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Modifying gastruloids to dissect mechanisms of tissue- 
specific induction 
David A Turner1 and Jennifer Nichols2   

How functional organisms arise from a single cell is a 
fundamental question in biology with direct relevance to 
understanding developmental defects and diseases. Dissecting 
developmental processes provides the basic, critical framework 
for understanding disease progression and treatment. Bottom- 
up approaches to recapitulate formation of various components 
of the embryo have been effective to probe symmetry-breaking, 
self-organisation, tissue patterning and morphogenesis. 
However, these studies have been mostly concerned with axial 
patterning, which is essentially longitudinal. Can these models 
generate the appendicular axes? If so, how far can self- 
organisation take these? Will experimentally induced organisers 
be required? This short review explores these questions, 
highlighting how minimal models are essential for 
understanding patterning and morphogenetic processes. 
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Introduction 
A key event in early embryogenesis is gastrulation, which 
transforms the embryo into a tri-layered structure, progres-
sively allocating and positioning cells to the ectodermal, 
mesodermal and endodermal germ layers. This process 
defines the body-plan of the embryo, and once established, 
genetic, physical and chemical inputs gradually convert 
these cell types into defined tissues and organs over the 

timescale prescribed for the species, all precisely placed and 
interconnected. The mechanisms governing these events 
are progressively being revealed, partially through advances 
in obtaining and culturing mammalian embryos, but also by 
exploiting the rapidly advancing in vitro embryonic stem 
cell (ESC) systems, including ‘stembryos’ as well as orga-
noids for specific tissues [1]. Such stembryo models for 
mammalian development include ‘gastruloids’ that use 
mouse or human ESCs [2,3], and the related trunk-like 
structures (TLSs) [4]. Both of these mimic aspects of early 
gastrulation such as symmetry-breaking, polarisation of gene 
expression, axial elongation, the emergence of three ortho-
gonal axes and (if cultured in Matrigel), the development of 
somites (these and other systems will be discussed later). A 
significant advantage of using in vitro technologies such as 
these, in parallel with studies on embryos, allows us to 
dissect the mechanisms involved in mammalian embryonic 
patterning (as well as the general patterning principles for 
other species), lineage segregation and organ development 
from two complementary directions: ‘bottom-up’ (stembryo/ 
organoid/stem cell) and ‘top-down’ (embryos/genetics/ 
transgenics/knockouts). However, to appreciate fully the 
extent to which bottom-up models may be employed, it is 
necessary to define and understand the limits of these 
systems and how far they can be manipulated before their 
biological relevance is lost. In the context of early mam-
malian development, ‘embryoid bodies (EBs)’ were among 
the first in vitro tools used to investigate mechanisms un-
derlying changes in epiblast morphology [5]. Most other 
models for early mammalian development are concerned 
with axial patterning and the emergence of tissues and cell 
types along the trunk of the embryo, essentially generating 
a patterned tube. It is not yet clear if these self-organised 
stembryo models permit the development of appendicular 
axes. Furthermore, is it possible to model innervation of 
mammalian organoids and appendages, or migration of key 
cell types such as the neural crest? In this short review, we 
will consider the current model systems that allow us to 
study early development, as well as their limitations. We 
propose some strategies in light of recent gastruloid ex-
periments that could be employed to allow stembryo 
models to develop appendages. In the context of this re-
view, which will focus on mammalian development, we 
propose that the aim of these in vitro organoid approaches is 
not to generate an entire in vitro embryo, but to model 
specific aspects of embryonic development incrementally. 
Taking this approach, we believe we can discover more 
about the inherent properties of the system by homing in on 
specific tissue types and their interactions. 
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Tissue-specific organoids: the embryo is 
more than the sum of its parts 
The isolation and culture of ESCs, and the subsequent 
understanding of the precise factors regulating their 
pluripotency and differentiation, were essential steps for 
in vitro models of development. Grown as a monolayer, 
and without the influence of feeder cells, ESCs provide 
an attractive alternative to dissecting the signalling 
conditions required to maintain pluripotency in the early 
embryo [6–9], or to direct their differentiation to defined 
lineages and tissues [10,11]. As a monolayer, they are 
amenable to live time-lapse imaging as well as fixed, 
single-cell analysis (e.g. immunofluorescence, in situ 
hybridisation chain reaction, RNA-Fluorescent In Situ 
Hybridisation), which has permitted a more nuanced 
understanding of their heterogeneous properties, linking 
cell fate to reporter gene expression, morphology and 
cell movements [12–15]. As useful as this highly reduced 
and simplified method of studying cell-fate decisions 
during early development is, a necessary trade-off for 
this simplicity is that the 3D nature of the embryo 
cannot be reflected. As such, this motivated many groups 
to utilise something more akin to the 3D nature of or-
gans and embryos, such as EBs ([16] and other 3D cul-
ture techniques, such as mechanically supported 
cultures [17–19] and the development of organoids (see  
[20,21] for comprehensive reviews). EBs constitute a 
relatively simple 3D model system, where ESCs are 
aggregated, mostly, using hanging-drops. However, 
these tend to be disorganised, variable in their pheno-
type and are not very tractable in terms of changing the 
signalling environment. Combining EBs with micro-
fluidic approaches has the potential to improve this  
[22–25]. The ‘organoid’ field evolved from EB models, 
changing the initial aggregation phase from hanging- 
drops to U-bottom plates (with different low- or no-ad-
hesion properties), where the conditions of their growth 
could be tightly controlled. By changing the chemical 
and physical (e.g. Matrigel, Geltrex) conditions, these 
aggregates of ESCs could self-organise into 3D struc-
tures resembling the architecture and patterning profile 
of various organs, depending on the culture conditions. 
Examples include optic cup, retina, kidney, limb- 
bud and pancreas [26–29], and have the potential for 
disease modelling, as has been shown with the Zika 
virus [30,31], and drug screening [32]. 

Although these organoid approaches permit experimentally 
tractable model systems to study tissue-specific patterning 
and morphogenesis, they omit a range of physiological 
constraints for simplicity (which in some cases can be ad-
vantageous). Indeed, the tissues/organs that are being mi-
micked in vitro are, by necessity, experimentally isolated, 
whereas in vivo, organs and tissues develop in concert with 
one another, and signals from developing tissues help shape 
and pattern both themselves and tissues nearby. For ex-
ample, the embryonic heart and liver, whilst originating 

from distinct germ layers (mesoderm and endoderm, re-
spectively), require reciprocal signalling between the two 
tissues for proper development [33–35] and the notochord 
(axial mesoderm) is essential for secreting signals that es-
tablish a morphogen gradient, such as Sonic Hedgehog 
(Shh) for proper dorsoventral patterning of the neural tube 
(neuroectoderm) [36]. Such reciprocal interactions are not 
present in isolated organoid models, and although these 
signalling inputs may be supplemented experimentally, the 
subtle signalling dynamics that occur between adjacent 
tissues are more difficult to mimic experimentally. 

Post-implantation organoid models: 
stembryos 
To allow a more inclusive model system that permits the 
development of multiple tissues simultaneously, several 
approaches have been established that span the devel-
opmental period encompassing pre-, peri- and post im-
plantation [37]. Pre-implantation culture techniques for 
mammalian development encompass ‘blastoids’ 
that combine trophoblast stem cells and ESCs [38–42] 
and Embryonic-Trophoblast-Extra-embryonic endoderm 
(ETX) embryos that develop structures very similar to the 
mouse embryo between E5.5 and E7.5, by combining 
extraembryonic endoderm stem cells, trophoblast stem 
cells and ESCs [43] We direct the reader to other articles 
within this Issue that tackle such models directly. 

Most of the recent models for post-implantation develop-
ment can trace their origin back to seminal work [44]. Using 
hanging-drop culture, similar to traditional EBs, aggregation 
of embryonal carcinoma cells in medium containing di-
methyl sulphoxide resulted in morphological and gene ex-
pression changes that mimicked the early stages of 
embryonic axial development: convergent extension/elon-
gation of the axis, polarisation of gene expression and up-
regulation of markers associated with early lineage 
commitment during gastrulation [44]. Interestingly, markers 
associated with the primitive streak were localised to one 
end of the elongating organoid. The critical difference be-
tween this approach and other EB studies was in the initial 
number of cells that were plated: ∼200–300 cells per 
hanging drop [44]. Building on this but using U-bottom 96- 
well plates, the lab of Alfonso Martinez Arias aggregated 
small numbers of mouse ESCs and applied a pulse of a 
Wnt/β-catenin agonist between 48 and 72 h of culture  
[45,46]. The structures that formed broke symmetry, po-
larised the expression of primitive-streak markers to one 
side of the aggregate and also underwent axial elongation. 
Interestingly, when these structures, called ‘gastruloids’ were 
analysed in detail, a remarkable degree of self-organisation 
was revealed, reminiscent of post-occipital development, 
with the gradual patterning of the three orthogonal axes 
(anteroposterior, dorsoventral and mediolateral), collinear 
Hox gene expression and organised derivatives of the three 
germ layers, including neural crest [47]. Furthermore, 

2 Early embryonic development models  
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gastruloids have a significant advantage in that they are 
highly reproducible between replicates [47]. However, de-
spite the organisation of gene expression patterns, these 
aggregates were not able to develop proper structures such 
as somites, or neural/gut tubes, showing a disconnect be-
tween gene expression and structure, which indicated that 
additional signalling inputs may be required [2]. Indeed, 
Matrigel (or Geltrex), an ECM-rich medium, provided this 
additional input, and embedding gastruloids at ∼96 h in low 
concentrations of Matrigel resulted in multiple features of 
somitogenesis being recapitulated [48], and the develop-
ment of a midline neural tube flanked by pairs of somites 
(referred to as ‘TLSs’) [4]. For ethical reasons, gastrulation 
cannot be studied in human embryos. However, ESCs 
derived from blastocysts left over from assisted conception 
programmes, or induced pluripotent stem cells repro-
grammed from human tissue, have been utilised to make 
gastruloids resembling those of the mouse, providing a 
means to model this largely inaccessible stage of develop-
ment [3] and thereby identify human-specific mechanisms. 

Gastruloids and their derivatives are rapidly becoming 
recognised as complementary models for early develop-
ment, that are minimal in nature so as to remain tractable 
and understandable, yet close enough in mimicking the 
processes seen in embryonic development to remain 
directly relevant. To this end, modifications of the gas-
truloid culture conditions have permitted the refinement 
of model systems for cardiac development [49], haema-
topoiesis [50], anterior neural development [51] and 
elongating multi-lineage organoids (EMLOs), which 
generate neurons, neural crest cells and gut structures 
bearing molecular and functional resemblance to those 
derived in vivo [52]. 

From tubes to appendages: what signalling 
cues are missing? 
Currently, the gastruloid is essentially a polarised, pat-
terned cylinder, attributable to its extraordinary ability to 
self-organise within a simple signalling environment. 
Remarkably, in situ hybridisation for Hoxd9, a marker for 
limb-bud primordia in mouse, identified small spots on 
the flanks of gastruloids [2]. It is tempting to speculate 
that these may indicate regions in the gastruloids that 
may have the potential to respond to signals promoting 
outgrowth (Fig. 1). In vivo, such signals come from an 
overlying ectodermal layer that is recognised to be im-
portant for the formation of an apical ectodermal ridge 
(AER) essential for limb outgrowth. As reconstruction of 
an ‘organiser region’ in gastruloids has been used to 
enhance dorsoventral patterning [53], a similar strategy 
may therefore enable some development of lateral 
structures. To date, limb organoids have been generally 
derived from mouse embryos [54], however, attempts 
have been made to generate these directly from plur-
ipotent stem cells [28]. In the case of the latter, this 

required a combination of chemical signalling and Ma-
trigel embedding, which (providing the correct me-
chanochemical signals are added) could be a mechanism 
to facilitate outgrowth from gastruloids. The exciting 
prospect of attempting to induce limb outgrowth on 
gastruloids will lead to greater understanding of how 
chemical, mechanical and temporal mechanisms are 
orchestrated to create these essential appendages. 

Conclusions 
One argument for advancing the ‘bottom-up’ approach, 
which might appear attractive, is to be able to generate a 
whole-functioning embryo from its constituent compo-
nents, satisfying Richard Feynman’s conjecture: ‘what I 
cannot create, I do not understand’. However, reproduction 
of embryonic development in toto jettisons the potential 
to dissect the minimal requirements for interactions be-
tween adjacent-developing organs. Studying organs and 
tissues individually or in neighbourhood groups will allow 
us to examine the minimal requirements for 

Figure 1  

Current Opinion in Genetics and Development

Possible strategies for encouraging the development of gastruloid 
appendicular axes. HoxD9 gene expression in small, bilateral spots 
towards the anterior of the gastruloid may indicate the initiation of 
transcriptional programs that could give rise to the appendicular axes, 
providing the correct signalling environment is present (top). Global 
application of signalling molecules such as chemical modulators and 
specific Extra-Cellular Matrix components (possibly provided by 
Matrigel) could be read by cells receptive to these signals and over time, 
develop outgrowths (bottom left). Additionally, localised signalling 
molecules, applied in beads soaked with signalling factors that mimic 
the AER (e.g. Shh or other combinations of signals), may also be an 
additional strategy (bottom right). Combinations of these strategies may 
also be required.   
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developmental processes, defining what is truly necessary 
for specific processes to be initiated, sustained and ter-
minated. Once defined, we can incrementally add further 
complexity to examine whether our hypotheses generated 
through minimal models are upheld, or whether different 
strategies are employed by the embryo at key stages to 
integrate information from additional complex signalling 
environments (e.g. chemical, physical). 

Finally, as developmental biologists, we are comfortable 
in comparing embryogenesis across different species to 
understand common strategies for patterning and mor-
phogenesis. This is why we should also take into account 
bottom-up approaches from different species where 
possible, for example, comparing stembryo models from 
mouse, human and other vertebrates such as the zebra-
fish [55,56]. Indeed, zebrafish ‘pescoids’ show a 

remarkable similarity in patterning and morphogenesis 
to their mouse and human counterparts: when boundary 
conditions are removed, aggregating cells revert to a 
‘morphogenetic ground state’ [57], providing a blank 
slate upon which we can examine what is required for 
morphogenesis of key organs and tissues when in-
crementally applied.  
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Box 1 Definition of terms commonly used to describe organoids.      

Term Definition References  

Gastruloid 3D aggregates of pluripotent stem cells that mimic embryonic axial devel-
opment 

Van den Brink et al. 
(2014) [46] 
Turner et al. (2017)[47] 
Beccari et al. (2018)[2] 
Moris et al. (2020) [3] 

TLSs Trunk-like structures: addition of Matrigel at late stages of development allows 
formation of somites flanking neural tube 

Veenvliet et al. 
(2020) [4] 
Van den Brink et al. 
(2020) [48] 

Embryonic-Trophoblast-Extra-em-
bryonic endoderm(ETX) structures 

Generation of structures that mimic some aspects of E5.5–E7.5 mouse 
embryos 

Sozen et al (2018)[43] 

EMLO Elongating multi-lineage organoids Olmsted and Paluh 
(2021) [52] 

Stembryo Portmanteau of stemcells and embryos, a term coined to bring together the in 
vitro models of early development 

Veenvliet et al. 
(2021) [1] 

Blastoid 3D aggregates combining trophoblast and ESCs to mimic blastocysts Rivron et al. (2018)[38] 
Kagawa et al. 
(2021)[39] 
Liu, et al. (2021) [40] 
Yanagida et al. 
(2021) [41] 
Yu et al. (2021) [42] 

Embryoid body (EB) A technique that uses gravity-induced aggregation of ESCs, generally dis-
organised 

Coucouvanis and 
Martin (1995) [5] 
Veenvliet et al. 
(2021) [1] 

Feeder cells A layer of mitotically inactivated cells (typically immortalised mouse embryonic 
fibroblasts) 

Martin and Evans 
(1975) [58] 

Directed differentiation The process of controlling differentiation by the addition of specific signalling 
factors to guide pluripotent cells towards defined lineages 

Multiple examples 
exist, but see: 
Neural: Ying and Smith 
(2003) [59] 
Primitive sreak: Gadue 
et al. (2006)[60] 
Turner et al. (2014)[13] 
Endoderm: Hashmi 
et al. (2022) [61] 
Mesoderm: Thomson 
et al. (2011) [62]    

4 Early embryonic development models  
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