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This article proposes a summary of the current status of the research regarding the use of radiomics and arti-
ficial intelligence to improve the radiological assessment of patients with soft tissue sarcomas (STS), a hetero-
geneous group of rare and ubiquitous mesenchymal malignancies. After a first part explaining the principle
of radiomics approaches, from raw image post-processing to extraction of radiomics features mined with
unsupervised and supervised machine-learning algorithms, and the current research involving deep learning
algorithms in STS, especially convolutional neural networks, this review details their main research develop-
ments since the formalisation of ‘radiomics’ in oncologic imaging in 2010. This review focuses on CT and MRI
and does not involve ultrasonography. Radiomics and deep radiomics have been successfully applied to
develop predictive models to discriminate between benign soft-tissue tumors and STS, to predict the histo-
logic grade (i.e., the most important prognostic marker of STS), the response to neoadjuvant chemotherapy
and/or radiotherapy, and the patients’ survivals and probability for presenting distant metastases. The main
findings, limitations and expectations are discussed for each of these outcomes. Overall, after a first decade
of publications emphasizing the potential of radiomics through retrospective proof-of-concept studies,
almost all positive but with heterogeneous and often non-replicable methods, radiomics is now at a turning
point in order to provide robust demonstrations of its clinical impact through open-science, independent
databases, and application of good and standardized practices in radiomics such as those provided by the
Image Biomarker Standardization Initiative, without forgetting innovative research paths involving other
‘-omics’ data to better understand the relationships between imaging of STS, gene-expression profiles and
tumor microenvironment.

© 2023 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Soft-tissue sarcomas (STS) are malignant mesenchymal tumors
characterized by their ubiquity and by the diversity of their clinical,
histological, molecular and radiological presentations [1]. This subse-
quent heterogeneity on imaging from one patient to another patient
has naturally prompted researchers and physicians to question
whether these distinct radiological phenotypes (or ‘radiopheno-
types’) had biological correlates and were associated with relevant
oncologic outcomes.

Classical radiological analyses of STS (also named ‘semantic’ anal-
yses), defined as the assessment of explainable traits by experienced
radiologists depicting the tumor aspect (for instance, the
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visualization of peritumoral edema on MRI), has considerably
improved over the last decades. For instance, previous studies have
identified semantic features associated with malignancy (notably
when facing a myxoid soft-tissue tumor or an adipocytic tumor),
higher histologic grade and lower survivals [2−7]. However, semantic
analyses are also limited by their (mainly) qualitative nature and
their moderate intra- and inter-observer reproducibility. For
instance, peritumoral enhancement on contrast-enhanced (CE) fat-
suppressed (FS) T1-weighted imaging (WI) has been stressed as
strongly associated with higher grade, lower metastatic-relapse free
survival (MFS) and overall survival (OS) and but its kappa index was
0.62, which questions its usefulness in clinical practice and its accept-
ability during decision making by multidisciplinary tumor board
(MDTB) [2]. Furthermore, STS may appear heterogeneous on MRI due
to different intra-tumoral patterns that can be difficult to capture
with human eyes and to explain with human words. Consequently,
Fig. 1. Principle of the development of a radiomics model.
IBSI indicates Image Biomarker Standardization Initiative; ICC indicates intraclass cor

SI indicates signal intensity.

568

Descargado para Anonymous User (n/a) en National Library of Health and So
uso personal exclusivamente. No se permiten otros usos sin autorizació
so far, the main radiological features considered by MTDBs and prog-
nostic nomograms (such as the Sarculator) remain the tumor size,
depth, location, and relationships to nerves, major vessels, and bones
[8,9].

Radiomics is a growing field of research in imaging that could help
solving these issues by providing tools to quantify the STS radiophe-
notype massively, objectively and without a priori, on any imaging
modality. The term appeared in 2010 [10], and has spread to the sar-
coma research in 2015 [11], mostly on 18F-fluorodeoxyglucose posi-
tron emission tomography/computed tomography (PET/CT), MRI and
CT. The concepts and methods have been extensively described in
previous reviews [12−14]. Overall, following the post-processing of
medical images (in order to ensure their comparability and to reduce
biases due to technical characteristics unrelated to the disease), sev-
eral numeric features (i.e., the radiomics features [RFs]) quantifying
the shape and the texture (i.e., the spatial inter-relationships of gray
relation coefficient; ML indicates machine learning; RF indicates radiomics feature;
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levels) are extracted from tumor segmentation using mathematical
operators encoded inside radiomics softwares and packages. Those
radiomics features can then be used to achieve unsupervised classifi-
cation of STS thanks to clustering algorithms, or mined as potential
predictors for a precise outcome within supervised analysis. Because
of the marked collinearity and multidimensionality in radiomics
dataset, specific machine-learning methods involving handcraft and
engineered steps are required to avoid false discoveries and over-
optimistic results. More recently, the implementation of deep learn-
ing algorithms on sarcoma imaging could even increase the potenti-
alities of imaging to improve the management of STS patients
through.

Thus, after a brief reminder of the quality criteria for establishing
an efficient and reproducible radiomics models, this review aims at
explaining the rationale for applying radiomics in STS patients and
the main findings regarding diagnosis, prognostication, response
assessment and follow-up. Although radiomics can apply on any
imaging modality and ultrasonography remains the first-line imaging
in most patients, this review strictly focuses on CT and MRI. Finally,
we will list the expected developments in the field of radiomics and
artificial intelligence, namely, better explainability, better quantifica-
tion and easier and practical applications for STS patients.

2. Understanding radiomics approaches

Radiomics belong to ‘-omics’ data and approach, and share the
same paradigm, pros and cons. The mandatory technical steps to
apply and report in radiomics studies have been formalized by the
Imaging Biomarker Standardization Initiative (IBSI), an independent
international collaboration committed to the high quality and repro-
ducibility of imaging biomarkers and high-throughput image analysis
[15,16]. Additionally, the radiomics quality score (RQS) proposes to
quantify the quality and reliability of a radiomics models based on 16
items, which represent a framework for researchers in radiomics
[12]. The important points from the IBSI recommendations and RQS
are precisely detailed at https://ibsi.readthedocs.io/en/latest/
04_Radiomics_reporting_guidelines_and_nomenclature.html. Fig. 1
illustrates those main steps of the building of a radiomics model.

First, radiomics approaches require methods to ensure the compa-
rability of imaging acquired at different time points on different sys-
tems from different centers before extracting RFs. Hence, quality
controls and imaging post-processing steps are needed to remove
potential biases. Various steps with different options or arguments
can be tested (denoising, N4 bias field correction, signal intensity
homogenization, voxel size resampling and interpolation, type of
Table 1
Proposal for MRI protocol for soft-tissue sarcoma.

Sequence Remark

Sytematic Coronal or sagittal STIR T2 TSE Should include the whol
edema

Axial T1 TSE1 Can be replaced by a sing
Axial FS T1 TSE1

Axial T2 TSE1 −
Axial contrast-enhanced FS T1 TSE1 Should be subtracted wit
Coronal or sagittal contrast-enhanced FS T1 TSE Should include the whol

enhancement
Optional Axial DWI b = 0, 400 and 800−1000

T1 mapping At least 2 variable flip an
T2 mapping Multiple TE sequence
DCE-MRI FS FSPGR T1 Calculation of semi-para
3D isotropic T1 GRE Dixon for multiplanar reconstru

ADC indicates apparent diffusion coefficient; DCE indicates dynamic contrast-enhanced;
cates fat-spoiled gradient; GRE indicates gradient-recalled echo; STIR indicates short tau in

1 All axial sequences should use the same resolution and be coregistered, for better vox
2 According to the quantitative imaging biomarker alliance, T1-mapping enables better
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discretization, ComBat harmonization) and must be reported in
methods to make the radiomics models replicable [17].

Obviously, standardizing protocols for soft-tissue tumors (STT) is
highly recommended to reduce the exclusion of patients, the mea-
surement biases and too complex post-processing at risk of removing
relevant information, especially for MRI, which is the best and recom-
mended imaging modality for local staging of STS and the most fre-
quently used in radiomics studies involving STS (69.2% of radiomics
publications about STS) [18]. Table 1 proposes such standardized pro-
tocol as performed in our centers a compromise between clinical use-
fulness and proposals from the European Organization for the
Research and Treatment of Cancer and the European Societal of Skel-
etal Radiology − although no international consensus has been vali-
dated [19].

Second, the extraction of RFs requires good quality segmentation
of the objects of interest (herein, STS volume, but also possibly their
surrounding tissues or metastases) [20]. Today, the segmentation of
STS remains performed manually (or semi-automatically), which is
tedious and time-consuming and can influence the values of radio-
mics features. Consequently, it is good practice to evaluate the inter-
segmentation reproducibility of radiomics features and to remove
those too sensitive to segmentation perturbations expected in clinical
practice. Generally, a threshold between 0.80 and 0.90 for inter-seg-
mentation intra-class correlation coefficients is applied to filter the
reproducible features.

This extraction also requires radiomics software and package
using standardized definitions and formula, and compliant with the
IBSI guidelines [15].

The third step corresponds to the utilization of the RFs in super-
vised or unsupervised analyses. In supervised analyses, the aim is to
predict a well-defined outcome (in our setting: benign STTs or STS,
histologic or molecular features, response to neoadjuvant chemo-
therapy or radiotherapy [NACT, NART] and survivals). Thus, it is cru-
cial to start from multi-centers, large and well-labeled cohorts of
patients to train the supervised machine-learning algorithms and
their hyperparameters (i.e., a parameter that is fixed before the train-
ing and that controls the learning process, thanks to tuning grids),
using resampling schemes such as repeated cross-validation, and
then to verify the performances of the best models on an indepen-
dent test set. The aim of the model must be well defined to determine
the performance metrics to select the best model. Other essential sta-
tistical steps include: (i), methods to correct for imbalanced datasets
(such as oversampling the minority class or generating synthetic
observations); (ii), methods to reduce the dimensionality (such as
principal component analysis) and to select variables (such as
e anatomical segment to look for multifocal lesions and evaluate peritumoral

le axial T1-weighted TSE Dixon with fat, in and water image

h pre-contrast image; FS can be replaced by Dixon
e anatomical segment to look for multifocal lesions and evaluate peritumoral

s.mm�2; calculation of ADC map with monoexponential model
gle = 2° and 15°2

metric and parametric maps (after applying Tofts-Kety model)
ction and surgery planning

DWI indicates diffusion-weighted imaging; FS indicates fat-suppressed; FSPGR indi-
version recovery; TE indicates echo time; TSE indicate turbo spin-echo.
el-wise analysis.
estimation of the parametric DCE-MRI parameters.
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univariable filter or recursive filter analysis or penalized methods);
(iii), verification of the good calibration of the model (i.e., that the
predicted class probabilities are consistent with the rates of observed
events); (iv), retrospective analysis of the observations with recurrent
prediction errors in order to find clues to improve the model; and (v),
verification of the added value of the model compared to pre-existing
clinical, histologic or and semantic radiological models.

In unsupervised analyses, the RFs are included into clustering
algorithms (for instance k-means or hierarchical clustering) to
Fig. 2. Principle of deep learning in research involving imaging of soft-tissue sarcoma. (A) Fo
(i) convolutional layers with small convolution filters and activation function such as rectified
put of the convolutional layer) by calculating the maximal value of a patch from it. It ends wit
and lastly (iv) softmax layer to provide probability for each category of the desired classific
coder CNN, of which, basically, the aim is to reproduce as well as possible the input image a
of classical CNN) made of upsampling layer and deconvolutional layer in order to replicate th
Once the autoencoder is operational, the features of the latent vector can be extracted and
achieved with architecture similar to U-NET CNN, which is partly similar to autoencoder CN
about the location of the features captured with the convolutional layers from the encoder pa
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generate classifications of the tumors without a priori knowledge,
and to discover hidden patterns within a dataset. Afterwards, associa-
tions with histological and molecular features of STS are generally
performed.

Lastly, clinical researchers are beginning to implement deep
learning algorithms on imaging of STS for the following tasks (Fig. 2):
(i), Prediction: instead of returning 2D or 3D segmentation or the ini-
tial image, the last fully-connected and output layers of the model
can provide a binary or multiclass classification or a survival
r supervised analysis, convolutional neural network (CNN) are made of a succession of
linear unit (ReLU) and (ii) max pooling layers that downsample a feature map (i.e., out-
h (iii) fully connected layers (to combine information from each input of the prior layer)
ation. (B) Deep learning can also help for unsupervised classification thanks to autoen-
s output. To do so, it adds a decoder part to the 1st encoder part (similar to the 1st part
e input based on the highly informative latent vector in the bottleneck of the network.
used to generate unsupervised classification. (C) Semantic automatic segmentation is
N, except that skip connections provide information to the decoder/reconstruction part
rt.
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prediction; (ii), Unsupervised analyses: thanks to autoencoder CNNs
(whose aim is to reproduce as best as possible the input image), it is
possible to extract thousands of highly-informative numeric features
from the latent layer at the bottleneck of the network (also named
deep-RFs) that can be secondarily included in clustering algorithms;
and (iii), Segmentations: thanks to 3D U-NET convolutional neural
network (CNN) or Efficient neural network and their derivatives, it is
technically possible to segment tumors in 3D, and secondarily, to
automatically achieve radiomics pipelines on those segmentations;

Those algorithms are generally pre-trained on large image data-
sets (such as the ImageNet image collection, https://www.image-net.
org/), and adapted to the researchers’ objectives thanks to transfer
learning and fine tuning and re-training of the last layers [21]. Popu-
lar re-usable algorithms include VGG16, VGG19, ResNet-50, Efficient
neural network, or InceptionV3. In this review, articles with univari-
able analysis only were not considered.

3. Discriminating benign and malignant tumors

3.1. Generalist models

Benign STTs strongly outnumber STS, although the benign/malig-
nant ratio markedly decreases from 100/1 to 7/1 for STS larger than
5 cm [22]. Semantic radiological analyses of STS and benign STTs
show important overlap, which has encouraged radiologists to inves-
tigate alternative methods to deepen their characterization including
radiomics. One of the oldest radiomics studies, by Juntu et al., actually
trained machine learning algorithms (support vector machine, artifi-
cial neural network, and decision trees) on textural features from 2D-
squared region-of-interest from T1-WI of a single-center retrospec-
tive cohort of 135 patients with STTs, this before the term ‘radiomics’
was proposed [23]. Then, they compared the best model (which
relied on support vector machine) predictions with the radiologists’
predictions and concluded on the highest performances of the sup-
port vector machine model (accuracy = 93% and area under the ROC
curve [AUC] = 0.92, vs. accuracy = 90% and AUC = 85% for radiologists).
Although this study lacked of external validation and reproducibility
assessment, these results have been confirmed by three other radio-
mics studies relying on T1-WI, contrast-enhanced (CE) T1-WI, T2-WI,
and proton density WI (best model using ADABOOST algorithm with
AUC = 0.77) [24], apparent diffusion coefficient (ADC) map (best
model using random forests, AUC = 0.77−0.81) [25], and T2-WI and
CE-T1-WI (best model using least absolute shrinkage and selection
operator logistic regression, AUC = 0.95) [26] for a total of 553
patients (Table 2).

However, systematic methodological limitations must be noted,
namely: retrospectivity, lack of available code, and, subsequently, no
comparison with the models proposed by other groups (and against
radiologists’ conclusion in 2/4 [50%] studies), or no mention of MRI
pre-processing before radiomics in 3/4 (75%) studies.

Critics regarding radiomics model for predicting malignancy for
any STT, without considering obvious discriminative tumor charac-
teristics such as presence of myxoid signal or adipocytic signal
(which will restrict the histologic possibilities), have prompted
researchers to develop models to predict malignancy for these sub-
groups.

3.2. Atypical lipomatous tumors (ALT) versus lipoma

Lipoma is the most frequent soft tissue tumor [27]. Differentiating
ALT (or well-differentiated liposarcoma, a locally aggressive STS that
may evolve towards dedifferentiated liposarcoma) from lipoma is
highly challenging for radiologists and pathologists on hematoxylin
and eosin stained slices, and require a tissue sample to identify the
amplification of the MDM2 gene thanks to fluorescence in situ
hybridization [1]. Yet, biopsying all homogeneous lipomatous tumors
571
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to perform MDM2 fluorescence in situ hybridization would be unfea-
sible and highly expensive. Simple algorithms to stratify patients’
management relying on tumor depth, size and feasibility of re-resec-
tion did not specifically address this diagnostic challenge [19,27].
Therefore, radiomics models have been developed by several
research groups and recently summarized by Haidey et al., who con-
cluded on a sensitivity of 68−100% and a specificity of 33−100% for
these models [28]. Table 3 lists the main 12 studies for a total of 1323
patients. One was based on CT and conventional MRI, and 11 on con-
ventional MRI alone. All used conventional texture and shape RFs
and two also investigated deep RFs from pre-trained ResNet50 CNN
[29,30]. The conclusions of these two studies using deep RFs were dif-
ferent: one suggesting the superiority of deep RFs over handcrafted
RFs and clinical model [29], whereas the other study found the high-
est performances with batch-corrected handcrafted RFs [30]. One
study also included semantic radiological features (location, depth,
and septation) in a composite model to reach its highest performance
(AUC = 0.80) [31]. It can be noted that two of the latest studies
(achieved on the largest populations) found the highest accuracy on
the independent test set with the radiological analysis from a senior
radiologist against radiomics model, namely: accuracy = 90% versus
76%, respectively, according to Foreman et al. [32], and
accuracy = 64% vs. 53%, respectively, according to Gitto et al. [33]. All
models demonstrated high diagnostic performances whatever the
finally selected machine learning algorithms and input data, with
AUC ranging from 0.80 to 0.97 in an independent testing cohort [34],
with the same limitations as for ‘benign vs. malignant’ models,
including a lack of models’ explainability and understanding of its
failures and outliers. Thus, although encouraging, those studies
remain retrospective proof-of-concepts without practical applica-
tions.

4. Predicting grade and other initial histopathologic features

The histologic grade by the French Federation of Cancer Centers
(FNCLCC) is one of the strongest predictors of STS patients’ OS and
MFS [35]. In the European Society of Medical Oncology (ESMO), the
grade is a stratifying variable to decide the optimal therapeutic strat-
egy for locally-advanced STS [8]. This is a 3-tier system including
assessment of the amount of necrosis, differentiation and mitosis on
the entire tumor tissue [36]. With the development of imaging-
guided biopsy, the grade is now assessed on small tissue samples,
which can cause underestimation in 12.3−55% of patients [2]. Since
MRI provides an overview of the entire volume and since conven-
tional MRI features have been associated with grade (in particular
the signal intensity [SI] heterogeneity on T2-WI, the amount of
necrosis and the presence of peritumoral enhancement on CE-T1-WI
in multivariable analysis, named ‘radiology signature’ when at least 2
out of these 3 features were present) [2,3], researchers have naturally
investigated radiomics approaches to predict the real grade of STS
(Fig. 3). Table 4 summarizes the main studies for this classification
task, for a total of 1305 patients, although it must be underlined that
(i), some defined high grade as grade III tumor only whereas others
defined high grade as grade II and III, and (ii), some used the grade
estimated on biopsy or after neoadjuvant treatment as the reference
and not the grade on the full untreated surgical sample. All those
studies were based on conventional MRI (with T2-WI § fat suppres-
sion being constantly evaluated) except for one study on the appar-
ent diffusion coefficient (ADC) map of 19 patients [37]. Two studies
also assessed deep RFs (extracted from a single representative slice,
or 4 slices pasted side-by-side on square 2D-image) from various
types of CNNs to feed machine learning classifiers [38,39]. The result-
ing AUC were 0.77−0.92 in training cohorts and 0.76−0.87 in valida-
tion cohorts, and, were systematically higher than the AUCs of the
analyses performed by radiologists (although none compared the
‘radiology signature’, described above) [2,3].
cial Security de ClinicalKey.es por Elsevier en diciembre 12, 2023. Para 
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Table 2
Main radiomics studies regarding the discrimination between benign and malignant soft-tissue tumors (STTs).

Author [ref. #] Imaging modality No. of patients in
training cohort

No. of patient in test
cohort

Best model Performances in training
cohort

Performances in
validation cohort

Main limitations

Juntu et al., 2010 [23] MRI (T1) 135 pts from one center
(49 malignant tumor).
Radiomics analysis
was achieved on mul-
tiple square ROIs of
50 £ 50 pixels per
tumor (253 benign
ROIs and 428 malig-
nant ROIs)

− Non linear Vapnik’s SVM AUC = 0.91,
accuracy = 93%, out-
performed radiolog-
ists (AUC = 0.85,
accuracy = 90%)

− Retrospective; Single center; No resam-
pling scheme; No MRI harmonization;
2D square ROIs at risk of sampling
bias; No IBSI-compliant software; No
reproducibility analysis; No available
code

Fields et al., 2021 [24] MRI (T1, CE-T1, T2, pro-
ton density § fat sup-
pression)

128 pts from one center
(92 malignant tumors)

− ADABOOST on all MR
sequences

AUC = 0.77 − Retrospective; Single center; No inde-
pendent test set; No MRI harmoniza-
tion; No IBSI-compliant software; No
reproducibility analysis; No compari-
son with reference model/radiologists;
No available code

Lee et al., 2021 [25] MRI (ADC) 105 pts from one center
(47 malignant tumors)

46 pts from the same
center (24 malignant
tumors)

Random forests classi-
fier based on radio-
mics features + ADC
minimum + ADC
mean

AUC = 0.841 & 0.860
(analyses performed
twice, depending on
the segmentation of
two radiologists)

AUC = 0.775 & 0.807
(analyses performed
twice, depending on
the segmentation of
two radiologists) not
significantly better
than simple ADC min-
imum value
(AUC = 0.711 and
0.753)

Retrospective; No comparison with
radiomics model built with conven-
tional MR sequence; No available code

Yue et al., 2022 [26] MRI (T2 with fat suprre-
sion, CE T1)

91 pts from one center
(36 malignant tumors)

48 pts from the same
center (18 malignant
tumors)

Nomogram combining
clinical and radiologi-
cal features (size, peri-
tumoral edema,
margin delineation),
and radiomics score
developed on CE-T1
and fat suppressed T2
after filtering RFs
thanks to univariable
Mann-Whitney test,
then selecting them
with LASSO, then
applying a stepwise
logistic regression
based on AIC

AUC = 0.962 in cross val-
idation for the nomo-
gram, outperformed
the radiomics score
alone and clinical-
radiological model
alone (both
AUC = 0.923)

AUC = 0.935 for the
nomogram, outper-
formed the radiomics
score alone
(AUC = 0.892) and
clinical radiological
model alone
(AUC = 0.827)

Retrospective; Small dataset; No inde-
pendent test set; No resampling
scheme; No available code

ADC indicates apparent diffusion coefficient; AIC indicates Akaike information criterion; AUC indicates area under the ROC curve; CE indicates contrast enhanced; IBSI indicates imaging biomarker standardization initiative; LASSO
indicates least absolute shrinkage and selection operator; No. indicates number; pts indicates patients; RF indicates radiomics feature; ROI indicates region of interest; SVM indicates support vector machine.
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Table 3
Main radiomics studies regarding the discrimination between lipoma and liposarcoma / atypical lipomatous tumors (ALTs).

Author [ref. #] Imaging modality No. of patients in
training cohort

No. of patient in test
cohort

Best model Performances in training
cohort

Performances in
validation cohort

Main limitations

Thornhill et al., 2014
[66]

MRI (T1) 44 pts from 1 center (20
liposarcomas)

− Linear discriminant anl-
ysis trained on 3 tex-
ture and 3 shape
features selected
according to Fisher
coefficient

AUC = 0.98, outper-
formed the two radi-
ologists (AUC = 0.88 &
0.89)

− Retrospective; Single center; Small data-
set; Inclusion of myxoid liposarcoma,
dedifferentiated liposarcoma and pleo-
morphic liposarcoma; No independent
test set; No MRI harmonization; No
IBSI-compliant software; No (radio-
mics) reproducibility analysis; No
available code

Vos et al., 2019 [67] MRI (T1, T2) 116 pts from 1 center
(58 ALTs) + 22 dedif-
ferentiated
liposarcoma

− Ensemble method based
on top-50 best per-
forming algorithms
among logistic regres-
sion, SVM, naive
Bayes, random forests,
linear and quadratic
discriminant analysis
trained on RFs (after
selection and PCA)
from T1 and T2

AUC = 0.89 (and 0.81
after volume match-
ing), outperformed
the radiologists
(AUC = 0.61−0.74).

− Retrospective; Single center; No inde-
pendent test set; No reproducibility
analysis

Pressney et al., 2020 [31] MRI (proton density, T1) 60 pts from 1 center (30
ALTs)

− Score combining the
four following dichot-
omized variables:
location, depth, septa-
tion/non fat content,
and one radiomics
feature from proton
density

AUC = 0.80 − Retrospective; Single center; Small data-
set; No independent test set; No
resampling scheme; No MRI harmoni-
zation; No IBSI-compliant software; No
reproducibility analysis; No compari-
son with reference model/radiologists;
No machine learning training; No
available code

Malinauskaite et al.,
2020 [68]

MRI (T1) 38 pts from 1 center (14
LPSs)

− SVM after PCA AUC = 0.926, outper-
formed the 3 radiolog-
ists (AUC = 0.685
−0.805)

− Retrospective; Single center; Small data-
set; Inclusion of myxoid liposarcoma
and dedifferentiated liposarcoma; No
independent test set; No MRI harmo-
nization; No available code

Leporq et al., 2020 [69] MRI (FS CE-T1) 81 pts from 1 center (40
ALTs)

− Linear SVM on repro-
ducible relevant 35
RFs

AUC = 0.96 − Retrospective; Single center; Small data-
set; No independent test set; No MRI
harmonization; No IBSI-compliant
software; No comparison with refer-
ence model/radiologists; No available
code

Yang et al., 2022 [29] CT and MRI (T1, T2) 89 pts from 1 center (38
ALTs)

38 pts from another cen-
ter (20 ALTs)

deep radiomics model
using pretrained CNN
(ResNet50) on T1 and
T2

AUC = 0.995, outper-
formed clinical model
using LDH and
patients’ age
(AUC = 0.652) and
handcrafted radiomics
models (AUC = 0.895
−0.929 depending on
MR sequences)

AUC = 0.950, outper-
formed clinical model
using LDH and
patients’ age
(AUC = 0.504), and
handcrafted radiomics
model (AUC = 0.531
−0.586 depending on
MR sequences)

Retrospective; No MRI harmonization;
No comparison with radiologists; No
available code

Fradet et al., 2022 [30] MRI (FS CE-T1) 85 pts from 1 center (45
ALTs)

60 pts from the same
center (32 ALTs)

XGBoost on handcrafted
RFs batch-corrected
with ComBAT

AUC = 0.99, outper-
formed model based
on pre-trained
ResNet50 deep RFs
(AUC = 0.80) and non-
batch corrected hand-
crafted radiomics
model (AUC = 0.83)

AUC = 0.80, outper-
formed model based
on pre-trained
ResNet50 deep RFs
(AUC = 0.64) and non-
batch corrected hand-
crafted radiomics
model (AUC = 0.70)

Retrospective; Single center; No compar-
ison with radiologists; No available
code

(continued on next page)
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Table 3 (Continued)

Author [ref. #] Imaging modality No. of patients in
training cohort

No. of patient in test
cohort

Best model Performances in training
cohort

Performan s in
validation hort

Main limitations

Cay et al., 2022 [70] MRI (T1) 65 pts from 1 center (20
ALTs)

− SVM trained on repro-
ducible RFs

AUC = 0.987 − Retrospective; Single center; Small data-
set; No independent test set; No com-
parison with reference model/
radiologists; No available codex

Tang et al., 2022 [34] MRI (T1, FS T2) 97 pts from 1 center (25
ALTs)

25 pts from the same
center (7 ALTs)

Random forests trained
on selected RFs (using
ANOVA and LASSO)
from T1 and FS T2

AUC = 0.983, signifi-
cantly outperformed
radiologists
(AUC = 0.815−0.884,
depending on the 3
radiologists)

AUC = 0.96 outper-
formed r iologists
(AUC = 0 89−0.929,
dependi on the 3
radiolog s), but not
significa ly

Retrospective; Single center; No correc-
tion for imbalanced dataset; No IBSI-
compliant software; No reproducibility
analysis; No available code

Sudjai et al., 2023 [71] MRI (T1) 70% of the 68 pts from 1
center x (with a total
of 30 ALTs)

70% of the 68 pts from
the same center x

LASSO logistic regres-
sion on reproducible
RFs and tumor-to-
bone distance

− MSK radio gists
showed gher diag-
nostic pe ormances
compare to the best
model (A C = 0.91 -
0.94, ver s
AUC = 0. ).

Retrospective; Single center; Small data-
set; No correction for imbalanced data-
set; No available code

Foreman et al., 2023 [32] MRI (T1, T2, FS CE T1) 257 pts from 1 center
(65 ALTs)

50 pts from another cen-
ter (20 ALTs)

LASSO logistic regres-
sion on reproducible
RFs from all MRI
sequences and after
PCA and SMOTE

AUC = 0.88 AUC = 0.88 utper-
formed r idents
(accurac = 76% vs. 60
−70%) b not senior
radiolog
(accurac = 90%)

Retrospective

Gitto et al., 2023 [33] MRI (T1, T2) 114 pts from 2 centers
(50 ALTs)

36 pts from one anther
center (12 ALTs)

Random forests model
on 8 RFs

AUC = 0.73,
accuracy = 67%

Accuracy = 3%, not sig-
nificantl better than
the radio gical analy-
sis (accu cy = 64%).

Retrospective; No MRI harmonization;
No available code

ALT indicates atypical lipomatous tumor; AUC indicates area under the ROC curve; ANOVA indicates analysis of variance; CE indicates contrast-enhanced; CNN indicates nvolutional neural network; FS indicates fat-suppressed;
IBSI indicates imaging biomarker standardization initiative, LASSO indicates least absolute shrinkage and selection operator; LDH indicates lactate dehydrogenase, No. ind tes number; PCA indicates principal component analysis
indicates pts indicates patients; RF indicates radiomics feature; SMOTE indicates synthetic minority oversampling technique; SVM indicates support vector machine.

x : Data from the abstract because of non available article despite request to the authors.
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Fig. 3. Differentiation between lipoma and atypical lipomatous (ALT, or well-differentiated liposarcoma) tumor with radiomics. (A, B, C) 73-year-old woman with a 15-cm long deep
soft tissue tumor of the left thigh following the iliopsoas muscle. A, on T1-weighted image in the axial plane, the tumor shows a homogeneous fatty signal (white arrowhead) . (B)
The histogram of the signal intensities (SIs) on T1-weighted image shows a single peak and no tail. (C) The local texture map for gray level co-occurrence matrix (GLCM) homogene-
ity (calculated using a 5 £ 5 kernel) confirms homogeneous texture. Pathological analysis with MDM2 fluorescence in situ hybridization revealed a lipoma. (D, E, F) 69-year-old
woman with a 16-cm long deep soft tissue tumor of the posterior compartment of the left thigh. D, On T1-weighted image in the axial plane, the tumor harbors a main adipocytic
signal but several septa of various thicknesses (blackarrowhead). (E) Histogram of SIs on T1-weighted image in the axial plane revealed a skewed distribution with a left tail indicat-
ing a large range of lower SIs (i.e., non adipocytic, arrow). (F) The local texture map for GLCM homogeneity confirmed a heterogeneous lesion. Pathological analysis with MDM2 fluo-
rescence in situ hybridization confirmed an ALT with MDM2 amplification.
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The same limitations apply to these studies, namely: retrospective
design, no data or code sharing, no systematic comparisons to state-
of-the-art radiological analysis and grading, and no systematic vali-
dation on an independent validation cohort.

In addition to histologic grade, other authors have trained radio-
mics models to predict Ki-67 index although the interest of Ki-67 has
not been proven for STS, contrary to other cancers such as neuroen-
docrine tumors [40]. Furthermore, radiomics patterns may be associ-
ated with the immune landscape of undifferentiated pleomorphic
sarcomas (UPS) the most frequent and one of the most aggressive his-
totype of STS [41]. After developing an unsupervised and explainable
classification of 41 UPS based on transcriptomics data secondarily
explained with immunohistochemistry, differential gene expression
and pathway analyses, immune-high and immune-low subgroups
were identified. In parallel, an unsupervised classification of STS
based on reproducible texture RFs from CE-T1-WI was developed.
The authors found a significant association between radiomics classi-
fication and immune classification (P = 0.005), which could pave the
way for potential radiomics biomarkers of the sensitivity to immune
checkpoint inhibitor in STS.

Lastly, the evolution patterns of STS, as quantified via a delta-
radiomics features (DRFs) has been correlated with gene-expression
profiles in a retrospective single-center cohort of 63 patients [42].
Since STS patients often undergo several MRIs during the diagnostic
interval because of their rarity and to the difficulty to reach a correct
diagnosis, researchers have studied the ‘natural’ change in the
575
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radiophenotypes of STS during two pre-treatment consecutive MRIs
(Fig. 4). They calculated the numeric variation between the RFs from
these MRI and developed a robust unsupervised classification of STS
depending on their DRFs, which provided. Secondly, they explained
this classification through the assessment of associations with radio-
logic semantic features, differential gene expression, oncogenetic
pathway analyses and survival analyses. Overall, the authors identi-
fied three DRFs groups (named A, B and C), including one group (B)
that displayed strong increases in intra-tumoral heterogeneity,
necrotic signal, peritumoral enhancement, edema and infiltrative
margins (all those features being known to correlate with worse out-
come). This same group B was characterized by a decrease in apopto-
sis, an increase in cell proliferation and a decrease in immune
response (566 and 1466 differentially-expressed genes in the entire
groups and in the subgroup of UPS, respectively). Although limited in
size, this study is the first to report direct and explainable relation-
ships between radiomics and transcriptomics data in STS.

5. Predicting response to neoadjuvant treatments

An increasing number of patients with locally-advanced STS are
treated with neoadjuvant treatments, including NACT and/or NART
because of increasing evidence that they facilitate surgery, increase the
rate of R0 surgery, and decrease the risk of metastatic and local relapses
[43]. The last ESMO guidelines recommend considering these options in
patients with high-risk grade II or III STS, (i.e., after risk assessment
cial Security de ClinicalKey.es por Elsevier en diciembre 12, 2023. Para 
n. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.



Table 4
Main radiomics studies regarding the identification of high-grade soft tissue sarcomas.

Author [ref.#] Imaging modality No. of patients in training
cohort

No. of patient in test cohort Best model Performances in training
cohort

Performances in validation
cohort

Main limitations

Corino et al.,
2018 [37]

MRI (ADC) 19 pts from 1 center (14
with grade III STS)

− Model using k-nearest
neighbor on 3 RFs from
each feature family

AUC = 0.87 − Retrospective; Single center;
Small dataset; No independent
test set; No resampling scheme;
No IBSI-compliant software; No
reproducibility analysis; No
comparison with reference
model/radiologists; No avail-
able code

Peeken et al.,
2019 [55]

MRI (FS T2 and CE-T1) 122 pts from 1 center (83
with grade II or III STS)

103 pts from another center
(74 with grade II or III STS)

Model using LASSO-penal-
ized logistic regression on
fat suppressed T2; OS
prognostic model using
nomogram based on the
T2-based radiomics score
for grade and AJCC stag-
ing.

For grade prediction:
AUC = 0.77. For OS predic-
tion: C-index = 0.76; out-
performs clinical models

For grade prediction:
AUC = 0.78. For OS predic-
tion: C-index = 0.74; out-
performs clinical models

Retrospective; No correction for
imbalanced dataset; Grade pos-
sibly assessed on biopsy at risk
of sampling bias; No compari-
son with reference model/radi-
ologists; No available code

Zhang et al.,
2019 [72]

MRI (FS T2) 35 pts from 1 center (26
with grade II or III STS)

− Model using SVM on 5 RFs
selected with LASSO

AUC = 0.92 − Retrospective; Single center;
Small dataset; No independent
test set; No MRI harmonization;
No correction for imbalanced
dataset; No IBSI-compliant soft-
ware; No reproducibility analy-
sis; No comparison with
reference model/radiologists;
No available code

Yan et al., 2021
[73]

MRI (T1, FS T2) 109 pts from 1 center (50
grade III STS)

71 pts from another center
(37 grade III STS)

Radiomics score (using logi-
sitic regression on RFs
selected with LASSO from
T1 and fat suppressed T2);
Nomogram including
radiomics score, margin
definition and AJCC
staging

AUC = 0.85 for the radiomics
score and 0.92 for the
nomogram (outperformed
the clinical model with
AUC = 0.79);

AUC = 0.83 for the radiomics
score and 0.88 for the
nomogram (clinical model
with AUC = 0.83); C-index
for PFS of the radiomics
nomogram = 0.58 versus
0.53 for AJCC staging

Retrospective; No resampling
scheme; No comparison with
radiologists; No available code

Navarro et al.,
2021 [38]

MRI (FS T2 and CE-T1) 148 pts from 1 center (96
grade II and III STS)

158 pts from another center
(132 grade II and III STS)

Deep learning model using
DenseNet161 architecture
on FS T2

− AUC = 0.76; ouperfotmed a
model based on clinical
features + volume
(AUC = 0.57)

Retrospective; No correction for
imbalanced dataset; No IBSI-
compliant software; Grade
assessed on biopsy at risk of
underestimation; Deep RFs
assessed on single 2D slice at
risk of sampling bias; No repro-
ducibility analysis; No compari-
son with radiologists

Yang et al., 2022
[39]

MRI (T1, FS T2) 540 pts from 1 center (309
with grade II or III STS)
splitted into training and
testing sets but effectives
are not detailed

540 pts from 1 center (309
with grade II or III STS)
splitted into training and
testing sets but effectives
are not detailed

Nomogram including (1)
deep RFs extracted from
multiple CNN, (2) hand-
crafted RFs and (3) size
and location, and mined
with support vector
machines (with radial ker-
nel)

AUC = 0.87; outperformed
clinical model
(AUC = 0.57) and hand-
crafted radiomics models
(AUC = 0.85, on T1-based
RFs); correlated with
overall survival

AUC = 0.85; outperformed
clinical model
(AUC = 0.52) and hand-
crafted radiomics models
(AUC = 0.83, on T1-based
RFs); correlated with
overall survival

Retrospective;; No resampling
scheme; No correction for
imbalanced dataset; Unclear
management of 3D tumor vol-
ume in deep learning analysis;
Unclear depiction of training
and validation cohorts; No com-
parison with radiologists; No
available code

AJCC indicates American Joint Committee on Cancer; AUC indicates area under the ROC curve; CE indicates contrast-enhanced; CNN indicates convolutional neural network; FS indicates fat-suppressed; IBSI indicates imaging biomarker
standardization initiative; LASSO indicates least absolute shrinkage and selection operator; No. indicates number; OS indicates overall survival; PCA indicates principal component analysis; pts indicates patients; RF indicates radiomics
feature; SMOTE indicates synthetic minority oversampling technique; STS indicates soft tissue sarcoma; SVM indicates support vector machine.
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Fig. 4. Identification of high-grade soft-tissue sarcoma and lower survival with radiomics. (A, B, C) 52-year-old man with a locally-advanced 17-cm long deep soft tissue tumor of
the posterior compartment of the right calf showing marked heterogeneity on T2-weighted image) (white arrowhead). (B) Histogram of the signal intensities on T2-weighted image
shows a wide asymmetric distribution with multiple peaks. (C) The local texture map for gray level co-occurrence matrix (GLCM) homogeneity (calculated using a 5£ 5 kernel) con-
firms a heterogeneous tumor. Pathological analysis confirmed a grade III (high) undifferentiated pleomorphic sarcoma. The patient had a metastatic relapse 4 months after the end
of treatments and died of his disease 15 months later. (D, E, F) 54-year-old woman with a 9.5-cm long deep soft-tissue tumor of the left abdominal wall. D On T2- weighted image
the tumor displays a rather homogeneous SIs except for thin septa (black arrowhead). (E) The histogram of SIs shows an almost normal distribution. (F) The local texture map for
GLCM homogeneity shows a homogeneous texture. Pathological analysis revealed a grade II (intermediate) undifferentiated pleomorphic and fusiform sarcoma. The patient is still
alive 11 years later with no relapse.
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according to the SARCULATOR nomogram, for instance), which relies on
grade, histologic type, tumor size and patients’ age [8,9], but, unfortu-
nately, not on imaging-based characteristics. The response evaluation
criteria in solid tumor (RECIST) v1.1 are the reference for the evaluation
of tumor response in clinical trials and routine practice, although they
are inherently limited in the neoadjuvant setting to a simple relative
variation in the longest diameter [44]. Such evaluation cannot capture
the early architectural changes due to the entanglement of fibrotic,
necrotic and immune processes undergoing at the cellular level, before
dimensional reduction, whereas RFs and more particularly DRFs have
this potential (Fig. 5) [45].

Table 5 shows the six main studies on this topic, with a total of
355 included patients. A main issue is the lack of a consensual defini-
tion for the histologic response in STS, with various cut-offs of stain-
able tumor cells on post-NACT/NART surgical specimens (5%, 10% or
50% depending on studies) − although a recent study suggests a 5%
threshold should be applied [46].

All but one found encouraging results, with AUC = 0.80−0.95 in
the training cohort. Three studies investigated standard NACT
[45,47,48], one NART+NACT [49], one NART alone [50], and one
NART + tyrosine kinase inhibitor [51]. Indeed, Fields et al. considered
their results as negative with an AUC = 0.45 without any reduction of
the high dimensionality of their dataset comprising 1708 RFs and
DRFs for 44 patients [48]. Yet, when selecting features with P ≤ 0.01,
the AUC of their ADABOOST model increased to 0.82, which remains
577
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to be confirmed using cross-validation in their unique cohort or on
an independent test set. In fact, only two studies confirmed their
results in independent test set and found lower performances sug-
gesting models’ overfitting (AUC = 0.63−0.75) [45,49].

Half of those studies compared their findings with those of RECIST
v1.1. or American Joint Committee on Cancer staging and systemati-
cally found superior performances, except for in one independent
test set (similar AUC). In addition to common limitations in radiomics
studies, the lack of correction for highly imbalanced datasets must be
emphasized. Good histologic response is uncommon (< 20% of all
patients), which requires methods to up-sample the minority class
(herein, good responders), such as synthetic minority oversampling
technique used by Peeken et al. [49,53].

6. Predicting survivals

Lastly, predicting patients’ survivals from baseline RFs thanks to
survival machine-learning models, or at a given time point thanks to
classification models, has been the aim of 14 studies, all retrospective,
in 1484 patients. Although debated, the measure of performances in
thesurvival model is generally the Harrell concordance index (C-
index), which ranges from 0 (worst predictive model) to 1 (perfect
model) with 0.5 indicating a non-informative model. The main stud-
ies are summarized in Table 6. They mostly involved conventional
MRI, although two of them were based on CT-scan and three for
cial Security de ClinicalKey.es por Elsevier en diciembre 12, 2023. Para 
n. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.



Fig. 5. Identification of good responder to neoadjuvant anthracyclines-based chemotherapy (NACT) with radiomics. Example of a 74-year-old woman with a deep-seated, high
grade undifferentiated pleomorphic sarcoma of the thigh. (A) On axial T2-weighted images), the tumor (arrowhead) demonstrates decreases of its longest diameter and signal
intensities (SIs) suggesting occurrence of fibrosis after two cycles of NACT (Post-C2). (B) Its volume and shape complexity also decreased. (C) The distribution of SIs fro T2-WI dem-
onstrates a flattening and decay of the histogram towards the left, (i.e., lower Sis; arrow). (D) The local texture map for gray level co-occurrence matrix homogeneity (built with a
5 £ 5 kernel) shows a change in the tumor gray level rearrangement. Pathological analysis revealed a grade II (intermediate) undifferentiated pleomorphic and fusiform sarcoma.
The pathological analysis of the surgical specimen after six cycles of NACT revealed a good histologic response (< 5% residual tumor cells). The patient is still alive 3.5 years later
with no relapse.
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them were based on the Cancer Imaging Archive dataset, which
includes baseline PET/CT and MRI data of 51 patients. Six of them
used an external validation, which systematically validated their
results [39,53−57]. Overall, C-indices in the training sets ranged
between 0.66 and 0.98 for OS, 0.71 and 0.94 for MFS. In the external
validation sets, they were between 0.45 and 0.84 for OS, and between
0.68 and 0.73 for MFS. When comparisons were performed against
radiological models, histologic grading and clinical data alone, the
radiomics models were systematically more efficient. One study
investigated deep radiomics features from ResNet34 to predict recur-
rence free survival, which contributed to the best model when com-
bined with handcrafted RFs and clinical-radiological features (C-
index = 0.87 in training cohort and 0.77 in validation cohort) [56].
However, it must be emphasized that those models were never com-
pared against the nomogram of reference for predicting patients’ OS
and MFS and stratifying treatments in the last ESMO guidelines,
namely the SARCULATOR nomogram [9].
7. Perspectives

Several improvements are expected regarding the use of artificial
intelligence to better leverage imaging data of STS patients. First, as
manual segmentation is a major bottleneck for the clinical use of
radiomics models, automated segmentation tools for CT and MRI
relying on CNN such as 3D-U-NET are needed. So far, the deep radio-
mics models only re-exploited manual segmentations initially per-
formed for handcrafted radiomics. It has been successfully applied to
578
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segment retroperitoneal sarcoma and STS on CT, and lipomatous STT
on MRI [58−60].

Second, once published, radiomics models are never re-
employed on new prospective data. The reasons are the lack of
user-friendly application for clinical radiologist and the lack of
open-access code to replicate those models in external centers.
Moreover, prospective radiomics trials, with clinical decisions
depending on the predictions made by radiomics should be
designed in order to investigate the real clinical added value of
radiomics models. Such trials must rely on accurate models built
from retrospective analyses, but those analyses are always biased
by treatment strategies stratified on conventional, mainly histo-
logic grade, prognostic factors. Independent and open-access
well-annotated datasets would be helpful to establish an objec-
tive assessment of the performances of radiomics models for the
public, which is an aim of CHAIMELEON [61].

Third, there is a need to better explain the results of radiomics
approaches at other scales, by investigating, for instance: (i), the rela-
tionships between usual radiological features and significant radio-
mics features or radiomics groups, such as RFs quantitative maps to
spatially interpret radiomic models [62] and (ii), the relationships
with gene-expression signature (such as the Complexity Index in
SARComa [CINSARC] signature) [63], gene-expression profiles, onco-
genetic pathways and markers of the tumor micro-environment [64].
This would increase the confidence that researchers can provide to
such empirical approaches as radiomics (i.e., not driven by hypothesis
but by data), and reduce the fear of unexplainable ‘black box’ algo-
rithms.
cial Security de ClinicalKey.es por Elsevier en diciembre 12, 2023. Para 
n. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.



Table 5
Main radiomics studies regarding the prediction of response to neoadjuvant treatments in patients with soft-tissue sarcoma.

Author [ref. #] Question(s) Imaging modality No. Of patients in
training cohort

No. Of patient in test
cohort

Best model Performances in
training cohort

Performances in
validation cohort

Main limitations

Cromb�e et al., 2019
[45]

Prediction of histologic response
(<10% viable cells on surgical
specimen) following NACT in
high grade STS using DRFs.

MRI (T2) at baseline
and after 2 out of
6 cycles of NACT

50 pts from 1 center
(13 good respond-
ers)

15 pts from same
center (3 good
responders)

Random forests
algorithm on opti-
mized combina-
tions of DRFs and
semantics radio-
logic features

AUC = 0.86,
accuracy = 88.1%,
higher than
RECIST v1.1
(AUC = 0.66,
accuracy = 76%)

AUC = 0.63,
accuracy = 74.6%,
no better than
RECIST v1.1
(AUC = 0.72,
accuracy = 73.3%)

Retrospective; Single center;
Small dataset; No MRI harmoni-
zation; No correction for imbal-
anced dataset; No IBSI-
compliant software; No repro-
ducibility analysis; No available
code

Cromb�e et al., 2019
[47]

Prediction of histologic response
(<10% viable cells on surgical
specimen) following NACT in
high grade STS using radiomics
from DCE-MRI. Influence of
temporal parameters of DCE-
MRI sequence on response
prediction

MRI (DCE-MRI) at
baseline

25 pts from 1 center
(5 good respond-
ers), prospective
cohort.

− Stepwise logistic
regression on pre-
treatment RFs
from Ktrans and
AUC from DCE-
MRI sequence
lasting 5 min at a
temporal resolu-
tion of 6 s

AUC = 0.90 − Single center; Small dataset; No
independent test set; No resam-
pling scheme; No correction for
imbalanced dataset; No IBSI-
compliant software; No repro-
ducibility analysis; No compari-
son with reference model/
radiologists; No available code

Gao et al., 2020 [50] Prediction of histologic response
(<50% viable cells on surgical
specimen) using RFs (at base-
line, after 3rd fraction and after
NART) and DRFs.

MRI (ADC) 30 pts from 1 center
(unclear no. of
good responders)

− Model using SVM
and radiomics and
delta-radiomics
assessed at the 3
time points

AUC = 0.91,
accuracy = 92%

− Retrospective; Single center;
Small dataset; No independent
test set; No MRI harmonization;
No correction for imbalanced
dataset; No available code

Peeken et al., 2021
[49]

Prediction of histologic response
(<5% viable cells on surgical
specimen) using RFs (before and
after NART) and DRFs.

MRI (fat suppressed
T2, CE-T1)

102 pts from 1 cen-
ter (11 good res-
ponders)

59 pts from another
center (5 good
responders)

Random forests
algorithm on
combination of
DRFs from all
sequences, using
SMOTE for imbal-
anced dataset

AUC = 0.80 (higher
than RECIST v1.1,
AJCC, pre and
post-treatment
RFs)

AUC = 0.75 (higher
than RECIST v1.1,
AJCC, pre and
post-treatment
RFs)

Retrospective

Fields et al., 2023
[48]

Prediction of response to NACT
based on DRFs

MRI at baseline and
after two cycles of
NACT

44 pts from 1 center
(23 good respond-
ers)

− Adaboost on pre-fil-
teredDRFs with
P<0.01 at univari-
able analysis

AUC = 0.45 (without
pre-filtering) to
0.82 (after pre-fil-
tering DRFs with
P ≤ 0.01)

− Retrospective; Single center; No
data harmonization; No repro-
ducibility analysis; No indepen-
dent test set; No clear definition
of response; No detail about
MRI sequence on which the
radiomics pipeline was con-
ducted; No comparison with
other models or reference for
response evaluation

Miao et al., 2023
[51]

Prediction of response to
TKI + NART based onDRFs §
pre-NART RFs § post-NART RFs

MRI (fat suppressed
T2, fat suppressed
CE-T1, ADC)

30 pts from 1 center
(5 good respond-
ers)

− Only one tested
alogorithm: step-
wise logistic
regression. Best
model relying on
DRFs + pre-NART
RFs + post-NART
RFs

AUC = 0.95, higher
than pre-treat-
ment AJCC
(AUC = 0.52) and
RECIST v1.1
(AUC = 0.52)

− Single center; No data harmoniza-
tion; No independent test set;
No resampling method; No cor-
rection for highly imbalanced
dataset.

AJCC indicates American joint committee on cancer; ADC indicates apparent difusion coefficient; AUC indicates area under the ROC curve; CE indicates contrast-enhanced; DRFs indicates delta radiomics features; IBSI indicates imag-
ing biomarker standardization initiative; LASSO indicates least absolute shrinkage and selection operator; NART indicates neoadjuvant radiotherapy; NACT indicates neoadjuvant chemotherapy; pts indicates patients; RECIST indi-
cates response evaluation criteria in solid tumor; RF indicates radiomics features; SMOTE indicates synthetic minority oversampling technique [52]; STS indicates soft-tissue sarcoma.
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Table 6
Main radiomics studies regarding the prediction of survival of patients with soft-tissue sarcoma.

Author [ref. #] Question(s) Imaging modality No. of patients in
training cohort

No. of patient in test
cohort

Best model Performances in
training cohort

Performances in
validation cohort

Main limitations

Valli�eres et al., 2015x

[11]
Prediction of lung metastastic
relapse in STS pts. Methods
to optimize fusion of PET
and MR imaging. Influence
of processing on predictions.

Fusion of PET-CT
and MRI (T1, FS
T2)

51 pts from the TCIA
dataset

− Logistic regression on 4 opti-
mized texture features.

AUC = 0.98 − Retrospective; Small dataset; No
independent test set; No IBSI-
compliant software; No repro-
ducibility analysis; No compari-
son with reference model/
radiologists

Peeken et al.,2019
[69]

Prediction of LFS, MFS and OS
in STS pts treated with NART

CT (with and with-
out injection)

83 pts from one
center

87 pts from a 2nd
center and 42 pts
from a 3rd center

Cox regression tested only, on
top 10 RFs, after feature
selection based on robust-
ness, no correlation, anduni-
variable tests.

C-index = 0.72 for
OS, C-index = 0.64
for MFS, and C-
index = 0.56 for
LFS.

C-index = 0.73 and
0.59 for OS, C-
index = 0.68 &
0.73 for MFS, and
C-index = 0.77 &
0.15 for LFS.

Retrospective; No available code;
Bias due to the inclusion of CE
and non��CE CT

Cromb�e et al., 2020
[74]

Prediction of metastatic
relapse at 2 years in pts
treated with NACT; influ-
ence of signal intensity
harmonization methods on
prediction.

MRI (T2) 50 pts from one cen-
ter (21 metastatic
relapses at 2
years)

20 patients from
same center (8
metastatic relap-
ses at 2 years)

Elasticnet logistic regression
only tested, with signal
intensity harmonization
based on histogrammatch-
ing with average histogram
of the population

AUC = 0.71 AUC = 0.77 Retrospective; Single center;
Small dataset; No IBSI-compli-
ant software; No reproducibility
analysis; No available code

Cromb�e et al., 2020
[54]

Prediction of MFS in myxoid/
round cells liposarcomas

MRI (T2) 35 pts from 1 center − LASSO Cox regression only
tested on prefiltered RFs, in
order to provide a radiomics
score combined with radio-
logical features

C-index = 0.94 − Retrospective; Single center;
Small dataset; No independent
test set; No IBSI-compliant soft-
ware; No reproducibility analy-
sis; No available code

Cromb�e et al., 2020
[75]

Prediction of MFS in STS pts
treated with NACT. Develop-
ment of methods to quantify
the intra-tumoral heteroge-
neity in neoangiogenesis
using DCE-MRI.

MRI (T2, DCE-MRI) 50 pts from 1 center − LASSO cox regression only
tested, based on combinatio-
nof radiological features and
RFs from T2 and raw phases
of DCE-MRI

C-index = 0.84; Bet-
ter performance
with radiomics
directly extracted
from raw DCE-
MRI data than
from parametric
maps.

− Retrospective; Single center;
Small dataset; No independent
test set; No available code

Yang et al., 2021
[76]

Prediction of OS using radio-
mics after curative treat-
ment.

CT-scan 247 pts from 1
center

106 pts from same
center

Random survival forests on
pre-selected RFs, and age,
lymph node and histologic
grade

C-index = 0.78 - 0.86 C-index = 0.45 - 0.60 Retrospective; Single center; No
resampling scheme; No MRI
harmonization; No IBSI-compli-
ant software; No available code

Peeken et al., 2021
[55]

Prediction of OS using radio-
mics. Comparison with con-
ventional radiological
analysos.

MRI (T1, FS T2) 108 pts from 1
center

71 pts from another
center

Elasticnet regression on com-
bination of robust selected
T2-based RFs, AJCC staging
and age

C-index = 0.66; out-
performed
semantic features
alone and
combined

C-index = 0.73; out-
performed
semantic features
alone and
combined

Retrospective; No available code

Chen et al., 2021
[77]

Prognostication of STS treated
with NART using radiomics
(MFS)

MRI (FS T2) 62 pts from 1 center
and TCIA dataset

− Nomogram built with Cox
regression model based on
radiomics score (using
LASSO-penalized Cox
regression), tumor location
and size

C-index = 0.74; out-
performed clinical
staging and radio-
mics score alone
(C-index = 0.66).

− Retrospective; Small dataset; No
independent test set; No avail-
able code

Fadli et al., 2022
[78]

Prognostication of STS using
DRFs clusters assessing nat-
ural tumor evolution (LFS,
MFS, OS)

MRI (CE-T1) 68 pts from 1 center − Unsupervised classification
based on logarithmic
changes in RFs before treat-
ment beginning, combined
with radiologic features

Unsupervised classi-
fication based on
logarithmic
changes was an
independent pre-
dictor for LFS

− Retrospective; Single center;
Small dataset; No independent
test set; No resampling scheme;
No available code

(continued on next page)
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Table 6 (Continued)

Author [ref. #] Question(s) Imaging modality No. of patients in
training cohort

No. of patient in test
cohort

Best model Performances in
training cohort

Performances in
validation cohort

Main limitations

(P = 0.0393), but
not for MFS or OS.

Liu et al., 2022xx [56] Prediction of recurrence free
survival. Comparisons/
potentations of handcrafted
RFs and deep RFs.

MRI (T1, T2, § CE-
T1)

151 pts from 1
center

131 pts from 2 other
centers

Multivariable stepwise Cox
regression on selected/pre-
filtered/robust deep RFs,
handcrafted RFs and clinical
and radiological features

C-index = 0.872,
outperformed
models radiomics
model without
RFs frome CE-T1,
clinical-radiologi-
cal models,
FNCLCC & NCI
grading, AJCC
staging, Ki67,
MSKCC and japa-
nese nomograms)

C-index = 0.766,
outperformed
models radiomics
model without
RFs frome CE-T1,
clinical-radiologi-
cal models,
FNCLCC & NCI
grading, AJCC
staging, MSKCC
and japanese
nomograms)

Retrospective; No resampling
scheme; Unclear input in DL
modeling (one or more selected
slice vs. entire volume); No IBSI-
compliant software for hand-
crafted RFs; No available code

Hu et al., 2022 [57] Prediction of lung metastastic
relapse in STS pts.

MRI (CE-T1) 122 pts from 1
center

32 pts from another
center

Nomogram based on radio-
mics score obtained by com-
bining margin status and
dichotomized prediction
from logistic regression on
reproducible selected fea-
tures (after univariable fil-
tering, and additional LASSO
selection)

AUC = 0.918 (train-
ing) and 0.864
(internal valida-
tion), outper-
formed margins
alone and radio-
mics score alone

AUC = 0.843 Retrospective; No comparison
with reference model/radiolog-
ists; No available code

AJCC indicates American joint committee on cancer; AUC indicates area under the ROC curve; c-index indicates Harrell’s concordance index; CE indicates contrast-enhanced; DRFs indicates delta radiomics features; FNCLCC indicates French
federation of cancer centers; FS indicates fat-supprsesed; IBSI indicates imaging biomarker standardization initiative; LASSO indicates least absolute shrinkage and selection operator; LFS indicates local relapse free survival; MFS indicates
metastatic relapse free survival; NART indicates neoadjuvant radiotherapy; NACT indicates neoadjuvant chemotherapy; NCI indicates National Cancer Institute; OS indicates overall survival; pts indicates patients; RF indicates radiomics fea-
tures, TCIA indicates the cancer imaging archive.

x : Two other studies also investigated the STS TCIA dataset for the same question (i.e., prediction of lung metastasis occurrence, another methodological studies by Valli�eres et al. in 2017 [79], and one study by Zhao et al. in 2022, with
lower performances [80]).

xx : Another study was performed by the same research group on 242 out of the 282 patients from the study by Liang et al. to predict the occurrence of lung metastasis (i.e. classification instead of survival analysis) [81].

A
.Crom

b
�e,P.Spinnato,A

.Italiano
etal.

D
iagnostic

and
InterventionalIm

aging
104

(2023)
567−

583

581

D
escargado para A

nonym
ous U

ser (n/a) en N
ational Library of H

ealth and Social Security de C
linicalK

ey.es por Elsevier en diciem
bre 12, 2023. Para 

uso personal exclusivam
ente. N

o se perm
iten otros usos sin autorización. C

opyright ©
2023. Elsevier Inc. Todos los derechos reservados.



A. Cromb�e, P. Spinnato, A. Italiano et al. Diagnostic and Interventional Imaging 104 (2023) 567−583
8. Conclusion

To conclude, although rare cancers with 3000 to 5000 new
patients each year in France [65], the intra- and inter-tumoral hetero-
geneity of STS (which translates into imaging) has naturally made
them good candidates to develop radiomics models. Consequently,
research in radiomics involving STS has expanded to every domain
requiring diagnostic imaging, namely differentiating between benign
and malignant STTs (in general and particularly for homogeneous
adipocytic tumors), predicting histologic grades, response to NART
and NACT, and patients’ survivals. Although strongly encouraging
and, in total, gathering hundreds of patients, it must be acknowl-
edged that none of the radiomics models coming from these studies
has led to clinically-validated application. Considering the recent for-
malisation of radiomics, such a statement does not mean that radio-
mics has no future but the exact opposite. Indeed, radiomics is at a
turning point in its development with increasing documentations
and initiatives (such as IBSI) on how to achieve trustful model,
increasing open-science, increasing prospective multicentric trials,
and building large databases to independently validate radiomics
models (such as the CHAIMELEON project and the Cancer Imaging
Archive). In addition to these methodological advances, the imple-
mentation of deep learning to replace time-consuming segmentation
tasks and provide more personalized numeric features, and explana-
tory approaches involving other ‘-omics’ material (especially tran-
scriptomics data) pave the way for a very exciting and challenging
future for radiomics in STS patients
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