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A B S T R A C T   

Background: Medication prescription is a complex process that could benefit from current research and devel-
opment in machine learning through decision support systems. Particularly pediatricians are forced to prescribe 
medications “off-label” as children are still underrepresented in clinical studies, which leads to a high risk of an 
incorrect dose and adverse drug effects. 
Methods: PubMed, IEEE Xplore and PROSPERO were searched for relevant studies that developed and evaluated 
well-performing machine learning algorithms following the PRISMA statement. Quality assessment was con-
ducted in accordance with the IJMEDI checklist. Identified studies were reviewed in detail, including the 
required variables for predicting the correct dose, especially of pediatric medication prescription. 
Results: The search identified 656 studies, of which 64 were reviewed in detail and 36 met the inclusion criteria. 
According to the IJMEDI checklist, five studies were considered to be of high quality. 19 of the 36 studies dealt 
with the active substance warfarin. Overall, machine learning algorithms based on decision trees or regression 
methods performed superior regarding their predictive power than algorithms based on neural networks, support 
vector machines or other methods. The use of ensemble methods like bagging or boosting generally enhanced the 
accuracy of the dose predictions. The required input and output variables of the algorithms were considerably 
heterogeneous and differ strongly among the respective substance. 
Conclusions: By using machine learning algorithms, the prescription process could be simplified and dosing 
correctness could be enhanced. Despite the heterogenous results among the different substances and cases and 
the lack of pediatric use cases, the identified approaches and required variables can serve as an excellent starting 
point for further development of algorithms predicting drug doses, particularly for children. Especially the 
combination of physiologically-based pharmacokinetic models with machine learning algorithms represents a 
great opportunity to enhance the predictive power and accuracy of the developed algorithms.   

1. Introduction 

Children cannot easily be seen as “young adults”, especially when it 
comes to medication prescription. Unfortunately, this group of patients 
is still underrepresented in clinical studies [1], mainly due to the par-
ents’ missing knowledge and acceptance [2] and ethical issues [3]. But 
also, financial reasons regarding the profitability of clinical studies with 
children are a big obstacle - their implementation is quite expensive and 
the profit for pharmaceutical companies is rather small as the target 
group is limited. Additionally, only one third of the pediatric studies 
approved by the Food and Drug Administration between 2007 and 2014 
was completed [4], which leads to ongoing drug approvals without any 
or with too little information on pediatric drug doses [5]. This situation 
forces pediatricians to off-label drug use, which makes up about half of 
the medication prescriptions for children [6]. The danger of an incorrect 

dose is extremely high, especially for small children and neonates [7], as 
the drug dose prescription mainly depends on the pediatricians experi-
ence and knowledge. Regarding the physiological changes in children’s 
early years of life, many factors need to be considered when choosing the 
correct dose: pharmacodynamics, pharmacogenetics and pharmacoki-
netics [8]. Hence, the risk of adverse drug effects is much higher for off- 
label drug use than for regular prescriptions [9–11]. 

Many approaches were taken to solve the pediatric dose problem, 
mainly depending on body weight and body surface area - i.e. the 
method of Du Bois [12], the Broselow tape [13] and the equation of 
Stuart-Taylor [14]. However, these approaches seem to be imprecise 
and outdated [15]. More recent publications considered the individual 
physiology of children and developed flexible models to calculate the 
correct dose depending on pharmacokinetic factors like renal functions 
or serum concentrations [16,17]. Additionally, model-based 
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calculations for pediatric drug doses were conducted [18–20] for indi-
vidual substances. 

Although these flexible approaches were more precise and reliable 
than fixed dose schemes, the results are still missing an all-embracing 
overview about individual factors of pediatric dose calculations [21]. 

The recent progress in machine learning (ML) methods and the 
increasing use of artificial intelligence in medicine leads to the idea to 
solve the pediatric dosing problem with the help of these methods. And 
the demand is definitely showing the importance − 11 out of 12 pedi-
atricians expressed interest in an online platform for pediatric dosing 
support [22]. However, since many questions remain unsolved, e.g. 
regarding the best working algorithm, input variables and output values, 
the objective of this review is to get an overview about existing ML 
methods for predictions in medication dosing. We also aim to evaluate 
the different approaches concerning their applicability in pediatrics. To 
have an overall quality assessment of the included literature we used the 
IJMEDI checklist. 

2. Materials and methods 

In order to satisfy the multiple complex requirements in pediatric 
medication prescription, extensive literature research was conducted to 
carry out this systematic review. Publications were searched in PROS-
PERO, PubMed and IEEE Xplore and screened after analysis following the 
guidelines on the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) [23]. Due to the small number of publications 
dealing with ML algorithms for pediatric medication prescription, 
publications outside the field of pediatrics were also included in the 
review. 

We applied the following keywords to the database search: “machine 
learning” combined with “dosing/dose/dosage” or “drug dose/dosing” 
or “dose/dosage prediction” (and “pediatrics/children”) to identify 
suitable publications. Publications fulfilling the following criteria were 
included in the review: 

i) presentation and analysis of a specified ML algorithm for calcu-
lating/predicting medication doses,  

ii) evaluation of the used algorithm by calculating the error rate or 
any other parameter,  

iii) naming the origin and dimension of the designated data set, 
iv) describing the used input variables and output values of the al-

gorithm and their role in the dose calculation. 

Publications that miss information about any of the criteria above 
cannot be included in the review since these factors are crucial for 
classifying the algorithms according their eligibility for pediatric dose 
prediction. 

We followed the PRISMA flow (see Fig. 1) for exclusion of publica-
tions and according to the eligibility criteria described above. All steps 
were performed at least by two authors and ambiguous decisions were 
discussed by all authors until consensus. 

The remaining publications after completing the PRISMA flow were 
included in the review. These publications were examined in detail 
where special attention was put to the data items shown in Table 1. The 
publications were categorized into groups according to the extracted 
data items. This categorization simplifies the statistical calculations for 
the evaluation and makes correlations between individual factors more 
obvious. 

As the pediatric medication prescription makes use of rather small 
drug doses, the performance of the algorithm in small dose ranges is 
fundamental for its future use and opportunities in this field. Moreover, 
the therapeutic window for drug prescriptions is even smaller for chil-
dren than for adults, which makes an exact calculation, e.g. low variance 
and a low error rate, necessary. In order to find the algorithms that fulfill 
these requirements in the best way, special attention during the evalu-
ation process was given to the performance of the respective algorithms 
for small dose ranges. The properties of the particular algorithms 
working best and worst for this scenario were compares with each other 
with the aim of finding individual factors correlating with the 
performance. 

Fig. 1. PRISMA flow diagram.  
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In order to have a standardized evaluation of the studies’ quality in 
the field of artificial intelligence in medical applications, the IJMEDI 
checklist [24] was used. With this checklist, developers can evaluate 
their own applications according to the necessary criteria and re-
searchers can assess the quality of existing AI studies. The summarized 
score for the checklists’ 30 questions is 50 points, while the questions 
consist of 20 high-priority items (40 points) and 10 low-priority items 
(10 points). In this systematic review, the studies examined were divided 
into low (0–25), medium (25.5–39.5), and high (40–50) quality ac-
cording to their respective scores. 

3. Results 

Overall, we identified n = 656 publications from our literature 
research sources; Pubmed (n = 485), IEEE Xplore (n = 96), citation 
searching (n = 75). The process of evaluating the eligibility is shown in 
the PRISMA flow diagram in Fig. 1. 

N = 36 publications were included in this review [25–60], the ma-
jority of them (n = 19) dealing with warfarin, the remaining ones 
dealing with vancomycin (n = 3), tacrolimus (n = 2), heparin (n = 2), 
thyroxine (T4) (n = 2) and dofetilide, lamotrigine, propofol and 

fentanyl, remifentanil, insulin, digoxin, opioids and substances cata-
lyzed by cytochrome P450 (each n = 1). N = 21 of the identified pub-
lications are comparative analyses, which means that they are 
comparing multiple different ML algorithms with each other with 
respect to their individual use case. These analyses especially represent 
great value for this review as they might give hints for well-performing 
algorithms in direct comparison. 

Regarding the respective ML methods, Decision Trees were used 
most often (n = 19) as well as Regression Analysis (n = 18), Support 
Vector Machines (SVM) (n = 17) and Neural Networks (NN) (n = 15). N 
= 7 publications used the k-Nearest Neighbor method (k-NN), whereas 
other methods like Bayesian Analysis or Relevance Vector Machines 
(RVM) were only used in individual cases. Besides, the majority of the 
approaches made use of Ensemble Methods (n = 19), i.e. Bagging, 
Boosting or Voting. 

Looking at the datasets used by the different studies, it can be seen 
that there is a wide variety of the sizes and the types of input data. Many 
studies (at least partially) made use of already existing datasets like the 
IWPC dataset [61] or the MIMIC-III dataset [62] (n = 12). On average, 
the studies in this review collected data from 1766 patients (median: 
650). What stands out is the size of the dataset used by Gu et al. [33], 
which includes more than 15,000 patients. In contrast to that, Gonzalez- 
Cava et al. [31] included only 15 patients. 

The amount of input values also differs among the different studies: 
some included less than 10 input features (e.g. Li et al. [41]) and others 
gathered more than 25 features (e.g. Sharabiani et al. [51]) to predict 
the respective output values. A promising result is that 34 of the 36 
identified publications were successful in terms of having at least one 
satisfying approach for their respective use case. Only the remaining n =
2 publications were not capable of finding an algorithm that can predict 
the outcome value in a similar or better way than existing guidelines or 
experts. The results for each individual substance are shown in Table 2, 
where the respective substances are linked to their best-performing al-
gorithm(s) including their error rates, the strongest predictors and the 
outcome values. 

Apart from that, it can easily be seen that the strongest predictors 
apart from age, gender and weight differ enormously among the 
different substances. Output values are either daily or weekly doses or, i. 
e. for T4, an individual value that is related to the pharmacodynamics of 
the respective substance. 

For the most frequent methods the results are shown in Table 3. In 
general, algorithms based on Decision Trees and/or Regression Methods 
are most likely to be the best performing algorithm (in 7 out of 15 
comparative analyses, respectively). Algorithms using Ensemble 
methods perform above average as well, being incorporated in the best 

Table 1 
Data Extraction Items.  

Item Value Explanation 

Method(s) Applied Machine Learning 
Method(s) 

Which machine learning method(s) 
was/were used in particular to 
generate the output value? 

Dataset Size and Origin of the used 
test and training datasets 

Where did the data items for 
training and test come from and 
how many were used? 

Substance 
(s) 

Name(s) of the active 
substance(s) the algorithm 
was developed for 

Which active substance(s) is/are 
addressed by the algorithm? 

Input Input variables for the 
algorithm 

Which variables are needed as input 
for the prediction? 

Output Output value predicted by 
the algorithm 

Which output value does the 
algorithm give as result (e.g. daily 
dose/weekly dose/dose rate 
change, etc.)? 

Error Value of the prediction error 
and the calculation 

Which error value is given, how is it 
calculated and what is the 
respective value? 

Application If applicable: the field of 
application 

Which fields of application are 
covered by the algorithm (e.g. 
substances, patient group [age, 
race, diagnoses], etc.) and which 
limitations are mentioned?  

Table 2 
Results classified by active substances (abbreviations can be found in Supplementary Material).  

Active 
substances 

Methods studied Best performing 
method(s) 

Lowest error (MAE) Input values Output value 

Warfarin 
(n = 19) 

NN, MLP, RF(R), SVR, MARS, 
BART, CART, k-NN, MLR, … 

RF, SVR, MARS 
+ Bagging/ 
Voting  

0.21 
mg
day 

[35] 4.39 
mg

week 
[41] 

accuracy: 82 % [24] 

age, gender, weight, diagnoses, 
VKORC1 & CYP2C9, amiodarone use, 
aspirin, target INR value 

Weekly dose or daily dose 

Vancomycin 
(n = 3) 

CART, M5, XGBoost, SVR CART, M5, 
XGBoost 

9.14 
mg
l 

and 6.41 
mg
l 

for peak 

and through concentrations  
[34] 
accuracy: 70 % [26] 

age, gender, weight, Scr, eGFR, 
medications, dosing intervals 

Daily dose or peak and 
through concentrations 

Heparin 
(n = 2) 

RF, SVM, XGBoost, AdaBoost, 
NN 

NN F1 Score: 87 % [26] age, gender, weight, AST/ALT ratio, 
Scr, therapeutic dose 

therapeutic effect of the 
given dose / aPTT after 4–6 
h 

Tacrolimus 
(n = 2) 

MLR, NN, RT, BRT, SVR, RFR, 
LAR, BART, MARS, LR 

RT, Lasso + LR 0.72 
mg
day 

[53] 

accuracy: 52 % [53] 

age, gender, weight, organ type, 
CYP3A5, lab values, diagnoses, 
medications 

Daily dose or T1 level after 
36–48 h 

T4 
(n = 2) 

DT, SVM, NN, RF, OLSR, LAR, 
Poisson Regression, Gamma 
Regression, RR 

DT, Poisson 
Regression 

13 
μg

day 
[28] 

accuracy: 75 % [31] 

age, gender, weight, TSH value, dietary 
supplements 

Daily dose or daily dose 
adjustment  
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Table 3 
Results classified by ML methods (abbreviations can be found in Supplementary Material); bold marked ap-
proaches show the best performance in a comparative analysis; study quality is indicated by the colour of the 
respective cells (green = high quality, yellow = medium quality, red = low quality).  
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Table 4 
Results of the quality assessment of the 36 publications according to the IJMEDI checklist; study quality is indicated by the colour of the respective cells (green = high 
quality, yellow = medium quality, red = low quality).  
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algorithm in 7 out of 16 comparative analyses. On the contrary, NN (in 1 
out of 13) or SVM (in 2 out of 15) are unlikely to be the best performing 
algorithms in a comparative analysis.The Supplementary File (Appendix 
C) details the results of the quality assessment. Table 4 summarises the 
scores of each category and the total score of each study. The average 
score of the IJMEDI checklist was 30.9 (range: 19 to 42.5). Most of the 
studies were of a medium quality. We identified five studies 
[32,33,39,42,55], that were of a high quality, while eight were of a low 
quality. 

The results of the high-quality studies show that most of them used a 
very large or at least above average dataset (see above). Accordingly, 
most of the low-quality studies used a dataset of a size significantly 
below the average. Low and intermediate quality studies were also more 
likely to achieve either very good [35,41] or very poor results [25,47]. 
Fig. 2 shows the quantitative results of the checklist, ordered by publi-
cations and priority of items. 

4. Discussion 

The results of this review show that the performance of an algorithm 
mainly depends on its use case. Most of the reviewed publications 
developed very individual and specialized algorithms and used variables 
depending on the respective substances and datasets. For instance, 
calculating the correct dose for vancomycin requires completely 
different parameters (e.g. the glomerular filtration rate as a strong 
predictor and the peak and through concentrations as output variables) 

than for any other substance. As vancomycin is an antibiotic, it is 
necessary to maintain a steady concentration level to reach the desired 
effect. Even small inconsistencies or variances in the concentration level 
may lead to adverse side effects or even no effects at all. Moreover, 
Vancomycin overdoses are suspected to be nephrotoxic and should be 
avoided at all times [63,64]. In contrast to that, the crucial steps for the 
correct warfarin dosing are genotyping (Vitamin K epOxide Reductase 
Complex subunit 1 [VKORC1] and Cytochrome P450 family 2 subfamily 
C member 9 [CYP2C9]) and calculating the target International 
Normalized Ratio (INR) value. The research for warfarin made huge 
progress during the last years and the establishment of the International 
Warfarin Pharmacogenetics Consortium (IWPC) [61] in 2008 provided 
important knowledge about detailed warfarin medication data in com-
bination with pharmacogenetic and pharmacodynamic variables. 
Therefore, the information on warfarin dosing is by far more developed 
than for other substances. By using the data from IWPC, it shall be 
possible to predict completely individualized dose values by incorpo-
rating pharmacogenetic information. Especially for warfarin, genetic 
data seems to be the most important predictor for the correct dose and 
was used in 12 out of 19 publications dealing with warfarin – especially 
in the five high-quality studies. Nevertheless, it is still discussed if 
pharmacogenetic data really improves the predictive accuracy. Some 
studies found that clinical data alone offers as much accuracy as the 
combination of clinical and genetic data [65–67], but these results are 
not necessarily transferable to long-term observations [68]. For 
warfarin, researchers aim to develop a fully patient-individualized 

Fig. 2. Proportion of the results in the high- and low-priority items (OK = adequately addressed; mR = sufficient but improvable; MR = inadequately addressed).  
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approach to predict the prescription and dose using genetic data [61] as 
these predictors differ strongly among different patient groups, e.g. age, 
race and prescription of other medications (see Appendix A, column 
“Application” for detailed information). 

Regarding the input variables, a large variety among the reviewed 
publications could be observed which can be explained by the 
completely different factors that need to be considered for the different 
substances. For some, one might apply genetic variables (e.g. VKORC1 
and CYP2C9 for warfarin), for others pharmacokinetic and pharmaco-
dynamic variables (e.g. the glomerular filtration rate). Additional fac-
tors about medication (e.g. dosing times, intervals, and interaction with 
other active substances) and laboratory values (e.g. serum creatinine) 
can also be important. 

It was suggested in former publications to generally include genetic 
data in medical records [69] and to use the entire available data in 
research and clinical care [70–72]. Nevertheless, it has to be considered 
that this data collection process would imply a significant increase of 
work load for clinicians and more examinations and time consumption 
for patients, which does not seem feasible, especially for children. 
Existing physiologically-based pharmacokinetic (PBPK) models could be 
the solution to fill the data gaps in a fast and simple way. Many models 
exist which developed calculations to simulate pharmacokinetic vari-
ables in children’s bodies, e.g. for the clearance rate of cytochrome 
metabolized substances [73], the clearance rate of midazolam [74] or 
even for predicting the clearance for multiple substances (including 
warfarin and vancomycin) simultaneously. [75]. The use of such PBPK 
models seems to be helpful for finding the correct dose in pediatric use 
cases [76] as they are able to avoid overdosing by considering the in-
dividual physiological conditions [77]. Consequently, it seems reason-
able to include these models in the prediction using ML methods to 
overcome missing data items and increase the predictive power. The 
results of the models may serve as a further information source for the 
following ML algorithm. However, further research on the PBPK models 
is needed and they cannot replace clinical experts dosing decisions for 
now [78]. 

Although most of the publications chose weekly or daily doses as 
output values, some use cases made individual outputs necessary, e.g. 
drug concentration values for vancomycin, recommendations for 
changes in the current dosing scheme for lamotrigine, the correctness of 
the current digoxin dose or the adjustment of the daily dose of T4. The 
output value appears to be as individual as the respective substances and 
application areas. The best performing algorithm also differs among the 
different output values: for concentration values and dose correctness 
predictions approaches using Random Forest (RF), Classification and 
Regression Trees (CART), Extreme Gradient Boosting (XGBoost) or M5 
are most successful. For weekly and daily dose predictions, as in 
warfarin, the best methods appeared to be RF, Support Vector Regres-
sion (SVR) and MARS in combination with Bagging or Voting (see 
Table 3). 

In general, it could be observed that the majority of algorithms needs 
a large amount of demographic, clinical, and substance-individualized 
data to be able to perform well. But a comparison between the 
different approaches remains difficult. Many publications do not offer 
detailed information on their dataset and how they curated the data. 
Especially the eight low-quality studies were lacking crucial information 
about the data extraction and preparation process. Moreover, none of 
the publications defined the term “data from n patients” - which could 
mean the complete data from every single of these n patients, a single 
examination of n patients, single hospital stays of n patients, a single 
laboratory value of n patients or even a mix of these. The difference in 
data quality and redundancy of single values collected for a single study 
versus a complete medical record of a patient is enormous and should 
not be compared to each other. Hence, the data quality, which could not 
be evaluated in this review, is much more important than the given size 
of the dataset, because a larger dataset does not equal higher quality 
data. This leads to the complicated situation, where an algorithm trained 

with a larger dataset is not necessarily more accurate than an algorithm 
trained with a smaller dataset [79], even when larger datasets usually 
lead to an increased predictive power [80]. Additionally, the problem of 
“Overfitting” is present in very large datasets, where redundant data 
leads to a decreasing performance of the algorithm [81]. Especially 
Adaptive Boosting and Logistic Regression are sensitive to Overfitting 
[82]. To avoid this, dimension reduction methods can be used [82] as it 
was done e.g. by Grossi et al. [32] (one of the 5 identified high-quality 
studies). 

Furthermore, not only the different datasets are challenging to 
compare to each other, but also the algorithms itself. Although the 
publications stated clearly, which algorithm they were using, a large 
scope of differences can occur even when using the same algorithm. For 
example, Sharabiani et al. [50] and Alzubiedi [26] both used a Neural 
Network to predict the optimal dose of Warfarin for African-American 
patients and nevertheless, both have achieved very different results 
(MAE of 20.2 [50] versus MAE of 10.9 [26]). This could be because the 
stated methods, e.g. “Support Vector Machine” or “Neural Network” do 
not make any guidelines on the actual implementation and the chosen 
parameters of the algorithm itself. As the algorithms were mainly 
developed by the researchers themselves, the performance can strongly 
depend on the experience and knowledge about the methods of the 
respective researcher. The best results in this review were achieved by 
algorithms based on regression methods or Decision Trees [35,41,48], 
which are both relatively simple methods and easier to implement than 
other approaches. Neural Networks, in contrast, could be more complex 
to understand and to develop, which could be another reason why they 
performed poorly in comparison to easier methods. 

Furthermore, the quality of the individual studies should be 
considered when comparing them. Although we did not find that higher 
quality studies lead to better results in general, it stands to the reason 
that these studies hold a greater value when it comes to subsequent 
research studies in that field and should be the preferred source of 
information. 

These challenges regarding the comparison of the input datasets and 
used ML methods cannot easily be solved, what makes a clear compar-
ison and evaluation of the given approaches difficult. For example, 
regarding the three publications dealing with vancomycin, it appears 
that all of them are using different ways to evaluate their algorithms – 
Huang et al. [37] use the percentage of predictions within 20 % of the 
dosing interval, Imai et al. [38] use the peak and through concentrations 
and Hu et al. [34] calculate the MAE. 

As hardly any publications regarding the application of ML methods 
in the pediatric medication field matched the eligibility criteria (n = 1), 
this review focused on the application of such algorithms in the general 
medication process. But the results cannot be transferred directly to the 
pediatric use cases. The physiological differences between children’s 
and adults’ bodies are a crucial factor when comparing the dose pre-
diction algorithms. The ability to metabolize substances is a process that 
does not evolve in a linear way. Since ever, researchers try to model the 
metabolization processes of youths, children and neonates in complex 
calculations and studies. An example is the development of the 
glomerular filtration rate, which represents an important input variable 
for various algorithms in this review. It indicates the required time for 
metabolizing substances in the kidney, which is quite low for neonates 
but achieves the adults’ level during the first year of life [8]. In contrast 
to that, the pH value of the gastric acid is higher in neonates than in 
adults and decreases slowly during the first years of life [8]. All of these 
processes, especially the non-linear and complex ones, should be rep-
resented by a well-developed model and considered by the ML algorithm 
in order to achieve a precise dose prediction in pediatrics. It becomes 
clear that this algorithm cannot easily be derived from an adult’s algo-
rithm as there are more requirements that need to be considered. 

Hence, it was found, that some algorithms perform well in general 
and in medium to high dose ranges, but poorly in lower dose ranges (see 
[32,41,48,27]). However, these small dose ranges are crucial for the 
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dose prediction for children and should be observed in detail. For 
instance, the comparative analyses of Li et al. [41] regarding warfarin 
stated an overall minimal error of 4.39 mg

week using Multivariate Linear 
Regression (MLR), while the same algorithm leads to overdoses in 89 % 
for the low dose groups. Moreover, Liu et al. [45] achieved the best 
overall results using Multivariate Adaptive Regression Splines (MARS) 
but for small doses an algorithm based on Bayesian Additive Regression 
Tree (BART) clearly outperformed the other approaches. These obser-
vations lead to the conclusion, that it could be necessary to consider a 
clear distinction between ML approaches for adults and children. 

To the best of our knowledge, this systematic review is the first one 
using the IJMEDI checklist for quality assessment of AI applications in 
the area of medication prescription. The checklist serves as a helpful tool 
when it comes to comparing different AI publications qualitatively and 
is easy to be used. The evaluation of the studies using the IJMEDI 
checklist shows that most AI studies in this area provide little to no 
explanation of the data set used (mean: 3.3 of 6) and the deployment 
(mean: 1.5 of 5). Only the medical reasons for the development (mean: 
7.9 of 10) and the developed algorithms (mean: 5.6 of 6) are presented 
in detail. The results of the AI models are explained, but there is insuf-
ficient information on a validation process (mean: 6.4 of 12). This leads 
a medical professional to partially blindly trust the results and the al-
gorithms. Due to the different ways of explanations, it is noticeable that 
the authors of the studies did not use a standardized checklist for their 
development. By using such a checklist in the field of AI developing, the 
authors could have identified and clarified open questions and gaps in 
their explanations. 

Besides, the 36 studies included in this review are mostly not satis-
fying the requirements stated in the IJMEDI checklist [24], which is why 
only 5 studies were considered of a high quality. As the lack of infor-
mation is especially crucial when it comes to the used dataset and the 
deployment, the authors strongly suggest to consider these aspects in 
further work. 

This systematic review confirmed the demand for a standardized 
procedure in AI developing in medicine, especially to ensure compara-
bility of quality and to provide developers a checklist to control their 
work for completeness. 

5. Conclusion 

This review shows that a well-trained ML algorithm is able to predict 
the correct dose in various use cases. But it also highlights the impor-
tance of a large amount of high-quality data to reach this goal. The 
available data items should cover a wide range of variables: de-
mographic, clinical, genetic, pharmacokinetic, etc. Due to the 
complexity of this topic there is currently no ML system that is able to 
fulfil the requirements of different substances or even the special de-
mands in a pediatric application area. 

The overview identifies algorithms based on regression methods, 
decision trees and ensemble methods as the top performers in dosing 
prediction. However, the complexity is in the detail and there is 
currently too little research for a general statement. The respective 
method as well as input and output variables need to be tailored to the 
respective use cases, patient groups, substances and other requirements. 
PBPK models may serve as additional information source to simplify the 
data collection process. Finally, we have found that ML algorithms are 
able to support physicians in the medication prescription process, even 
though much research and development work is still needed in this area. 

Summary table 
What was already known on the topic:  

• There is an increasing use of machine learning in clinical context in 
various disciplines.  

• A vast amount of publications exists on the application of machine 
learning methods in the field of medication prescription. Most of 

them are not taking the special requirements in pediatrics into 
account. 

What this study added to our knowledge:  

• This systematic review is the first of its kind to provide a broad 
overview of machine learning applications in medication prescrip-
tion, especially in pediatrics by systematically comparing multiple 
studies and approaches regarding their predictive abilities, input 
variables and output values as well as assessing the quality of the 
studies by using the standardized IJMEDI checklist.  

• This review highlights versatile aspects of different machine learning 
approaches and the possibilities they offer when it comes to 
improving the dose prediction for children. 

The results of this study can serve as a basis for further research and 
development in medication prescription using machine learning algo-
rithms and their application. 
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