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A B S T R A C T   

Background: Physical disabilities become more common with advancing age. Rehabilitation restores function, 
maintaining independence for longer. However, the poor availability and accessibility of rehabilitation limits its 
clinical impact. Artificial Intelligence (AI) guided interventions have improved many domains of healthcare, but 
whether rehabilitation can benefit from AI remains unclear. 
Methods: We conducted a systematic review of AI-supported physical rehabilitation technology tested in the 
clinical setting to understand: 1) availability of AI-supported physical rehabilitation technology; 2) its clinical 
effect; 3) and the barriers and facilitators to implementation. We searched in MEDLINE, EMBASE, CINAHL, 
Science Citation Index (Web of Science), CIRRIE (now NARIC), and OpenGrey. 
Results: We identified 9054 articles and included 28 projects. AI solutions spanned five categories: App-based 
systems, robotic devices that replace function, robotic devices that restore function, gaming systems and 
wearables. We identified five randomised controlled trials (RCTs), which evaluated outcomes relating to physical 
function, activity, pain, and health-related quality of life. The clinical effects were inconsistent. Implementation 
barriers included technology literacy, reliability, and user fatigue. Enablers included greater access to rehabil-
itation programmes, remote monitoring of progress, reduction in manpower requirements and lower cost. 
Conclusion: Application of AI in physical rehabilitation is a growing field, but clinical effects have yet to be 
studied rigorously. Developers must strive to conduct robust clinical evaluations in the real-world setting and 
appraise post implementation experiences.   

1. Introduction 

Ageing populations are burdened by chronic disease and functional 
disabilities [1,2]. By 2050, the World Health Organization (WHO) es-
timates that 22 % of the world population will be aged 60 years and 
above [3]. Accordingly, the different needs of an aged multi-morbid 
population have prompted a reconsideration of health services [4]. 
Chronic disease or disability often requires a sustained care manage-
ment approach, which requires effective self-management to maintain 
independence for as long as possible. When functional ability is 
compromised, rehabilitation (i.e., “an intervention designed to optimise 
function and reduce disability” WHO [5]) can restore mobility and 
function. 

Physical rehabilitation focuses on restoring physical function and 
strength. Physical rehabilitation interventions come in many forms: 

hospital or community-based, clinician-led or self-directed, multiple- or 
single-component programmes. Although physical rehabilitation is 
widely available, it is frequently underused with poor compliance 
worldwide [6,7]. Poor uptake and compliance are multifaceted issues 
caused by low physician referral or endorsement, transportation bar-
riers, poor perceived efficacy, and inconvenient programme timing [8]. 

Technological advances have overcome some barriers to rehabilita-
tion use, in recent years. For example, telerehabilitation can improve 
accessibility [9] and digital technologies can improve compliance and 
monitoring of home exercise [10], but implementation challenges 
remain. More recently, technology supported rehabilitation has been 
enhanced by Artificial Intelligence (AI). AI refers to a specific type of 
technology designed to simulate human intelligence. Machine learning 
is a subset of AI, which automatically learns from the data and makes 
incremental improvements [11]. Of the many technological 
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developments, AI's unique advantages include processing more complex 
data, faster data computation than humans, and facilitation of tailored 
interventions [12–14]. 

Although AI innovations in healthcare have shown great promise, 
particularly in diagnostics [12], new technologies are often resisted and 
underused due to usability, usefulness, and cost issues [15,16]. Thus, it 
is essential to understand the implementation challenges of new health 
technology. A systematic review of the impact of machine learning on 
patient care found hundreds of retrospective ‘proof of concept studies’ 
but only eight articles that prospectively evaluated machine learning 
algorithms in clinical practice [17]. The purpose of this review is to 
understand the evidence for AI-supported physical rehabilitation. The 
study objectives are to:  

1. Identify what AI applications have been developed to support 
physical rehabilitation. 

2. Investigate the effectiveness of AI-supported rehabilitation in-
terventions in comparison to standard care, including clinical and 
non-clinical outcomes. 

3. Identify the barriers and enablers of using AI-supported rehabilita-
tion interventions. 

2. Methods 

The study was conducted and is reported according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines [18]. A copy of the PRISMA checklist is included in the 
supplements. The systematic review protocol was prospectively regis-
tered on the PROSPERO database of systematic reviews (registration 
number CRD42020201553). 

2.1. Literature search 

MEDLINE, EMBASE, CINAHL, CIRRIE (now NARIC), Science Citation 
Index (Web of Science) and OpenGrey were searched in July 2020. An 
updated search was then conducted in October 2021. A combination of 
MeSH terms and keywords on the themes: AI and physical rehabilitation 
were used. The initial search strategy was developed in MEDLINE and 
revised with the help of an information specialist. The search strategy 
was then converted for use in the other databases. A copy of the MED-
LINE search strategy is included in the supplements. 

2.2. Study selection 

Titles and abstracts were initially screened for inclusion by individ-
ual reviewers (JS, HWL, LSC, AB, AM, GK). Provisionally included ar-
ticles were then full text screened by two independent reviewers for 
eligibility (JS, HWL, LSC, SB) (Table 1). 

We excluded studies that only reported validation outcomes (e.g., 
algorithm training). Studies that did not test the intervention in its 
intended setting (e.g., home-based) or by the target users (i.e., patients) 
were also excluded, except for living lab experiments. Brain control 
interface interventions were excluded if the purpose was not to enable a 
physical function. 

Disagreements were discussed and resolved with a third reviewer if 
required. When the eligibility of a study was unclear from the publica-
tion, we attempted to contact the author(s) via email to clarify 
eligibility. 

2.3. Data extraction and management 

Data extraction was undertaken by one researcher (LSC, AB or HWL) 
and checked for consistency by a second independent researcher (HWL 
or JS). Extracted data items included: study and population character-
istics; intervention details including algorithm accuracy if reported; 
measures of clinical and non-clinical effectiveness (i.e., adherence, 

acceptability); barriers and enablers of technology implementation; and 
any cost-related measures. The extraction sheet was piloted on a sample 
of papers and refined before full data extraction. 

2.4. Quality assessment 

For Randomised Controlled Trials (RCTs), the Cochrane Risk Of Bias 
tool (ROB2) was used to assess the quality of studies reporting clinical 
efficacy [19]. The tool asks a series of questions covering five domains 
where bias might occur: selection, performance, attrition, reporting, and 
other. Each domain is rated low, high, or unclear. Two researchers 
independently assessed the risk of bias, and any disagreements were 
discussed (JS and HWL). We did not use quality assessments to exclude 
papers. 

2.5. Data synthesis 

Results were synthesised narratively due to the heterogeneity of the 
study designs and outcome measures. 

3. Results 

We identified 9054 unique articles. After screening, sixteen projects 
met the eligibility criteria and were included. After updating the search 
strategy (re-run in October 2021), we identified twelve further projects 
that met the eligibility criteria (Fig. 1). 

3.1. Study characteristics 

Characteristics of the included projects are presented in Tables 2 and 
3. Of the 28 projects (29 publications), nine were controlled cohorts, 
fifteen were pre-post studies, and five were RCTs. The number of par-
ticipants recruited into the included studies ranged from one to four 
hundred and sixty-one participants. Studies were conducted in China 
(4), Italy (4), Germany (3), United States (3), Hong Kong (2), Taiwan 
(2), Ukraine (2), Belgium (1), Canada (1), Denmark (1), Japan (1), Korea 
(1), Netherlands (1), Romania (1) and Singapore (1). 

Table 1 
PICOS eligibility criteria.  

Criteria Definition 

Participants Adult patients (≥18 years of age) undergoing formal physical 
rehabilitation. 

Intervention Artificial Intelligence, specifically Machine Learning applications 
used in physical rehabilitation programmes. These may be 
applications used by patients or health care providers in inpatient, 
outpatient, or community-based settings. Machine learning is a 
branch of AI designed to mimic: “a range of human intelligent actions 
(e.g., learning, understanding, thinking, and creating), by using data 
to learn and gradually improve”. Physical rehabilitation programmes 
are defined as any healthcare-led programme to enhance and restore 
functional ability and quality of life. Programmes may be clinic-based 
or home-based, or in the community. Multi-component programmes 
are eligible if there is an exercise component e.g., education and 
exercise. 

Control For interventional studies, the control group is defined as those not 
receiving AI-supported physical rehabilitation. Studies without a 
control group were eligible for inclusion if the other criteria were 
met. 

Outcomes Outcome measures included: Clinical effectiveness (e.g., mobility, 
pain, HRQOL) and non-clinical measures (e.g., adherence, 
acceptability; barriers and enablers of technology implementation; 
and any cost-related measures). 

Study types All study types were considered (i.e., experimental or observational 
designs) so long as the concept was implemented and tested 
according to its intended purpose (i.e., intended clinical impact). 
Developmental work such as simulation studies, testing on healthy 
subjects, or validation studies (i.e., measurement accuracy) was 
excluded. 

Other Studies were restricted to English language only articles.  
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3.2. Intervention characteristics 

Interventions included two main groups: those that attempt to 
restore function (n = 24) or those that replace function (e.g., prosthetic 
limbs) (n = 4). The most treated conditions were stroke (n = 7), back or 
neck pain (n = 6), Parkinson's disease (n = 3) or limb absence (n = 3). 
Interventions were developed to improve mobility, function, balance, or 
pain. Solutions were home-based (n = 14), clinic-based (n = 10), or 
designed to be used in a mixture of settings (n = 4). The hardware uti-
lised by the interventions is summarised in Table 4. While some studies 
used commercialised products in their system (e.g., smart watches), 
none reported whether their intervention was certified for clinical use. 

3.3. Clinical outcomes 

Clinical outcomes for the five included RCTs are reported in Table 5. 
Outcome measures fell into three categories: Physical function and ac-
tivity, pain, and health-related quality of life (HRQOL). 

3.4. Risk of bias summary 

As assessed using the Cochrane risk of bias tool (Fig. 2), three of the 
studies had an overall risk of bias of ‘some concerns’ [22,29,45] and two 
studies had a high risk of bias [23,26]. Risk of bias issues related to a lack 
of detail on the randomisation process and participant characteristics, a 
lack of assessor blinding, and large proportions of missing data. 

3.5. Enablers and barriers to implementation 

No studies conducted a comprehensive implementation evaluation, 
although several included comments on the barriers and enablers 
associated with their interventions. Implementation experiences are 
summarised according to the type of technological solution. Experiences 
primarily focus on hardware rather than software challenges, as we did 
not include validation studies. 

3.5.1. Standalone app-based systems 
Accessibility of the system (i.e., being able to access a programme 

anywhere at any time) [21,22], ease of use − for those that are tech-
nology literate [20,23], and the ability to personalise treatment through 
the app [20] were enablers of app-based systems. In one study, partic-
ipants found the app-based instructions easier to follow than traditional 
verbal instructions [20]. One study reported that integration with an 
already established messenger app facilitated the use of their interven-
tion [23]. Apps also had the advantage of reducing manpower re-
quirements, as the intervention could operate autonomously [20]. One 
paper addressed data privacy; reporting concerns could be minimised by 
data capture on the patients' phones [20]. 

Reported barriers included low technology literacy, particularly in 
older, less tech savvy adults [22], inability to know if an exercise has 
been done [23], and demands on the battery life of personnel devices 
[20]. Finally, one study reported that tailored exercise recommenda-
tions were of limited use when they did not consider the context (e.g., 
suggested exercise not appropriate for weather conditions) [20]. 

3.5.2. Robotics to replace function 
Only one paper commented on the enablers of limb replacement 

robotics [26]. In this study, functional training helped users adapt to the 
prosthesis by teaching them the influence of weight and posture on 
control. Furthermore, gradually increasing the degrees of freedom 
enabled the transition from a direct control prosthesis to a machine 
learning controlled prosthesis. 

Barriers are primarily related to prosthesis performance. Kristoff 
et al. [26] noted that the fit and choice of prosthesis material impacted 
electrode contact and performance (electrodes measure movement 
intention). The prosthetic material also had implications on durability, 
specifically concerning weight bearing tasks [26]. The scalability of 
advanced prosthetics requires reliable and robust hardware [27]. 
Technical difficulties, a lack of portability and independent set-up, the 
accuracy of the system, or devices that require ongoing calibration 
hindered usability and scalability [24,27,28]. Fatigue from overuse also 

Fig. 1. PRISMA flow diagram and scope of findings.  
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Table 2 
Included study characteristics (restores function).  

Author, date, 
country 

Purpose of device AI role Algorithm details Target condition(s) 
and sample 
characteristics 

Outcome measures Results summary 

Alcaraz, 2018, 
Germany 

To improve 
rehabilitation progress 
and quantify 
performance. 

Analysis and 
interpretation of 
motion data 

A deep Convolutional 
Neural Network (CNN) was 
trained (supervised) using 
data from different Inertial 
Measurement Units (IMUs) 
and kinematic signals 
measuring gait following 
hip unilateral arthroplasty 
surgery. Accuracy not 
reported. 

Gait related issues. 
Int n = 10, Mean 
age: 63 ± 10 years. 
Ctrl n = 10, Mean 
age: 61 ± 8 years. 

Gait metrics Faster recovery time 
compared to usual care. 

Anan, 2021, 
Japan 

To improve 
musculoskeletal 
symptoms through an 
app-based health 
promotion system. 

Exercise and symptom 
control 
recommendations sent 
through chatbot 

Predictive analytics system 
called Secaide.me ver 0.9. 
created by Travoss Co, Ltd. 
No details on training. 
Accuracy was not reported. 

Back and neck pain 
Int n = 48, Mean 
age: 41.8 ± 8.7 
years. Ctrl n = 46, 
Mean age: 42.4 ±
8.0 years. 

Pain and adherence Improved neck/shoulder 
pain and stiffness and 
reduced lower back pain. 

Andrei, 2015, 
Romania 

To improve functional 
capacity through AI 
guided therapy. 

Generates treatment 
recommendations 
based on medical 
status 

A modified fuzzy inference 
system, using a modified 
Sugeno type inference 
system. The system was 
tested on data from 260 
patients. System error was 
under 2 %. 

Back pain 
n = 260. Age not 
reported. 

Daily activities and 
movement 

Significant 
improvements in 
functional capacity. 

Ang, 2017, 2014 
Singapore 

To improve motor 
recovery through motor 
imagery and feedback 
through a haptic knob. 

Motor detection and 
modulation of haptic 
knob 

EEG data were recorded 
during a calibration session 
involving 80 motor 
imagery tasks and 80 idle 
state tasks. Signal 
processing was performed 
using the Filter Bank 
Common Spatial Pattern 
algorithm. For the 
intervention group (Brain- 
Computer Interface with 
haptic knob training) 
calibration accuracy 
averaged 79.8 %. Accuracy 
dropped to 69.5 % during 
intervention training. 

Stroke 
Int n = 6, Mean 
age: 54.0 ± 8.9 
years. Ctrl 1: n = 8, 
Mean age: 51.1 ±
6.3; Ctrl 2: n = 7, 
Mean age: 58.0 ±
19.3 years. 

Motor function Significantly larger 
motor gains compared to 
usual care. 

Avola, 2013, 
2018, 2019, 
Italy 

To provide customised 
rehabilitation exercises 
using virtual reality. 

Analysis and 
interpretation of 
exercise performance 

A Gated Recurrent Unit 
Recurrent Neural Network 
(RNN) was used to rate 
how much an exercise is 
correctly performed 
compared to a reference 
model developed on 
healthy subjects. Accuracy 
compared to therapist was 
rated between 0 and 10. 

Parkinson's disease 
n = 92, Mean age: 
40 years. 

Patient and staff 
experience, 
rehabilitation 
progress and leg 
mobility 

Significant recovery of 
mobility. Users were 
motivated to exercise. 
Usability and 
customisation were rated 
highly. 

Bockbrader, 
2016, 2019, 
US 

To restore motor 
function through brain- 
computer interface 
(BCI) and functional 
electrical stimulation 
(FES). 

Interpretation of BCI 
signals and 
communication of 
movement intention 

Nonlinear, Support Vector 
Machine (SVM) decoders 
were trained on different 
grip movements. Decoder 
training took 10 to 15 min, 
with 3 to 4 repetitions of 
each movement across 4 to 
6 blocks. Accuracy was not 
reported. 

Tetraplegia 
n = 1, Age: 27 
years. 

Motor function 
metrics and 
sensation 

Participants were able to 
perform coordinated 
grasps and made 
significant gains in upper 
limb function. 

Burns, 2021, 
Canada 

To remotely monitor 
participation in 
physiotherapy using a 
smartwatch. 

Detection of 
physiotherapy exercise 
activity 

A fully convolutional 
neural network (FCN) 
classifier was trained 
(supervised) to detect and 
differentiate labelled 
inertial data from 
supervised physiotherapy 
activity. The last training 
session, per patient, was 
used as the test set, and 
prior sessions as a training 
set. The training data set 
was augmented with data 
from 20 healthy 

Rotator cuff 
disorders 
n = 42, Mean age: 
45 ± 13 years. 

Participation in 
therapy, pain 

Exercise participation 
was low. A statistically 
significant dose response 
relationship was found 
between physiotherapy 
and pain. 

(continued on next page) 
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Table 2 (continued ) 

Author, date, 
country 

Purpose of device AI role Algorithm details Target condition(s) 
and sample 
characteristics 

Outcome measures Results summary 

volunteers. Algorithm 
accuracy between 0.90 and 
0.95. 

Chae, 2020, 
Korea 

To remotely monitor 
rehabilitation exercises 
using a smartwatch and 
smartphone app. 

Detection of 
physiotherapy exercise 
activity 

A CNN algorithm was used 
for detecting home 
exercises. Training data 
were collected from 
patients performing four 
types of exercises. The data 
was divided into one test 
dataset and four training 
datasets, to build and 
establish model accuracy. 
Accuracy between 95.8 % 
and 99.9 % depending on 
data input. 

Stroke 
Int n = 17, Mean 
age: 58.3 ± 9.3 
years. Ctrl n = 6, 
Mean age: 64.5 ±
9.6 years. 

Functional 
assessment, range of 
motion and 
depression 

The system facilitated 
home-based 
rehabilitation and 
significantly improved 
motor function and 
range of motion. 

De Cannière, 
2020, Belgium 

To interpret functional 
capacity using a 
wearable sensor for the 
longitudinal follow-up 
of cardiac rehabilitation 
(CR) patients. 

Prediction of 6-minute 
walk distance data to 
determine functional 
capacity 

The performance of 
different SVM regression 
models was compared. 
Eighty percent of the 
participant's data were 
used to train 
(unsupervised) the model, 
while the remaining 20 % 
validated the model. A 20- 
fold-validation was 
performed to measure 
prediction error. Mean 
error in 6-min walking test 
was 42.5 m. 

Heart failure 
n = 89, Mean age: 
63 ± 1 years. 

Functional capacity The technology 
successfully facilitated 
objective tracking of 
clinical progression in 
CR. 

Donisi, 2021, 
Italy 

To assess rehabilitation 
outcomes through gait 
analysis using a 
wearable inertial 
system. 

Analysis of motion 
data to determine 
clinical improvement 

Four tree-based algorithms 
compared differences in 
admission and discharge 
parameters: Random 
Forest, Rotation Forest, 
Ada-Boost of Decision 
Stumps, and Gradient 
Boost tree. A synthetic 
minority oversampling 
technique was used–to 
perform a reliable analysis. 
Accuracy 0.94, 0.79, 0.94 
and 0.90 respectively. 

Parkinson's disease 
n = 12, Age range: 
51–77 years. 

Gait and posture 
metrics, anticipatory 
postural adjustment, 
turning, balance, 
functional 
independence, and 
disease impairment 

The system corroborated 
clinicians' evaluations of 
rehabilitation 
assessment. Significant 
improvements in gait 
were found. 

Hospodarskyy, 
2020, and 
Tsvyakh, 
2021, Ukraine 

To deliver a tailored 
rehabilitation plan 
through a telemedicine 
system. 

Monitoring of exercise 
time, local 
temperature, the 
frequency of injured 
limb activity 

Machine learning was 
developed in the Ternopil 
Medical University. No 
further information 
reported. 

Lower extremity 
injury 
Study 1: Int n = 96. 
Ctrl n = 52. Age not 
reported. 
Study 2: Int n = 32, 
Mean age: 44.7 
(5.4) years. Ctrl n 
= 16, Mean age: 
48.6 years. 

Study 1: Exercise 
time, temperature, 
and patient 
satisfaction 
Study 2: Pain, 
functional status, 
consultation time, 
patient satisfaction 

Subjects reported higher 
satisfaction with tailored 
telerehabilitation than 
with traditional 
orthopaedic 
rehabilitation. 

Jezernik, 2003, 
Switzerland 

Automated treadmill 
training for 
rehabilitation. 

Analysis and 
interpretation of 
motion data to 
automatically correct 
gait pattern 

A RNN model was able to 
generate hip and knee 
trajectories. The gait- 
pattern adaptation 
algorithms were tested and 
compared in closed-loop 
simulations in several pilot 
experiments with healthy 
subjects and four pilot 
experiments with patients. 
Accuracy not reported. 

Spinal cord injury, 
stroke 
n = 10, Age not 
reported. 

Body loading Overall, the Lokomat 
was shown to be an 
important robotic 
rehabilitation device. 
Patients' mobility 
improved with time. 

Lee, 2021, 
Taiwan 

To rehabilitate upper- 
limb motor function 
using a virtual reality 
training system and 
automatic assessment of 
motor function. 

Classification of stroke 
recovery 

Multilayer Perceptron, 
Radial Basis Function 
Network, Classification 
and Regression Tree and 
SVM were used to classify 
exercise indicators. The 
exercise indicator data and 
the relevant recovery level 
serve as training sets 
(supervised). Accuracy 

Stroke 
n = 22, Age not 
reported. 

Motor function 
metrics 

The virtual reality motor 
training system 
effectively improved 
upper limb motor 
training, significantly 
improving motor 
function. 

(continued on next page) 
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Table 2 (continued ) 

Author, date, 
country 

Purpose of device AI role Algorithm details Target condition(s) 
and sample 
characteristics 

Outcome measures Results summary 

rates of 92.72, 88.87, 63.7 
and 74.9 % respectively. 

Lo, 2018, China To assist people using an 
app to self-manage 
chronic neck and back 
pain. 

Generation of exercise 
recommendations 
based on symptoms 

A multilayered perceptron 
artificial neural network 
was used to generate 
recommendations. 
Computer-simulated data 
(n = 300 sets) were 
reviewed by experts to 
ensure exercises were 
appropriate. Once the 
initial algorithm was 
trained, a back- 
propagation algorithm was 
used to continue the 
training until an accuracy 
of at least 80 % was 
achieved. 

Back and neck pain 
n = 158, Age range: 
18 to >60 years. 

Pain, perceived 
improvement, 
usability, time spent 
exercising or reading 
educational material 

Users reported 
exercising more with the 
intervention and pain 
was reduced. 

Pirovano, 2014, 
2016, Italy 

An exergame system 
which facilitates 
remotely monitored 
home rehabilitation. 

Measurement of 
exercise performance 
with autonomous 
feedback 

Fuzzy systems are used to 
monitor exercise 
performance. Exercise 
parameters were tuned 
during exercise to the 
patient's performance 
through a Bayesian 
framework that also takes 
into account input from the 
therapist (Quest method). 
Accuracy not reported. 

Posture and 
balance 
n = 7, Age range: 
68–82 years. 

Patient experience, 
game success rate 

The system integrated 
the functionalities to 
support autonomous 
rehabilitation. 

Pogrzeba, 2018, 
Germany 

To record, auto- 
calibrate, and analyse 
repetitive motion to 
objectively assess long- 
term rehabilitation 
performance. 

Tracking of motor 
function progression 

A probabilistic model, 
trained (supervised) from a 
dataset of “healthy” and 
“impaired” motion, was 
used to monitor recovery 
of motion. Classification 
accuracy up to 0.88, 
depending on the feature 
selection. 

Stroke or 
Parkinson's disease 
Int n = 20, Mean 
age: Not reported. 
Ctrl 1: n = 10, 
Mean age: 31.4 ±
2.54 years; Ctrl 2: 
n = 1, age: 31 
years. 

Motor function The model assisted 
therapists in the 
objective assessment of 
therapy success and 
encouraged changes in 
treatment if used 
concomitantly to the 
therapy. 

Rabbi, 2018, US MyBehaviorCBP is a 
mobile phone app that 
generates physical 
activity 
recommendations 
similar to existing 
behaviours. 

Generation of exercise 
recommendations 
based on physical 
activity behaviours 

Developed using data from 
a healthy population. A 
Gaussian Mixture Model 
was used to identify 
common daily physical 
activities (unsupervised). A 
multi-armed bandit 
algorithm was then used to 
generate personalized 
suggestions based on past 
behaviour. Accuracy not 
reported. 

Back pain 
n = 10, Age range: 
31–60 years. 

App usage, physical 
activity, patient 
experience 

Physical activity 
recommendations were 
actualised more with the 
app, and instructions 
were easier to follow 
than generic advice. 

Sandal, 2021, 
Denmark 

To facilitate and 
improve self- 
management of lower 
back pain through the 
selfBACK app. 

Tailored self- 
management 
recommendations 
based on the 
participant's 
characteristics, 
symptoms, and 
progression 

Recommendations were 
generated using a case- 
based reasoning approach 
i.e., data from successful 
previous cases are used to 
suggest the most suitable 
self-management plan for a 
current user. Accuracy not 
reported. 

Back pain 
Int n = 232, Mean 
age: 48.3 ± 15.0 
years. Ctrl n = 229, 
Mean age: 46.7 ±
14.4 years. 

Disability, pain, self- 
efficacy, fear- 
avoidance, illness 
perception, health- 
related quality of 
life, physical 
activity, and 
perceived effect 

Adults with lower back 
pain who received the AI 
intervention had less 
back pain disability at 
three months than usual 
care. 

Song, 2005, 
Hong Kong 

An Electromyography 
(EMG) controlled 
robotic system to 
improve upper limb 
function. 

Interpretation of EMG 
signals into robotic 
arm control 

A RNN was trained 
(supervised) using healthy 
and stroke patient data. 
The first batch of testing (3 
× 2 movements) was used 
as training data, and the 
second batch of testing was 
used as the test data. 
Accuracy in stroke 
patients: training model 
relative error 7.59 %; test 
data 10.82 %. 

Stroke 
n = 3, Age range: 
39–57 years. 

Arm function 
(strength, extension, 
tone, control), 
patient experience 

Functional 
improvements were 
observed in all three 
subjects after a four- 
week training protocol. 

Thiengwitta- 
yaporn, 2021, 
Germany 

To assess the stage of 
knee osteoarthritis, 
personnel treatment and 

Tailored exercise 
recommendations 

An adaptive assessment, 
based on a decision tree 
algorithm, was used to 

Knee osteoarthritis 
Int n = 42, Mean 
age: 62.2 ± 6.8 

Range of motion, 
symptoms, pain, 
physical activity, 

Patients saw significant 
improvements in quality 

(continued on next page) 
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limited the use of advanced prosthetics [24]. 

3.5.3. Robotics to restore function 
Only two studies commented on implementation-related factors 

[30,31]. One study evaluated the usability of a robotic orthosis with 
Electromyography (EMG) sensors [31]. The study team rated the clarity 
of instructions, ease of use, comfort, appearance, simplicity of training, 
effectiveness, and overall satisfaction. The mean usability score was 
29.3 (maximum score 36) [31]. Jezernik et al. [30] evaluated an intel-
ligent treadmill training system. Patients preferred adaptive gait-pattern 
training over a traditional fixed gait-pattern system [30]. No barriers 
were reported. 

3.5.4. Gaming systems 
Gaming systems were perceived as low-cost solutions [33,36] and 

were rated highly for their usability [33,35]. The opinions on cost and 
usability are most likely due to the availability of ‘off the shelf’ com-
mercial gaming hardware, e.g., Kinect (Table 4). All gaming systems 

used at least some commercially available hardware in their system. The 
flexibility of gaming systems was another perceived advantage, for 
instance, customising the game and exercises according to different 
clinical groups [33,35]. Furthermore, clinicians reportedly valued the 
ability to remotely manage patients and objectively assess their progress 
[33,35,36]. From the patient's perspective, game-based exercise was 
engaging, easy to do, and set at an appropriate difficulty level [35]. 
Patients also felt gesture and voice recognition were suitable for inter-
acting with gaming systems [35]. Barriers included latency issues 
(causing motion sickness) [33], gaming fatigue [35], unclear visuals, 
and a preference for greater personalisation (e.g., background music, 
bespoke avatars) [35]. 

3.5.5. Activity monitoring using wearables 
Wearable devices, including smartwatches, Inertial Measurement 

Units (IMUs) and accelerometers, were advantageous in terms of 
portability, convenience [38,40,46], comfort [38], and low cost [41,46]. 
One author noted that wearables facilitated the analysis and synthesis of 

Table 2 (continued ) 

Author, date, 
country 

Purpose of device AI role Algorithm details Target condition(s) 
and sample 
characteristics 

Outcome measures Results summary 

promote rehabilitation 
exercise using an app. 

determine the disease 
stage. No further training 
or accuracy information 
reported. 

years. Ctrl n = 40, 
Mean age: 63.0 ±
9.7 years. 

quality of life, 
patient experience 

of life, pain, and physical 
function. 

Wang, 2021, 
China 

To analyse motion using 
IMUs to evaluate gait 
and rehabilitation 
progress. 

Quantifying gait 
deviations based on 
IMU data 

A principal component 
analysis method was used 
to calculate the gait 
normalcy index, which was 
compared to normal gait 
ranges in healthy subjects. 
The approach was first 
validated in seven 
inpatients each performing 
six walking trials. Accuracy 
not reported. 

Gait related issues 
Int n = 8, Mean 
age: 40 ± 8 years. 
Ctrl n = 10, Mean 
age: 40 ± 11 years. 

Gait metrics An improvement in the 
IMU-based gait 
normalcy index (INI) 
was demonstrated 
during the rehabilitation 
process. 

Ye, 2021, Hong 
Kong 

To provide robotic 
assisted upper limb 
rehabilitation and 
automatic detection of 
rehabilitation progress. 

Interpretation of EMG 
signals to determine 
clinical status 

A backpropagation neural 
network was trained 
(supervised) using 80 % of 
the EMG epochs data. The 
remaining 20 % were 
testing data. AI scores and 
manual clinical assessment 
scores were highly 
correlated >0.9 (p <
0.001). 

Stroke 
n = 29, Mean age: 
58.7 ± 8.3 years. 

Motor function The system successfully 
evaluated motor 
function. Significant 
improvements in 
function were observed. 

Yeh, 2014, 
Taiwan 

An interactive virtual 
reality rehabilitation 
game with sensors to 
improve balance. 

Interpretation of 
balance indices to 
determine clinical 
status 

A SVM was trained 
(supervised) on participant 
data. The dataset was 
separated into a training 
and testing dataset, 
following the methods of 
10-folds cross-validation. 
Classification accuracy 
between 65 and 75 %. 

Vertigo 
Int n = 48, Age: 64 
± 16 years. Ctrl n 
= 36, Mean age: 22 
± 4 years. 

Balance metrics The proposed interactive 
VR rehabilitation system 
effectively helped 
patients with vestibular 
dysfunction improve 
their balance scores. 

Zhou, 2021, 
China 

To evaluate lower back 
pain and the effect of 
rehabilitation using 
surface EMG. 

Interpretation of EMG 
signals during 
rehabilitation 

The ARAN algorithm, built 
with a time-varying 
parameter AR model and 
ANN, was trained 
(supervised) using the 
Ninapro database in a 
simulation study. ARAN 
was compared to the 
autoregressive moving 
average algorithm and the 
CNN algorithm. Accuracy 
96.31 %, 85.16 % and 
83.35 % respectively. 

Back pain 
n = 106, Mean age: 
18–50 years. 

Perceived disability 
and mobility 

Surface EMG effectively 
evaluated the golfer's 
lower back pain and the 
effect of rehabilitation. 

Abbreviations: Intervention (Int); Control (Ctrl); Brain-Computer Interface (BCI); Convolutional Neural Network (CNN); Fully Convolutional Network (FCN); 
Functional Electrical Stimulation (FES); Cardiac Rehabilitation CR; Electromyography (EMG); Inertial Measurement Units (IMUs); Inertial Normalcy Index (INI); 
Recurrent Neural Network (RNN); Support Vector Machine (SVM). 
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more complex data. However, complex data outputs can make it harder 
for users to understand and execute decisions [42]. One intervention, 
which incorporated a wearable sensor with telerehabilitation, reported 
improved care satisfaction and shorter consultations, reducing health-
care costs [44]. 

Limitations of wearables included the type of sensors available (and 
what can be measured) and how many can be worn without causing 
inconvenience, discomfort, and reduced battery life [40,41,46]. Other 
barriers included issues with connectivity [40], poor compliance with 
wearing the devices (often due to inconvenience or battery life prob-
lems) [40,41], and the technical inability to capture if an exercise is 
performed accurately [41]. 

4. Discussion 

Preserving independence is a critical goal of health systems as pop-
ulation's age. As the burden of disease and disability increases, reha-
bilitation services must innovate to improve access while optimising 
efficiency given limited resources [1–3]. Health technology, including 
AI systems, is one-way rehabilitative care can be advanced. However, it 

remains unclear what technology is clinically effective and what the 
barriers to implementation are. We undertook a systematic review of AI 
technologies supporting physical rehabilitation. Specifically, we 
searched for machine learning supported interventions tested in ‘real- 
life’ settings, which reported on their clinical effect. While novel de-
velopments were expansive, we found few high-quality evaluations 
measuring clinical impact. We conclude that the clinical evidence for AI 
technologies supporting physical rehabilitation remains inconclusive. 

AI-supported rehabilitation technologies were wide-ranging and 
added value in several ways. Firstly, AI solutions can interpret a greater 
volume and complexity of data than clinicians, which can help with 
pattern recognition, enhanced decision support and tailoring of care 
[12–14]. AI data analytics can also facilitate more objective assessments, 
improving the precision of patient evaluation - particularly over time 
[12–14]. Secondly, AI systems can enable autonomous remote moni-
toring, generating more insights on progress between visits and poten-
tially replacing the need for physical visits entirely. Finally, AI has 
greatly enhanced the capabilities of prosthetic devices. By including 
machine learning algorithms, intended muscular movements can be 
better predicted, thus improving prosthetic limb control [48]. While AI 

Table 3 
Included study characteristics (replaces function).  

Author, date, 
country 

Purpose of device AI role Algorithm details Target condition 
(s) and sample 
characteristics 

Outcome 
measures 

Results summary 

Kristoffersen, 
2021, 
Netherlands 

To restore limb 
function with a 
robotic prosthesis. 

Interpretation of EMG signals 
and communication of 
movement intention 

An artificial neural 
network was trained 
(supervised) on mini 
batches of participant 
EMG data using a mean 
squared error regression 
loss and the ADAM 
optimizer. A validation set 
was created using 10 % of 
the entire training data. 
Accuracy not reported. 

Limb absence 
Int n = 4, Age 
range: 52–59 
years. Ctrl n = 4, 
Age range: 39–74 
years. 

Functional use Use of serious game training 
achieved similar results to 
conventional training—no 
consistent improvements in 
EMG metrics or functional 
use were found in either 
group. 

Osborn, 2021, 
US 

To restore limb 
function with a 
robotic prosthesis. 

Interpretation of EMG signals 
and communication of 
movement intention 

Supervised linear 
discriminant analysis was 
trained by the participant 
selecting the desired 
prosthesis movement and 
attempting to perform it 
with the phantom hand 
while recording the 
myoelectric data. The 
myoelectric training data 
was stored for each 
desired movement class. 
Accuracy not reported. 

Limb absence 
n = 1, Age: 63 
years. 

Prosthesis 
control metrics, 
usage, 
perceived 
workload 

This work demonstrated the 
functional benefit of an 
anthropomorphic prosthetic 
limb. 

Tang, 2018, 
China 

A brain-actuated 
wheelchair and 
robotic arm for 
transportation. 

A real time target detection 
algorithm 

A pre-trained (supervised) 
neural network (YOLOv2) 
was used. A training 
database was built from 
the Common Objects in 
Context dataset and 
ImageNet. Accuracy not 
reported. 

Severe motor- 
disability 
Int n = 3, Age 
range: 33–55 
years. Ctrl n = 4, 
Age range: 25–30 
years. 

Navigational 
metrics, 
command 
performance 

The results proved that the 
system worked smartly and 
efficiently. 

Tombini, 2010, 
2012, Italy 

To restore limb 
function with a 
robotic prosthesis. 

Interpretation of 
Electroencephalography (EEG) 
and electroneurographic signals 
and communication of 
movement intention 

Participants' EEG data 
were collected while 
performing motor imagery 
tasks and classified using 
an SVM algorithm. 
Classification was then 
enhanced by executing the 
tasks with the prosthesis 
and analysing event- 
related brain waves for 
each motor command. 
Accuracy values are 
reported in graphical 
form. 

Limb absence 
n = 1, Age: 26 
years. 

Pain, movement 
recognition 

A clinical improvement in 
phantom limb pain was 
observed, and a progressive 
return to normal perception 
of hand motion was 
achieved. 

Abbreviations: Intervention (Int); Control (Ctrl); Electromyography (EMG); Electroencephalography (EEG) sensors; Support Vector Machine (SVM). 
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can augment and improve care in many ways, more work is needed to 
evaluate performance in real-world settings. 

Patients with stroke or back pain were the most frequently targeted 
end-users, likely due to the mobility-related issues associated with these 
conditions. Functional disability is often associated with other health- 
related problems, such as pain and poor psychological health [49]. 
Accordingly, traditional rehabilitation programmes tend to incorporate 
multiple components (e.g., exercise, education, psychological support). 
We identified only two studies that had developed a multi-dimensional 
intervention. Both provided exercise recommendations with educational 
material, one for back pain and one for knee osteoarthritis [21,22]. 
Otherwise, interventions predominantly focused on improving mobility 
alone. Future work should look at developing multi-component in-
terventions, which can better support self-management [50]. 

We included five RCTs in our study; the remaining used a pre-post 
study design, which ranks low in the evidence hierarchy [51]. Similar 
to another systematic review of machine learning tools in healthcare 
[17], we identified (and excluded) many studies that only explored 
validation metrics. Only testing the intervention in healthy subjects, 
using laboratory-controlled settings or simulated data, were additional 
exclusion reasons. Although it is essential to validate and optimise AI 
algorithms, developers must study the clinical effect in a real-world 
setting. Studies should also consider the clinical impact and imple-
mentation of interventions to advance the field. Developers can refer to 

the World Health Organization guidelines on evaluating digital health 
interventions. The guidelines emphasise studying the effects of new 
digital technologies in healthcare to identify whether there are advan-
tages over traditional care [52]. Further AI-related resources can also be 
found in a recent review of AI guidelines, covering topics in develop-
ment, evaluation and reporting [53]. 

Comprehensive implementation evaluations were not reported in 
our included studies, although barriers and enablers were discussed 
briefly in many articles. Improved accessibility to care, greater person-
alisation, and reduced costs (e.g., reducing manpower needs) were the 
most reported enablers. Technology literacy and accuracy or 
completeness of the data (to determine clinical effect) were the most 
frequent challenges associated with the interventions. Future studies 

Table 4 
Summary of hardware used by interventions organised by system type.  

System type Types of technology used 

App-based systems • App [20–23] 
Robotics to replace 

function 
• Motor cortex brain implant, functional electrical 
stimulation [24] 
• Longitudinal intrafascicular electrodes, 
Electroencephalography (EEG) sensors, robotic 
prosthesis [25] 
• Computer game, robotic prosthesis, Electromyography 
(EMG) sensors [26] 
• Robotic prosthesis, osteointegration implant, EMG 
sensors [27] 
• Wheelchair with a robotic arm (Mico, Kinova), Kinect 
[camera], lidar sensors, EEG sensors (Actichamp 
amplifier) [28] 

Robotics to restore 
function 

• EEG sensors, haptic knob robot [29] 
• Treadmill, robotic orthosis (Lokomat), Functional 
Electrical Stimulation (FES) sensors [30] 
• EMG sensors, robotic orthosis [31] 
• EMG sensors, robotic orthosis [32] 

Gaming systems • Virtual reality game, time of flight camera, infrared 
stereo camera, head mounted display [33] 
• Virtual reality game, Kinect [camera], 3D VISION stereo 
glasses, projector, 3D display card [34] 
• Computer game, TV screen, Kinect [camera], balance 
board (Nintendo Wii or Tyromotion Tymo therapy plate) 
[35] 
• Kinect [camera], drum kit [36] 
• Virtual reality game, balance board (Wii Fit), Kinect 
[camera] [37] 

Activity monitoring 
using wearables 

• Wearable Inertial Measurement Units (IMUs), android 
tablet, App and headphones (gait tracking) [38] 
• Computer guided rehab, Zebris motion range device 
(home exercise tracking) [39] 
• App and smartwatch (Huawei 2) [40] 
• App and smartwatch (LG W270) [41] 
• Wearable electrocardiogram and accelerometer 
(MUSEIC) (functional capacity assessment) [42] 
• Wearable inertial system (Opal) (gait analysis) [43] 
• Telemedicine platform, axis sensor, temperature, and 
volume sensor (home exercise tracking) [44] 
• App and step counter (MiBand 3) [45] 
• Wearable IMUs (gait analysis) [46] 
• EMG sensors (back pain monitoring) [47] 

Abbreviations: Electroencephalography (EEG); Electromyography (EMG); 
Functional Electrical Stimulation (FES); Inertial Measurement Units (IMUs). 

Table 5 
Clinical outcomes of included randomised controlled trials.  

Measurement category Measurement Between group 
difference 

Physical function and activity 
Ang et al. [29] n = 21 Motor function (FMMA) No difference (p value 

not reported) 
Sandal et al. [45] n = 461 Disability (RMDQ) 

Physical activity (SGPALS) 
In favour of 
intervention p = 0.01 
No difference (p value 
not reported) 

Theingwittayaporn et al. 
[22] n = 82 

Range of motion (assessed 
using goniometer) 
Physical activity (KOOS) 
Activities of daily living 
(KOOS) 
Functional activity score 
(KSS) 

No difference p =
0.371 
In favour of 
intervention p = 0.002 
In favour of 
intervention p = 0.002 
No difference p =
0.634 

Kristoffersen et al. [26] n 
= 8 

Functional use (SHAP and 
CRT) 

No difference (p value 
not reported)  

Pain 
Sandal et al. [45] n = 461 Average pain intensity 

0–10 (preceding week) 
Worst pain intensity 
(preceding week) 
Pain self-efficacy 
questionnaire score 

All in favour of 
intervention p = 0.001 

Theingwittayaporn et al. 
[22] n = 82 

Pain (KOOS) No difference p =
0.279 

Anan et al. [23] n = 21 Degree of pain 1–5 
Pain improvement 1–5 

All in favour of 
intervention p = 0.001  

HRQOL 
Sandal et al. [45] n = 461 Fear-avoidance (FABQ) 

Illness perception (BIPQ) 
Health-related quality of 
life (EQ5D) 
Global perceived effect 
scale 5–5 

No difference (p value 
not reported) 
In favour of 
intervention p < 0.001 
No difference (p value 
not reported) 
In favour of 
intervention p < 0.001 

Theingwittayaporn et al. 
[22] n = 82 

QOL (KOOS) 
Symptoms (KOOS) 
Objective knee score (KSS) 
Satisfaction score (KSS) 
Expectation score (KSS) 

In favour of 
intervention p = 0.009 
No difference p =
0.100 
No difference p =
0.657 
In favour of 
intervention p = 0.001 
In favour of 
intervention p = 0.005 

Abbreviations: Brief Illness Perception Questionnaire (BIPQ); Clothespin 
Relocation Test (CRT); Fear Avoidance Beliefs Questionnaire (FABQ); Fugl- 
Meyer Motor Assessment (FMMA); Knee injury and Osteoarthritis Outcome 
Score (KOOS); Knee Society Score (KSS); Roland-Morris Disability Questionnaire 
(RMDQ); Saltin-Grimby Physical Activity Level Scale (SGPALS); Southampton 
Hand Assessment Procedure (SHAP). 
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should adopt framework-driven evaluation to identify factors that may 
help or hinder interventions' implementation and effectiveness, such as 
the Consolidated Framework for Implementation Research [54]. The 
Guidelines and Checklist for the Reporting on Digital Health Imple-
mentations (ICHECK-DH) will also help to improve reporting of digital 
health implementation initiatives [55]. 

Novel technologies are frequently hampered by poor uptake and 
adoption [16]. In the included papers, age was a commonly reported 
factor influencing uptake. For example, many of our included studies 
noted that older adults might be less interested in or capable of using 
electronic systems due to the ‘technology divide’. Strategies to overcome 
the digital divide include identifying and designing interventions ac-
cording to specific user needs, supporting users through education and 
engagement of carers, training healthcare providers to reject the concept 
of digital ageism and enabling them to support older adult's technology 
use, and comprehensive implementation evaluations to identify barriers 
to use [56–58]. Other documented obstacles to rehabilitation uptake, 
such as technology access, gender, ethnicity, socioeconomic status, and 
social support, were not mentioned, despite associations with uptake 
and rehabilitation compliance [8]. To improve rehabilitation, common 
barriers to technology-enabled care must be overcome to avoid wors-
ening health inequalities. User-centred design methodologies are one 
way to identify and incorporate user needs. Participatory approaches (e. 
g. co-design), which involve end-users in the solution development 
process, are increasingly common in healthcare [59]. Studies have 
shown that interventions developed using a participatory approach 
improve the quality of care, outcomes, patient satisfaction, and cost 
[60]. In our study, we found no examples of participatory design ap-
proaches. To improve the acceptability and adoption of new in-
terventions, developers should consider using participatory design 
approaches. 

Our study has many strengths. With the help of an information 
specialist, we searched six databases providing a comprehensive over-
view of the different AI-supported physical rehabilitation applications 
evaluated in the rehab setting. We synthesised evidence on clinical ef-
ficacy and the barriers to using AI-supported physical rehabilitation to 
assess interventional impact. This review also highlights current 
knowledge and research gaps, guiding future investigations. However, 
our review may be limited by the diverse terminology used to describe 
AI. We tried to minimise the risk of missing relevant articles by 
expanding our list of search terms and working with an information 
specialist to develop the search strategy. In some papers, the technology 
was poorly described, we contacted authors in these instances, but the 
response rate was low; therefore, we may have excluded relevant papers. 
Finally, we also restricted our search to English only articles. Relevant 

non-English articles may have been missed. 

5. Conclusions 

AI-supported physical rehabilitation is a growing field that may 
improve services through greater accessibility, improved efficiency, and 
more tailored care. However, our review identified few high-quality 
evaluations of clinical impact. Future efforts should focus on assessing 
the impact of technologies in real-world settings and implementation 
experiences. 
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