academic Radiology, Vol 30, No 1, January 2023 TRANSCRANIAL MAGNETIC STIMULATION AND ITS IMAGING
stimulation technique (23) can be used to investigate interhemi-
spheric effects of stimulation, reduce conditioning time for treat-
ment, and diagnose upper motor neuron or lower motor
neuron defects, such as in amyotrophic lateral sclerosis (24).
Accurate and precise localization of brain areas for stimula-

tion is critical for TMS therapy to be effective. TMS target
sites have routinely been determined according to specific
distances measured along the scalp or by electroencephalo-
gram (EEG) electrode location (25,26). Subsequent studies,
however, have demonstrated the advantage of image-guided
navigation techniques in terms of accuracy and reproducibil-
ity of coil placement and consequently cortical stimulation
(27,28). The use of these techniques presents an opportunity
for radiologists to contribute to the expanding role of TMS.
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Currently clinically available neuro-navigation systems use
either a patient’s own MRI information for real-time
dynamic navigation of the magnet or a template brain such as
the Montreal Neurological Institute (MNI) template to esti-
mate target location (29,30). Once the optimal target has
been identified via neuroimaging, fiducial markers can be
applied to the scalp to locate the point that overlies the previ-
ously identified cortical target. Alternatively, various cranial
landmarks (e.g., nasion, inion vertex, tragus) can be used to
calculate the distances between each landmark and the corti-
cal target (31).

Other methods such as functional MRI (fMRI), positron
emission tomography (PET), diffusion tensor imaging (DTI),
and frameless stereotactic systems have also shown promise in
improving reproducibility of coil placement and should be
further investigated to optimize treatment outcomes
(31�35). A frameless stereotactic system is a state-of-the-art
apparatus that involves 3D reconstruction of neuroanatomy
to visualize the location and orientation of the TMS coil over
the head while also allowing for real-time visualization of
electric field density within the cortex during TMS therapy.
While technologically advanced, this navigational procedure
performs better than standard procedures at replicating condi-
tions across TMS treatment sessions and, as such, should be
encouraged for use if possible (36).
CLINICAL EFFICACY OF TMS

As major depressive disorder is one of the only FDA-
approved conditions approved to be treated with TMS, most
studies have focused on the efficacy of TMS related to
depressive symptoms, although some have also included
effects on other aspects of neuropsychiatric health and have
included patients with PTSD and TBI (37). When consider-
ing the effects of TMS on patients with depression, it is
important to also include patients with PTSD and TBI-
related deficits, as these conditions often co-occur with
depression. Depressed patients without comorbid PTSD or
TBI may respond to TMS differently and have different
imaging findings compared to depressed patients who do
have these conditions. As such, our understanding of the
effectiveness of TMS and its imaging features would be
boosted by a more nuanced approach that incorporates
patients who have multiple comorbid neuropsychiatric con-
ditions.

Studies examining the efficacy of TMS have found variable
results, likely in part due to the heterogeneity of patient pop-
ulations, treatment design, and outcome measures. Several
studies have found insignificant effects of TMS on depression
in PTSD and TBI, self-reported PTSD symptoms, and sui-
cidal thinking (38�41). Other studies, however, have found
that TMS significantly improves symptoms of TBI and
PTSD. In patients with TBI, TMS has been found to signifi-
cantly reduce headache and symptoms of depression and to
improve visual attention, task switching, and executive func-
tioning (39,42,43). TMS in patients with PTSD has been
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shown to improve fear and anxiety responses (44), social and
occupational function (38), core PTSD symptoms (45), anxi-
ety (46), avoidance (47), somatization (48), re-experiencing,
and hyperarousal (49), while reducing clinical relapse (50). A
few studies have also found that combining TMS with other
therapies such as exposure therapy (51) or cognitive process-
ing therapy (52) is safe, feasible, and likely augments the
effectiveness of TMS.

While TMS shows promising results for many patients
with TBI-related depression, PTSD, and other neuropsychi-
atric conditions, its effect in many cases appears to be variable,
dependent on the measures used to evaluate symptoms, or on
the patient population. The emphasis in future studies will be
determining for which patient populations and neuropsychi-
atric disorders TMS is most effective. Radiologists may play a
pivotal role in these studies by helping to customize treatment
protocols based on imaging findings.
IMAGING FINDINGS IN TMS THERAPY

Imaging the brain before, during, and after TMS is essential
for investigators’ and clinicians’ understanding of how pre-
existing features, immediate activity changes, and long-term
neuronal alterations influence patient response to treatment.
While most studies have focused on how TMS affects imag-
ing features in patients with depression, a few recent ones
have expanded the patient population to include people with
TBI, PTSD, and related disorders.
Prestimulation findings

Performing imaging before beginning TMS therapy can help
radiologists and clinicians predict for which patients TMS
may be most helpful. Analysis of structural MRI, for example,
may reveal certain morphological characteristics that predict
improved response. In 2018, Boes et al. treated depressed
patients with rTMS and found that the thickness of the left
rostral anterior cingulate cortex (rACC) is inversely related to
clinical improvement, i.e., a thinner ACC (commonly
reported in depressed patients (53,54) is associated with
greater responsiveness to TMS (Supplemental Table 1) (55).

In addition to structural features of the ACC, its functional
connectivity has also been implicated in response to TMS
therapy in depressed patients. A higher baseline connectivity
between the rACC and left lateral parietal cortex is associated
with better long-term response to TMS. Together, these data
suggest that patients with a thinner rACC that has more
robust connectivity to the lateral parietal cortex respond bet-
ter to TMS therapy.

In patients with comorbid PTSD and depression, clinical
response may be predicted by baseline inverse correlation
between the subgenual ACC (sgACC) and default mode net-
work (DMN), anticorrelation of cross-network activity, posi-
tive connectivity within the DMN, and positive connectivity
between the ventromedial prefrontal cortex (vmPFC) and
amygdala (38,50,56).
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Connectivity of the sgACC and dorsolateral prefrontal
cortex (DLPFC) may also be related to response to TMS, but
the current evidence is controversial. Some studies have
found that hypoconnectivity between the sgACC and the
DLPFC stimulation site predicts improvements in depressive
symptoms following TMS (57�61), whereas others have
found that sgACC and DLPFC hyperconnectivity predicts
better long-term outcomes (62,63). Apart from the ACC,
other authors have found that higher functional connectivity
between the DLPFC and deeper brain structures such as the
striatum (64) and caudate (65) may also predict responsiveness
to TMS in treatment-resistant depression.

Considering patients with TBI, routine MR imaging typi-
cally shows areas of gliosis, encephalomalacia, residual hemo-
siderin, and focal volume loss. The impact of these factors on
the effectiveness of TMS has not been thoroughly evaluated
and may explain some of TMS’s variable efficacy in TBI
sequelae such as aphasia (66), paralysis (67), consciousness dis-
turbances (68), and motor weakness (69,70).

Apart from structural and functional MRI, other metabolic
imaging (e.g., PET, single-photon emission computed
tomography [SPECT]) may provide further evidence of fea-
tures most predictive of a clinical response. In depressed
patients compared to controls, baseline imaging typically
shows metabolic alterations of prefrontal, cingulate, and tem-
poral cortices as well as several limbic and subcortical regions
(71,72). Patients with medication-resistant depression who
respond to TMS may have a significantly higher baseline
metabolism in the bilateral medial PFC and rACC and a
lower metabolism in limbic structures (left parahippocampal
and fusiform gyri) versus nonresponders (73). A positive cor-
relation between FDG PET activity in the ACC has also
been noted among responders, whereas lack of response to
TMS has been associated with a lower glucose uptake in the
left DLPFC and bilateral insula along with a higher uptake in
the left amygdala and uncus. The hypometabolism in the left
DLPFC and bilateral insula noted in nonresponders, how-
ever, could be partially explained by decreased gray matter
volume (74). A later study further implicated the ACC, find-
ing that metabolic activity of the sgACC predicted clinical
outcomes to high-frequency rTMS (HF-rTMS), with higher
baseline activity predicting a better response (75).

Although cerebral activity may provide clues as to which
patients may improve from TMS, it is imperative that the
TMS protocol be accounted for. In fact, patients who
improve on one protocol may worsen on another; (76)
patients with baseline hypoperfusion have been shown to
worsen clinically when low-frequency (1 Hz) TMS was
applied and to improve when high-frequency (20 Hz) TMS
was applied, and vice-versa for patients with hypermetabolic
brains (77). Apart from frequency used, the site to which
TMS is applied likely also influences physiological and clinical
response (78). As exemplified by patients with large structural
changes poststroke, TMS protocols should be modified for
individual patients according to their underlying brain physi-
ology and health (79).
 National Library of Health and Social Security de ClinicalKey.es por Elsevier en 
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Overall, while several studies have implicated baseline
functional connectivity in eventual treatment outcome, it
remains unclear exactly which imaging features best predict
clinical response and how strongly response to TMS depends
on the treatment regimen used. Many of the regions impli-
cated in TMS-treated depression, including the medial pre-
frontal, temporal, and dorsolateral prefrontal cortices;
cerebellum; and amygdala are altered at rest in patients with
PTSD (80�82). Given that the brains of patients with PTSD
or TBI differ from patients without these conditions, it is
plausible that the imaging features which predict their clinical
response to TMS differ as well. Future studies should investi-
gate which features of these patients’ unique underlying brain
states best predict response to TMS.
Intra- and peri-stimulation findings

Simultaneous TMS and neuroimaging allows clinicians and
investigators an opportunity to observe changes in brain
activity that occur during and immediately after stimulation.
As long-term structural or functional changes may not rep-
resent the short-term changes in brain activity following
neurostimulation, investigators have sought to understand
both the initial changes in brain circuitry following TMS
and how they develop into lasting alterations in neurophysi-
ology (83).
Despite the technical difficulties inherent in concurrent

stimulation and imaging (84,85), several studies have been
able to shed light on the immediate changes in the brains of
depressed patients undergoing TMS. One such study found
that low-frequency TMS applied over the left prefrontal cor-
tex immediately increases activity (measured by BOLD
fMRI) at the stimulation site and at several associated limbic
structures while decreasing activity in the right ventromedial
prefrontal cortex (86). Patients with more severe depression
were also found to have higher BOLD activity in the right
insula during stimulation.
Concurrent TMS-fMRI imaging studies performed with

healthy, non-depressed patients have also been used to better
understand the relation between TMS and depression. As dis-
cussed earlier, the sgACC is linked to depression (87), and its
baseline connectivity and activity may predict response to
TMS. Until recently, however, it was unclear how TMS
affected the sgACC. In 2018, Vink et al. used TMS-fMRI to
show that stimulation of the DLPFC propagates to the
sgACC in some (but not all) healthy patients, possibly
explaining part of TMS’s effectiveness in treating depression
(Fig 3) (88). Furthermore, the authors suggested that a lack of
such propagation from the DLPFC to the sgACC may pre-
dict a poor long-term response to treatment in patients with
depression.
Beyond the link between DLPFC and sgACC, stimulation

of the DLPFC with different frequencies has also been found
to produce different downstream effects during therapy.
High-frequency stimulation increases blood flow to the pos-
terior cingulate cortex as well as the inferior frontal cortices,
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right dorsomedial frontal cortex, and the parahippocampal
region, whereas low-frequency stimulation increases blood
flow to the right ACC, bilateral parietal cortices, bilateral
insula, and the left cerebellum (89). This relationship between
stimulation frequency and blood flow to different brain areas
in depressed patients may be crucial for understanding treat-
ment response.
Post-stimulation findings

Structural imaging
After TMS, a variety of structural changes can be appreciated
on brain imaging. Gray matter volume (GMV) may serve as
one important indicator of treatment efficacy. In patients
with depression, rTMS applied to the DLPFC over 4�7
weeks has been found to increase GMV in several brain areas
including the left ACC as well as the left middle temporal
gyrus, left insula, and the right angular gyrus (55,90). Only
GMV change in the ACC, however, was found to correlate
positively with the clinical depression score. Although very
few studies have examined structural changes following TMS
in depressed patients (including TBI- and PTSD-related
depression), such changes have been shown to occur in
patients with tinnitus (decreased thickness of the rACC and
temporal lobe and increased thickness of frontal lobe) (91),
schizophrenia (increased GMV of the hippocampal, parahip-
pocampal, and precuneal cortices) (92), and Parkinson’s dis-
ease (increased GMV of the left globus pallidus) (93).
Functional imaging
While TMS may produce some gross structural changes, its
efficacy more likely lies in its ability to induce long-term
changes in functional connectivity and activity of the brain,
resulting in clinical effects that last greater than one year for
many patients (94). This is true especially for depression,
given the shift towards the idea that symptoms result from
perturbations of large-scale brain networks rather than dys-
function of a single structure (95).

Investigators have recently gained better insight into the
changes induced by TMS by employing a variety of func-
tional imaging techniques (e.g., DTI, fMRI, PET,
SPECT). As mentioned previously, baseline connectivity
of the DLPFC and ACC predicts response to TMS. Fol-
lowing TMS treatment in patients with TBI-related
depression, sgACC-DLPFC connectivity (via resting-state
fMRI) has been found to decrease with concomitant
improvement in symptoms of depression (59). This
decreased sgACC-DLPFC connectivity and resulting
symptom improvement, however, may be mediated by
connectivity between the sgACC and left occipitotempo-
ral region (fusiform gyrus) (57).

Considering PET findings, patients with treatment-resis-
tant depression who respond to TMS experienced a reduc-
tion in the hypermetabolism of the left middle temporal
cortex and the fusiform gyrus in weeks to months following
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Fig 3. TMS pulses over the DLPFC at 115% of resting motor threshold interleaved with pulses at 60% of resting motor threshold in one
patient (first row, second column) induce activity in the sgACC (blue circle) as seen on T1-weighted images with overlaid BOLD activity. A lack
of propagation from the DLPFC to sgACC may be an important predictor of response to TMS therapy in depressed patients. (Reproduced
from Vink et al. (88)) (Color version of figure is available online.)
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treatment; the opposite response occurred in nonresponders
(73,96). Also in responders, metabolism in the middle cingu-
lum, bilateral somatosensory areas, and precuneus increased
significantly. But despite treatment, the metabolic profile of
responders’ brains did not return to that of healthy controls.
In a depressed patient who underwent TMS therapy,
decreased metabolism in several areas of the frontal lobe was
reversed following treatment (Fig 4).

Several studies have used SPECT imaging to investigate
the changes in brain connectivity and activity post-TMS.
Fig 4. In a single patient with depression, 18-FDG PET scans at
rest before (left) and after (right) TMS therapy reveal a reversal in
hypometabolism of several areas (arrows) of the frontal lobe. (Color
version of figure is available online.)
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Authors in one study observed changes in regional cerebral
glucose metabolic rate (rCMRGlu) with 18F-FDG and
regional 99mTc HMPAO uptake rate (regional cerebral blood
flow, rCBF) after two weeks of low-frequency rTMS (97).
For both rCMRGlu and rCBF, dorsal frontal regions bilater-
ally experienced increased uptake rates, and the left orbito-
frontal cortex experienced decreased uptake rates. A
predominant right-sided increase in uptake rates of rCBF but
not rCMRGlu was also observed.

Alterations in rCBF have been implicated in depression
remission in several other studies with mixed results. Interest-
ingly, both high and low-frequency TMS have been found
to improve symptoms of depression through different altera-
tions in blood flow to the cingulate cortex. With low-fre-
quency TMS, symptom improvement was associated with
decreased rCBF in the right sgACC, bilateral prefrontal and
orbitofrontal cortices, anterior insula, and left parietal cortex
(98). Improved symptoms with high-frequency TMS was
associated with increased rCBF in the left sgACC, anterior
insula, right putamen, and the left DLPFC, VLPFC, and right
orbitofrontal cortex (99). These contrasting findings may be
explained by the different TMS frequencies used in the stud-
ies or the timing of post-treatment imaging, as short-term
changes in brain activity may not reflect the long-term
changes. Finally, an earlier study by Teneback et al. found
that depressed patients who responded to two weeks of TMS
 National Library of Health and Social Security de ClinicalKey.es por Elsevier en 
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treatment experienced increased SPECT activity in the cin-
gulate cortex and bilateral inferior frontal lobes relative to
baseline (100).
FUTURE DIRECTIONS OF TMS

TMS and its derivatives have entered the clinical realm.
While FDA-approved for only a few conditions, TMS has
shown promise in treating symptoms of depression, PTSD,
TBI, and myriad other disorders. Despite studies detailing its
clinical impact, many questions remain about the most
appropriate stimulation sites, frequency, and duration to
achieve the desired outcome. The variability in these factors
inevitably obscures attempts to measure outcomes, includ-
ing imaging studies that attempt to predict and quantify
clinical response according to differences in brain structure
and activity. While additional studies are being performed
that attempt to untangle these questions of best use practi-
ces, simultaneous exploration of novel TMS-related avenues
such as better navigation techniques for coil placement and
continued investigation into TMS-specific imaging features
can accelerate the development of more effective treatment
options.
TMS may also benefit from more frequent imaging inves-

tigations throughout the course of treatment. As the majority
of studies imaged participants before and at one time point
after therapy, it is largely unclear what changes in neuronal
connectivity and/or brain morphology occur in response to
stimulation. Serial investigations following therapy may better
elucidate the processes the brain undergoes in responders ver-
sus non-responders, and would be especially helpful in
understanding neural changes during remission, relapse, and
long-term resolution.
The full potential of TMS may be realized as an adjunc-

tive therapy. Given that the effects of psychopharmaco-
logical treatment can lead to changes in (functional)
neuroimaging, it would be beneficial to know to what
extent TMS influences drug-based treatment and how
the interplay of these two treatments affects brain struc-
ture and function. There are currently few studies that
investigate the effects of psychiatric medications on TMS
outcomes.
Finally, as discussed in Philip et al., standardized reporting

of TMS imaging outcomes will be important for the ther-
apy’s future (101). Currently, many studies use unclear terms
such as “anticorrelation” when comparing changes in brain
activity, which could refer to a reduction in correlation (i.e.,
nearer to zero) or a stronger negative correlation. While
other examples exist, imaging professionals should strive to
adopt a clear set of terms when describing connectivity or
correlation changes effected by TMS; specifically, changes
in degree of correlation should be stated in addition to the
positivity or negativity of correlation. More straightforward
reporting would allow easier synthesis of findings across dif-
ferent studies using different protocols.
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Role of the radiologist

Radiologists can spearhead TMS advancements as both imag-
ing experts and data curators. There is currently a dearth of
data on pre-, intra-, and post-treatment imaging features in
patients who receive TMS therapy, especially for patients
with conditions other than depression. As TMS usage
expands to include other conditions, radiologists are well-
suited to determine the structural and circuit-level changes
that occur in relation to the patient’s underlying brain state.
Finally, TMS is likely to benefit from the general technical
advancements in radiology. Pre-treatment personalized plan-
ning can be enhanced by more precise localization techniques
such as 3D-MRI, event-related optical signals, and diffuse
optical imaging. By continuing to promote advancements in
imaging techniques including “on-line” methods such as
fMRI-TMS or PET-TMS, radiologists can also help better
characterize the immediate effects of TMS on the brain.
CONCLUSION

Although to date TMS has mostly been used for treatment of
depression, its clinical use is rapidly expanding to include
many other psychiatric and neurological conditions. This
growth may be especially helpful for patients with PTSD or
TBI, as these patients often suffer from several symptoms or
other conditions concurrently. Imaging studies so far have
identified some features that predict treatment response,
intra-therapy effects of TMS, and connectivity changes post-
treatment. While MRI localization techniques may be an
effective method to target specific sites for TMS, further
investigation is needed to determine whether its increased
accuracy and precision is worth the increased cost relative to
localization via EEG or scalp measurements. Radiologists can
play a central role in this emerging therapeutic tool by using
their imaging knowledge and technical expertise to help
clinicians accurately target therapy, identify which patients
are the best candidates for TMS therapy, and measure the
long-term impact of TMS on patients’ brain structure and
function.
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