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Imaging modalities provide information on plaque morphology and vulnerability; however, they are operator
dependent and miss a great deal of microscopic information. Recently, many radiomics models for carotid plaque
that identify unstable plaques and predict cardiovascular outcomes have been proposed. This systematic review
was aimed at assessing whether radiomics is a reliable and reproducible method for the clinical prediction of
carotid plaque. A systematic search was conducted to identify studies published in PubMed and Cochrane library
from January 1, 2001, to September 30, 2022. Both retrospective and prospective studies that developed and/or
validated machine learning models based on radiomics data to classify or predict carotid plaques were included.
The general characteristics of each included study were selected, and the methodological quality of radiomics
reports and risk of bias were evaluated using the radiomics quality score (RQS) tool and Quality Assessment of
Diagnostic Accuracy Studies-2, respectively. Two investigators independently reviewed each study, and the con-
sensus data were used for analysis. A total of 2429 patients from 16 studies were included. The mean area under
the curve of radiomics models for diagnostic or predictive performance of the included studies was 0.88 ± 0.02,
with a range of 0.741−0.989. The mean RQS was 9.25 (standard deviation: 6.04), representing 25.7% of the pos-
sible maximum value of 36, whereas the lowest point was −2, and the highest score was 22. Radiomics models
have revealed additional information on patients with carotid plaque, but with respect to methodological quality,
radiomics reports are still in their infancy, and many hurdles need to be overcome.
Keywords:
Radiomics
Carotid artery
Plaque
Systematic review
Radiomics quality score
nd, Lanzhou University Second Hospital, Lanzhou Gansu, 730030, China

is work.

8
ted 8 June 2023

alf of World Federation for Ultrasound in Medicine& Biology.

n National Library of Health and Social Security de ClinicalKey.es por Elsevier en diciembre 06, 2023. Para 
e permiten otros usos sin autorización. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.
Introduction

Carotid atherosclerosis (CAS) is a chronic and progressive disease
characterized by focal fibrosis, lipid accumulation and plaque forma-
tion, which account for 7%−18% of ischemic strokes [1] and affect the
health of about one in four people during their lifetime [2]. Tradition-
ally, risk stratification and therapeutic management of CAS are based
mainly on the severity of luminal stenosis [3]. However, growing evi-
dence indicates that the detection of carotid plaque composition by
imaging protocols can provide more reliable risk prediction than calcu-
lation of stenosis degree alone [4,5]. Therefore, non-invasive identifica-
tion of patients with high-risk carotid plaques is very important in
determining the severity of CAS and risk stratification of subsequent
vascular events.

Although imaging technologies such as magnetic resonance imaging
(MRI), computed tomography angiography (CTA) and ultrasonography
(US) provide a wealth of information on vascular lesions, lumen steno-
sis, plaque morphological changes and components with high sensitiv-
ity and specificity [4,6,7], they are operator dependent and miss a great
deal of microscopic information (such as macrophage subsets, collagen
type and protein phenotype expressed in plaques), which cannot be rec-
ognized by the naked eye. Radiomics, a hot topic first proposed by Lam-
bin et al. in 2012 [8] and an emerging field that extracts high-
throughput feature information from medical images and explores their
correlation with clinical events non-invasively, has shown considerable
potential for diagnostic and differential diagnosis and prognostic pre-
diction in the field of oncology [9]. Indeed, imaging-based radiomics
models have proven to be a valuable tool in the cardiovascular system
[10]. However, to date, cardiovascular radiomics has lagged behind
oncology.

Recently, several studies have attempted to assess the prediction per-
formance and reporting quality of radiomics models based on the radio-
mics quality score (RQS) tool [11−13]. However, there are no available
records of the use of the RQS in carotid plaque to date. Therefore, this
review aimed to assess whether radiomics is a reliable and reproducible
method for the clinical management of carotid plaque by identifying the
role of radiomics models and evaluating the methodological quality of
current radiomics studies in carotid plaque.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultrasmedbio.2023.06.008&domain=pdf
mailto:hewen@bjtth.org
https://doi.org/10.1016/j.ultrasmedbio.2023.06.008
https://doi.org/10.1016/j.ultrasmedbio.2023.06.008
https://doi.org/10.1016/j.ultrasmedbio.2023.06.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ultrasmedbio


C. Hou et al. Ultrasound in Medicine& Biology 49 (2023) 2437−2445
Methods

Search strategy

This review was performed according to Preferred Reporting Items
for Systematic Review and Meta-Analyses (PRISMA) guidelines [14].
We systematically searched PubMed and Cochrane library for articles
published in English from January 1, 2001, to September 30, 2022. We
used the following key terms: “radiomics/radiomic/texture/textural,”
“carotid artery/carotid” and “atherosclerosis/plaque/stenosis.” The
search details in each database are outlined in Table S1 (online only).
The protocol for this systematic review was registered with the Interna-
tional Prospective Register of Systematic Reviews (PROSPERO, Registra-
tion No. CRD42023407441).

Study selection

Both prospective and retrospective studies satisfying the following
criteria were considered eligible: (i) participants: patients with carotid
artery plaque; (ii) intervention and control: development and/or valida-
tion diagnostic or prognostic model based on radiomics or texture analy-
sis; (iii) outcomes: model performance, including area under the
receiver operating characteristic curve (AUC) of both training and test-
ing groups, sensitivity, specificity, positive or negative predictive values,
cutoff values, validation and calibration of models; (iv) study design:
peer-reviewed scientific reports published in English until the search
date. Exclusion criteria were as follows: (i) non-human participants (ani-
mals or modeling data generated algorithmically); (ii) deep-learning
research without any texture feature in the model, assessment of the pre-
dictive value of a single feature without any prediction model; (iii) study
type such as letters, reviews, case reports, abstracts, editorial or other
informal publication types. Two reviewers (X.Y.L. and Y.D.) indepen-
dently reviewed the title and abstract for initial selection, then per-
formed a full-text assessment of each article to decide the final studies to
be included; any controversy was resolved by consensus with a senior
reviewer (L.G.C.).

Data extraction

For each study, the following data were extracted from the full text:
first author, publication year, country, study type, number of patients,
gender, mean age, prevalence history, imaging modality, modeling
method, number of features in the optimal model, main objective and
conclusion and predictive power of the study. If there were several pre-
diction models in a study, we selected the one with the best performance
in the test/training cohort.

Quality assessment of each study

We applied the RQS tool to evaluate the methodological quality of
the included studies. The RQS comprises six domains of 16 different
items, with the score in each part ranging from −5 to 7; the total score is
36 (100%) [15]. Two reviewers (L.G.C. and L.P.L.) completed the RQS
assessment, and any disagreement was resolved by consensus.

The Prediction Model Risk of Bias Assessment Tool (PROBAST) [16]
and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-
2) [17] are tools used to assess the risk of bias and the applicability of
studies. Both tools consist of four domains, the former including partici-
pants, predictors, outcomes and analysis, and the latter including patient
selection, index test, reference standard and flow and timing. However,
PROBAST deals primarily with regression-based clinical predictive mod-
els rather than radiomics models, as reported in some reviews; the
results of RQS and PROBAST were not parallel [13]. As the radiomics
model is a diagnostic tool, we assessed the risk of bias and applicability
concerns with QUADAS-2. QUADAS-2 contains 14 standards with an
answer as “yes/no/unclear” or “high concern/low concern/unclear
2438
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concern.” Two reviewers (X.Y.L. and Y.D.) completed the QUADAS-2
assessment, and any disagreement was resolved by consensus.

Statistical analysis

The percentage of articles according to the score category of each of
the six domains of the RQS was extracted, the total RQS score was calcu-
lated (score range, −8 to 36) and the basic adherence rate (range: 2.7%
−100%) was assigned when a score of at least one point was obtained.
Measurement data were expressed as the mean ± standard deviation,
and count data were expressed as a percentage or rate. All statistical
analyses were performed using SPSS version 25 (IBM, Armonk, NY,
USA). Risk of bias and applicability concerns were generated by Cochran
RevMan, version 5.3 (Informatics and Knowledge Management Depart-
ment, Cochrane, London, UK).

Results

Literature selection

A total of 302 studies were identified using the aforementioned
search stratagem. After removal of 133 duplicates, 15 inappropriate
types of publications, 5 non-English articles and 3 animal studies, 87
studies irrelevant to the review objective were excluded through more
detailed evaluation, and finally, 16 studies that met the inclusion criteria
were included in this review after a full-text screen [18−33]. Figure 1 is
a flowchart of the study.

General characteristics

The 16 studies included were single-center research studies pub-
lished between July 2014 and June 2022, with 68.7% (11/16) published
within the last 2 y; 81.2% (13/16) of studies were retrospectively
designed. Most of the studies were performed in the Chinese population
(50%, 8/16), followed by Italy and England (12.5%, 2/16). A total of
2429 patients (men: 1612) were included, with a population size vary-
ing from 21 to 548 (median: 135) and a mean age of 65.73 ± 6.36 y;
31.3% (5/16) of studies had a sample size smaller than 100
[20,24,26,27,31].

Through radiomics or texture analysis, 6 studies aimed to identify
plaque vulnerability [18,19,23,26,31,32], 5 studies aimed to predict
vascular events such as transient ischemic attack, stroke or cardiovascu-
lar disease [21,24,28−30], 3 studies tended to classify symptomatic
carotid plaques [22,25,33], 1 study tried to assess radiomics robustness
[27] and 1 study attempted to evaluate in-stent restenosis [19]. Details
are outlined in Table 1.

RQS and risk of bias

Table 2 and Figure 2 summarize the RQS results. The lowest point
was −2, and the highest score was 22. The mean RQS score was 9.25
(standard deviation: 6.04), representing 25.7% of the possible maximum
value of 36. About 56.3% (9/16) of studies were credited between 10
and 20 points, corresponding to 27.8%−55.6% of total points. Among
the 16 items, most studies achieved image protocol quality, multivari-
able analysis with non-radiomics features, feature reduction, discrimina-
tion statistics, and comparison with a gold standard, while many studies
failed to analyze cutoff values and potential clinical utility. In addition,
no researchers conducted a phantom study, imaging at multiple time
points or cost-effectiveness analysis or shared open data. Only one study
each proposed a prospective design [25] and biological correlates [26];
four studies did not have validation group [21,23,24,31].

The risk of bias and applicability concerns assessment for the 16
studies were summarized in Figure 3. The reviewers’ consistency was
good (k = 0.84, 95% confidence interval [CI]: 0.79−0.90). Although
the general quality of the 16 studies was high, some possible sources of
cial Security de ClinicalKey.es por Elsevier en diciembre 06, 2023. Para 
n. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.



Figure 1. Flowchart of study selection according to Preferred
Reporting Items for Systematic Review and Meta-Analysis
(PRISMA) guidelines.
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bias were identified with the QUADAS-2 tool: “flow and timing” was the
dominant source of bias, followed by “patient selection.” A total of 960
patients in 68.7% (11/16) of studies were not included in the final analy-
sis [18−25,30−33], accounting for 28.3% of all recruited subjects. The
interval between the index test and reference test was unclear in 31.2%
(5/16) of studies [18,20,24,28,32]. It was unclear how patients were
enrolled (consecutive or randomly or else) in 11 studies [18−21,26
−31,33], and one study was a case−control design [31], both adding to
the patient selection bias. About 43.8% (7/16) of studies did not report
whether blindness was used [19,21,24,26−28,33]. The detailed results
of RQS and QUADAS-2 assessment were available in Tables S2 and S3
(online only).

Imaging acquisition

The numbers of studies that used US, CTA, MRI, CT and [18F]fluoro-
deoxyglucose positron emission tomography ([18F]FDG PET) data to
perform radiomics analysis for carotid atherosclerosis were 6, 6, 2, 1
and 1, respectively. All studies acquired images with a single modality
to ensure the same technical parameters or methodology. To avoid data
heterogeneity and bias, images in 7 studies were subjected to imaging
normalization and resampled before region of interest (ROI) segmenta-
tion [18,20,25,27,29,32,33].

ROI segmentation and feature extraction

Nine different software were used for ROI segmentation, the most
popular being ITK-SNAP and 3D-Slicer, and all but one of the studies
2439
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used manual segmentation [29]. For those carotid arteries with more
than one plaque, 50% (8/16) of studies chose the largest or most repre-
sented plaque to outline the ROI [19,22,24,25,30−33], whereas 18.8%
(4/16) of studies tended to outline all the plaques [23,26,28,29], and
the remaining 4 studies did not mention the details of ROI segmentation
[18,20,21,27].

As for feature extraction, 7 different software were used; the most
commonly used software was PyRadiomics, and the extracted features
included first-order, shape, texture and wavelet features.
Feature selection and modeling

The number of extracted features ranged from 4 to 2107 in the
included studies. As many of these features could be highly correlated
with others, 13 studies used various means to effectively reduce feature
reductant and increase robustness. And the least absolute shrinkage and
selection operator (LASSO) algorithm was the most widely used in fea-
ture selection and reduction. The remaining 3 studies extracted only 4
[21], 6 [31] and 29 [28] features from their images, respectively.

After feature selection, various kinds of models were built. Through
comparison of the performance of prediction models, 6 studies found
the best model was a texture-based model [20,22,24,28,29,31], 5 stud-
ies combined traditional imaging features and radiomics features
[19,26,27,32,33] and 5 studies also included clinical risk factors into a
final combined prediction model [18,21,23,25,30]. Age, sex and history
of hypertension, smoking, cardiac disease and high high-density lipopro-
tein (HDL), low-density lipoprotein (LDL)/HDL ratio, apolipoprotein B
cial Security de ClinicalKey.es por Elsevier en diciembre 06, 2023. Para 
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Table 1
Study and patient characteristics

Author Country Study
design

No. of patients
(train vs. test)

Mean age Men Participant type Purpose Conclusions

Chen et al. 2022 [18] China R 115 (81:34) 51.38 ± 13.32 91 ≥30% stenosis Identification of pla-
que vulnerability

HRMRI texture features provide incremen-
tal value for carotid atherosclerotic risk
assessment.

Cheng et al. 2022 [19] China R 221 (NA) 66.89 ± 8.07 186 Carotid
endarterectomy

Prediction of in-stent
restenosis

Radiomics and plaque features afforded
the best predictive performance.

Cilla et al. 2022 [20] Italy R 30 (NA) 72.96 19 >70% internal
carotid stenosis

Identification of pla-
que vulnerability

CTA-based radiomics and machine learn-
ing can discriminate plaque composi-
tion.

Colombi et al. 2021 [21] Italy R 172 (NA) 77 112 Carotid artery
stenting

Prediction of unfa-
vorable outcome
after CAE

Kurtosis was an independent predictor of
unfavorable outcome after CAS.

Dong et al. 2022 [22] China R 120 (NA) 66.68 ± 7.75 100 ≥50% stenosis Identification of
symptomatic
patients

Radiomics-based machine-learning analy-
sis improves the discriminatory power of
carotid CTA.

Doonan et al. 2016 [23] Canada R 160 (NA) 69.7 ± 9 71 Carotid
endarterectomy

Evaluation the asso-
ciation of echoden-
sity and textural
features with pla-
que instability

Plaque echodensity and textural features
are associated with histologic instability.

Ebrahimian et al. 2022 [24] USA R 85 (NA) 73 ± 10 56 Suspected or known
ICA/CCA stenosis

Assessment of ICA/
CCA stenosis and
prediction of surgi-
cal outcome

DECT-based spectral radiomic features can
differentiate patients with different
luminal ICA/CCA stenosis grades.

Huang et al. 2022 [25] China P 548 (384:154) 62 ± 10 373 Carotid plaque Identification of
symptomatic
plaques

Nomogram has a high diagnostic perfor-
mance for identification of symptomatic
carotid plaques.

Kafouris et al. 2021 [26] France R 21 (NA) 70.43 ± 7 18 High-grade carotid
stenosis

Prediction of plaque
vulnerability

Texture analysis can be applied in [18F]
FDG PET carotid imaging, providing
valuable information for plaque charac-
terization.

Le et al. 2021 [27] UK R 41 (NA) 63.47 ± 8.89 32 Carotid artery-
related stroke or
TIA

Assessment of radio-
mic robustness

A set of radiomic features are robust and
have superior predictive performance
for the classification of culprit versus
non-culprit carotid arteries in patients
with stroke and TIA.

Lo and Hung 2022 [28] China R 177 (NA) 61.5 89 Stroke Diagnosis of ischemic
stroke

CCD-based texture feature improves ische-
mic stroke diagnoses.

van Engelen et al. 2014 [29] Netherlands P 298 (NA) 70.45 110 Plaque area 40−600
mm2

Prediction of vascu-
lar events

Plaque texture and volume changes are
strongly predictive of vascular events.

Wang et al. 2022 [30] China R 105 (70:35) 63.4 73 CAD Evaluation of the
severity of CAD

Radiomics nomogram has potential for risk
stratification of CAD before ICA.

Zaccagna et al. 2021 [31] UK R 24 (NA) 63 ± 10 14 Carotid
atherosclerosis

Identification of pla-
que vulnerability

CT texture analysis can identify vulnerable
patients in stroke and TIA.

Zhang et al. 2022 [32] China P 150 (105:45) 61.7 ± 10 120 Atherosclerotic
plaque

Identification of pla-
que vulnerability

US texture feature can predict vulnerability
of atherosclerotic plaque.

Zhang et al. 2021 [33] China R 162 (121:41) 66.8 ± 7.35 148 >30% stenosis Identification of
symptomatic
plaques

MRI-based radiomics model can distin-
guish symptomatic from asymptomatic
carotid plaques.

CAD, coronary artery disease; CAE, carotid endarterectomy; CAS, carotid artery stenting; CCD, carotid artery ultrasound; CTA, computed tomography angiography;
DECT, dual-energy computed tomography; [18F]FDG PET, fluorine-18-labeled fluorodeoxyglucose positron emission tomography; HRMRI, high-resolution magnetic
resonance imaging; ICA, invasive coronary angiography; ICA/CCA, internal carotid artery/common carotid artery; NA, not available; P, prospective study; R, retro-
spective study; TIA, transient ischemia attack; US, ultrasonography.
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and high-sensitivity C-reactive protein were independent clinical risk
factors.

Performance of prediction models

The AUC represents the prediction power of models; the mean ±
standard deviation in the training cohort was 0.88 ± 0.02 (range: 0.741
−0.989), and 56.3% (9/16) of studies reported classification measures
such as sensitivity, specificity and positive or negative predictive value.
Seventy-five percent (12/16) of studies conducted internal validation
through 5/10-fold or leave-one-out cross-validation, random resampling
or bootstrap. However, only 37.5% (6/16) of those validation cohorts
reported C-statistics [18,19,25,30,32,33], ranging from 0.83 to 0.986.
Four studies drew calibration curves or performed the Hosmer−Leme-
show test to calibrate the models [18,24,30,32], three studies used deci-
sion curve analysis (DCA) to estimate the clinical utility of the models
2440
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[18,25,30] and three studies calculated a cutoff value to classify vulnera-
ble or symptomatic plaque [25,31,33]. Six studies drew a nomogram
based on prediction models [18,19,25,30,32,33].

Discussion

This review selected 16 pieces of literatures for analysis and revealed
a growing number of studies using radiomics to investigate high-risk
carotid plaque, especially in the last 2 y. Based on a median population
size of 135, the added value of radiomics in routine clinical imaging
modalities has been extensively explored, with AUCs as high as 0.989 in
the training set and 0.986 in the test set, highlighting the management
and prediction of prognosis of patients with carotid plaque. Despite the
promising and encouraging preliminary results, the overall quality of
the included research is low, with a mean RQS score of 9.25 (<33.3% of
the total points).
cial Security de ClinicalKey.es por Elsevier en diciembre 06, 2023. Para 
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Table 2
Characteristics of the radiomics studies for carotid plaque and results of radiomics quality score

Study Modality Segmentation Feature Modeling method No. of imaging
features included
in model

AUC in training set
(95% CI)

Classification measures Validation and method RQS (point)

Chen et al. 2022 [18] HRMRI Manually First-order, shape, tex-
ture, wavelet

LASSO, LR 8 0.929 (0.881−0.982) ACC Internal, 10-FCV 18

Cheng et al. 2022 [19] CTA Manually First-order, shape, texture COX, LASSO 6 0.88 (0.82−0.95) SEN, SPE Internal, 5-FCV 13
Cilla et al. 2022 [20] CTA Manually First-order, shape, texture LR, SVM, CART 2 0.987 (NA) SEN, SPE, ACC, F-

measure
Internal, 5-FCV 12

Colombi et al. 2021 [21] CTA Manually First-order LR 3 0.789 (0.73−0.847) NA NA 3
Dong et al. 2022 [22] CTA Manually First-order, shape, texture LR, SVM, XG-BOOST 20 0.858 (0.782−0.933) NA Internal, 5-FCV 12
Doonan et al. 2016 [23] US Manually First-order, texture LR 5 NA NA NA 3
Ebrahimian et al. 2022

[24]
DECT Manually First-order, shape, texture LR 10 0.94 (NA) SEN, SPE, ACC NA 7

Huang et al. 2021 [25] US Manually First-order, shape, texture LASSO, LR 4 0.927 (0.90−0.956) Cutoff, SEN, SPE, ACC,
PPV, NPV

Internal, randomly 25

Kafouris et al. 2021 [26] F18-FDG PET Manually First-order, texture LR 1 0.97 (NA) Youden index Internal, 200 bootstrap 14
Le et al. 2021 [27] CTA Manually First-order, texture LASSO, SWV, decision

tree, random forest
3 0.73 (NA) SEN, SPE Internal, 5-FCV 12

Lo and Hung 2022 [28] CUS Manually First-order, shape, texture LR, SVW, 11 0.94 (NA) SEN, SPE, ACC, PPV, NPV Internal, LOOCV 7
van Engelen et al. 2014

[29]
3D US Semi-auto Texture Cox 8 0.78 (NA) NA Internal, 10-FCV 18

Wang et al. 2022 [30] US Manually First-order, shape, tex-
ture, wavelet

LASSO, LR 11 0.741 (0.646−0.835) SEN, SPE, ACC, Youden
index

Internal, 10-FCV 16

Zaccagna et al. 2020 [31] CT Manually First-order NA 6 0.81 (NA) Cutoff, SEN, SPE NA 1
Zhang et al. 2022 [32] US Manually First-order, texture,

wavelet
LASSO, LR 8 0.88 (NA) NA Internal, 10-FCV 21

Zhang et al. 2020 [33] MRI Manually First-order, shape, tex-
ture, wavelet

LASSO, LR 33 0.989 (NA) Cutoff, SEN, SPE, ACC,
NPV, PPV

Internal, 1000 bootstrap 17

ACC, accuracy; CART, classification and regression tree analysis; CTA, computed tomography angiography; DECT, dual-energy computed tomography; [18F]FDG PET, fluorine-18-labeled fluorodeoxy-
glucose positron emission tomography; 5-FCV, 5-fold cross-validation; HRMRI, high-resolution magnetic resonance imaging; LASSO, least absolute shrinkage and selection operator; LOOCV, leave-one-
out-validation; LR, logistic regression; NA, not available; NPV, negative predictive value; PPV, positive predictive value; RQS, radiomics quality score; SEN, sensitivity; SPE, specificity; SVM, support vec-
tor machine; US, ultrasonography.
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Figure 2. Methodological quality assessed by using the radiomics quality score
(RQS) tool. (A) Proportion of studies with different RQS percentage scores. (B)
Average scores of each RQS item (red bars represent the full points of each item,
and gray bars represent actual points).

Figure 3. Risk of bias and applicability concerns of each included study (A) and
the overall judgment (B) assessed by using the revised tool Quality Assessment
of Diagnostic Accuracy Studies (QUADAS-2).

C. Hou et al. Ultrasound in Medicine& Biology 49 (2023) 2437−2445
As the bridge between medical imaging and personalized medicine,
radiomics is quite a complex project, as the steps include data selection,
medical imaging, feature extraction, algorithm operation and model
construction. Each step of the workflow can be achieved by several strat-
egies and approaches, which undoubtedly induces substantial methodo-
logical heterogeneity and bias among radiomics studies. Therefore,
before translating the radiomics model to clinical application, standardi-
zation of the reporting norms is essential to guarantee the prediction
models are reproducible and reliable. To normalize the process and eval-
uate the quality of radiomics reports, the founder of radiomics, Lambin,
proposed the RQS tool in 2017. Recently, the quality assessment of
radiomics research has currently been applied to oncology, the field in
which radiomics was involved earliest, with an average RQS score from
3.41 to 13.5 (9.4%−37.5% of the total) [13,34,35]. Wakabayashi et al.
[34] quantitatively reviewed the radiomics in hepatocellular carcinoma
and included 23 studies that reached a median point of 8.35 ± 5.38. A
lower score of 5.0 was assessed by M€uhlbauer et al. [35] in a systematic
review that contained 113 radiomics studies of renal cell carcinoma. In
our study, an average RQS of 9.25 (range: −2 to 22) was calculated, sug-
gesting the relatively low or moderate overall reporting quality of pres-
ent radiomics models in carotid plaques, and the methodological
variability of the studies is considerable.

The choice of imaging protocol, ROI, target event and reasonable
study design is the beginning of radiomics analysis. Standardized and
widely applied imaging protocols can eliminate unnecessary confound-
ing variability, improving the reproducibility and comparability of stud-
ies across different populations, centers or regions. Before ROI
segmentation, image pre-processing generally requires normalization to
minimize gray value heterogeneity. In contrast, prior normalization of
CTA/CT images seems unnecessary as gray values are already calibrated
to Hounsfield units [27,28]. In the first domain of RQS, ROI segmenta-
tion is a critical step in determining which lesions to analyze in the
2442
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image. An ideal carotid plaque segmentation method can accurately
define the target lesion in the image with high reproducibility and low
cost. Multiple segmentation, such as different clinicians, software, algo-
rithms and breath cycles, is one way to reduce bias. In this review, most
studies manually segmented the largest or most representative plaques
from the axial and/or sagittal planes as a single 2-D slice by two physi-
cians, leading to missing information and underestimation of intrapla-
que heterogeneity. Machine and deep learning can automatically target
carotid plaques, further reducing bias [36]. However, the “phantom
study” and “test−retest analysis” performed poorly in the included liter-
ature. These two items aimed to measure the uncertainties from organ
motion or expansion, while a phantom study can detect possible feature
variability of different vendors. A quantitative review of 77 oncology
radiomics studies suggested that it is impractical to conduct two items
for a clinical situation [37]. As radiomics biomarkers are supposed to be
robust, some robust and reproducible studies using phantoms have been
published in the oncology field [38−40], whereas relatively few data
are available in cardiovascular imaging [41]. In our selected studies,
cial Security de ClinicalKey.es por Elsevier en diciembre 06, 2023. Para 
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only Zhang et al. [33] extracted texture features from four different MRI
sequences.

Like clinical prediction modeling, radiomics modeling involves three
major aspects: feature/factor selection, modeling methodology and vali-
dation. Notably, both radiomics and non-radiomics features should be
taken into consideration with the prediction target. In this review, Cilla
et al. [20] and Lo and Hung [28] analyzed only differences in texture
features, while other authors analyzed differences in clinical and tradi-
tional imaging between groups. Many modeling algorithms are available
today, including LASSO, support vector machine, random forest, logis-
tic/Cox regression and regression tree analysis. Extracting countless fea-
tures in a limited number of people will result in redundancy.
Documenting the various machine learning methods helps to eliminate
unreliable factors and avoid overfitting. Additionally, validation is an
integral part of a desirable radiomics model; a model without validation
is of limited value. In RQS, the validation type performed accounts for as
much as 10 of 36 points, and the highest score (5 points) belongs to a
validation based on three or more external data sets. All 16 studies
included in this review were single-center research studies, 12 of which
were internally validated. Lack of external validation is a common phe-
nomenon in radiomics analyses. Park et al.’s review [37] found that
81.8% of studies missed validation on external data sets, while Wang et
al.’s review found this proportion to be even higher, at 90.1% [42].

Discrimination, calibration and cutoff analysis are metrics used to
evaluate model performance, accounting for 2, 2 and 1 of the RQS,
respectively. Discrimination refers to the degree to which a model differ-
entiates risk with and without events, while calibration refers to the
degree to which predicted risks are compared with observed outcomes.
AUC, receiver operating characteristic (ROC) curve or C-statistic corre-
sponding to p value, 95% confidence interval and calibration curves/
plots with their statistical significance are usually used to report discrim-
ination and calibration statistics, respectively. AUC is the equivalent to
C-statistic in diagnostic prediction models [43]. A cutoff value of the
ROC curve is used to divide the patients into low- and high-risk groups
for a specific disease, which is also one of the requirements for replicat-
ing the results of previous studies. The average AUC was 0.88 ± 0.02 in
the training cohort, indicating the good predictive power of these radio-
mics models. In the test cohorts, however, only 6 studies reported C-sta-
tistic, and only a quarter of studies presented cutoff values and
calibration curves. DCA reports the current and potential application of
the model in a clinical setting; however, only 3 studies performed a deci-
sion curve [18,25,30].

Prospective studies with sufficient sample sizes are a prerequisite to
the reliability of experimental results, which accounted for the highest
score of 7 points in RQS, whereas a retrospectively designed study intro-
duces selection bias. As one of the most poorly performed items, the bio-
logical correlate reveals the possible associations between textures and
phenotype or gene−protein expression patterns. Evaluation of biological
variables and imaging findings often presented in oncology, and the term
radiogenomics is widely used in the literature. Microscopically, high
expression of C-reactive protein (CRP), interleukin (IL)-6, IL-18 and tumor
necrosis factor-α indicate severe plaque inflammation, suggesting plaque
vulnerability [44−46]. Oikonomou et al. [47] found that texture features
of the coronary artery plaques were related to the expression of COL1A1
and CD31, which are markers of fibrosis and vascularity, respectively. Of
these included studies, only Kafouris et al. [26] investigated the correla-
tion between [18F]PET/CT-based radiomics features and CD31 and CD68,
indicating that texture features can predict the expression of CD31. Pre-
liminary evidence has revealed a meaningful correlation between inflam-
matory molecules and contrast-enhanced ultrasound features [48]. As
mentioned previously, radiomics features extracted from imaging data
are able to identify vulnerable plaques and risk stratification. Therefore,
linking imaging features to underlying tissue biology markers allows for a
more personalized assessment of CAS progression.

Other poorly performed items were open science and data and cost-
effectiveness analysis. Code and data sharing enables the initiation of
2443
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highly powered prospective studies and accelerates the development
and validation of radiomics signatures derived from new and existing
data. Cost-effectiveness analysis can assess the value of radiomics pre-
dictive models in health economics when applied clinically [49,50]. It is
expected that a new model with comparable accuracy should not be
more expensive than previously available predictors. Considering the
status of radiomics in methodology and clinical validation, Wang et al.
[42] thought that the evaluation of this item was less urgent.

Under the guidance of the RQS tool, prospectively designed studies
with standardized CT, MRI, US and PET/CT protocols can yield addi-
tional valuable information on carotid plaque patients. Future develop-
ment may also require the CEUS modality for its promising diagnostic
capability, especially in intraplaque neovascularization and morphology
evaluation. An ideal predictive model should include an adequate sam-
ple size, commonly calculated by the number of events per variable
(EPV). To avoid overfitting, ranking prediction frequently recommended
an EPV sample ≥10 for categorical predictor [51,52], 20 individuals per
factor for continuous outcomes [53] and at least 100 events and 100
non-events in validation models [54]. In addition to the RQS tool, the
TRIPOD statement and CHARMS checklists are recommended guidelines
for radiomics prediction modeling [53,55]. Authors need to record the
number of candidate participants, the final population included, the
presence or absence of missing data and the handling of missing data to
better understand potential bias and reduce the negative impacts of
missing data on model development and validation [56]. Furthermore,
the validation set generated by an internal data set is not only similar to
the test group but also has a small sample size that provides little extra
information beyond the apparent performance, which actually increases
the risk of bias. Therefore, external validation from different times, loca-
tions or repeating an existing modeling process in the validation data
can improve the reproducibility and applicability [57,58]. There is still
much room for exploring the link between the radiomics features and
the biological phenotype of carotid plaques.

Limitations

This review has some inherent limitations. First, the sample size
included is relatively small, and the quality of reports varies. Second,
there are no independent, externally validated studies from which to
draw convincing conclusions on the effectiveness of radiomics models in
predicting carotid plaque. In addition, the heterogeneity and bias from
various methodologies, feature selections, algorithms, modalities and
study cohorts of the included studies should be mentioned.
Furthermore, we did not perform a meta-analysis of the performance
metrics of the integrated predictive models, nor could we
compare model performance because of different research purposes,
high heterogeneity and large differences in predictor variables.

Conclusion

The current study suggests that radiomics reports of carotid plaque
are still in their infancy, and many hurdles need to be overcome. How-
ever, radiomics models have provided additional information on
patients with carotid plaque. For diagnosis, radiomics features may help
classify vulnerable plaques and symptomatic patients with higher accu-
racy than traditional imaging features. For prognosis, radiomics models
could effectively predict cardiovascular events or unfavorable outcomes
before and after management. In the future, prospective radiomics trials
with standardized workflow, adequate output, optimal sample size and
external validation will yield reliable and reproducible imaging predic-
tions that are valid for clinical implementation and progression.
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