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Perturbations in lipid and protein homeostasis induce endoplasmic reticulum (ER) stress in metabolic
dysfunction—associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver
disease. Lipotoxic and proteotoxic stress can activate the unfolded protein response (UPR) transducers:
inositol requiring enzymela, PKR-like ER kinase, and activating transcription factor 6a. Collectively,
these pathways induce expression of genes that encode functions to resolve the protein folding defect
and ER stress by increasing the protein folding capacity of the ER and degradation of misfolded pro-
teins. The ER is also intimately connected with lipid metabolism, including de novo ceramide synthesis,
phospholipid and cholesterol synthesis, and lipid droplet formation. Following their activation, the UPR
transducers also regulate lipogenic pathways in the liver. With persistent ER stress, cellular adaptation
fails, resulting in hepatocyte apoptosis, a pathological marker of liver disease. In addition to the ER
—nucleus signaling activated by the UPR, the ER can interact with other organelles via membrane
contact sites. Modulating intracellular communication between ER and endosomes, lipid droplets, and
mitochondria to restore ER homeostasis could have therapeutic efficacy in ameliorating liver disease.
Recent studies have also demonstrated that cells can convey ER stress by the release of extracellular
vesicles. This review discusses lipotoxic ER stress and the central role of the ER in communicating ER
stress to other intracellular organelles in MASLD pathogenesis. (Am J Pathol 2023, 193: 1887—1899;
https://doi.org/10.1016/j.ajpath.2023.08.007)

Metabolic dysfunction—associated steatotic liver disease, or
MASLD, earlier known as nonalcoholic fatty liver disease, is
the most common chronic liver disease worldwide with an
overall prevalence of 32.4%." In the background of consis-
tently rising obesity, MASLD affects up to 48% of the US
population and is the foremost cause of liver-related mortality
and morbidity." MASLD encompasses a clinico-pathological
spectrum that includes metabolic dysfunction—associated
fatty liver, a benign, nonprogressive macrovesicular accu-
mulation  of intracellular lipids and  metabolic
dysfunction—associated steatohepatitis (MASH), a more se-
vere and progressive condition with evidence of cell injury,
inflammation, hepatocyte degeneration, apoptosis, and
fibrosis. MASH has the potential to progress to cirrthosis, an
antecedent to end-stage liver disease and hepatocellular car-
cinoma.” The primary insult in MASLD is hepatic lip-
otoxicity that occurs when the hepatocyte’s capacity to

handle and export free fatty acids (FA) is exceeded either due
to an excessive free FA influx or de novo lipogenesis. Several
molecular mechanisms orchestrate lipotoxicity, including
endoplasmic reticulum (ER) and oxidative stress, autophagy,
inflammation, and lipoapoptosis.”’

The ER is an intracellular organelle whose role in protein
synthesis, folding, modification, and trafficking has been well
studied. It plays a vital role in synthesizing glycoproteins,
cholesterol, and phospholipids, while also maintaining cal-
cium homeostasis.*> When ER homeostasis is perturbed, ER
stress occurs, which has been implicated in various condi-
tions including inflammation, diabetes mellitus, atheroscle-
rosis, metabolic disorders, and cancers.’ ® Cellular stress also
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impacts other membranous organelles, including mitochon-
dria, endosomes, and lysosomes, which have functional
contacts with the ER, and in turn exert direct or indirect ef-
fects on the outcome of ER stress signaling.” In this article,
the authors offer succinct insights into the cellular processes
that underlie ER stress, with a particular emphasis on its role
in the evolution of MASLD/MASH. In addition, the global
landscape of organelle crosstalk and its mediators that show
promise as therapeutic targets has been reviewed.

ER Structure

The ER is an interconnected network largely made up of
three main structures: the nuclear envelope, the peripheral
ER consisting of smooth tubules and rough sheets, and the
cortical ER that abuts the plasma membrane. The nuclear
envelope is composed of two lipid bilayers, the inner and
outer nuclear membrane, which has numerous pores to
facilitate transport of RNAs and proteins. The outer mem-
brane of the nuclear envelope is continuous with the ER
membrane and connected to the sheets and cisternae of the
peripheral ER through their shared lumen. Sheets are flat
structures that have a stacked appearance due to the parallel
arrangement of the layers with consistent luminal spacing.
The curved regions in the membrane edges connect them to
one another.'” Rough ER sheets possess ribosomes on the
cytosolic surface, thus allowing them to partake in protein
synthesis and folding. Smooth ER tubules are dynamic
structures that are constantly remodeling and characterized
by scant ribosome attachment and binding. Cortical ER,
abutting the plasma membrane, is a combination of sheets
and tubules, and plays a role in calcium signaling.'’

The distinctions in the subcellular architecture of the ER
and the differences in the ratio of sheets to tubules across cell
types facilitate diverse cellular functions.'” For instance, cells
with high secretory demand such as B cells (antibody syn-
thesis and secretion) and pancreatic acinar cells (insulin
synthesis and secretion) have large amounts of stacked sheets
in the rough ER, whereas cells involved in lipid synthesis
such as hepatocytes and Leydig cells have more tubules in
their smooth ER. This difference in the ratio of sheets to
tubules has been identified because of different ER shaping
proteins, most prominent being the reticulon family of pro-
teins. In vivo studies have demonstrated that a change in ER
structure with respect to tubule formation can alter changes
in normal lipid metabolism leading to an increase in lipid
droplets (LDs) and triglyceride content, and an up-regulation
of enzymes involved in de novo lipogenesis. Primary hepa-
tocytes from obese mice models have shown that enriching
ER sheets and increasing the ER sheet to tubule ratio via ER-
shaping membrane proteins such as the 63-kDa cytoskeleton-
linking membrane protein (Climp-63) can decrease lipogen-
esis and glucose production.'” Thus, the spatial organization
of the ER provides functional flexibility and metabolic di-
versity to the cell.
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ER Function

Structural complexity and flexibility of subcellular compo-
nents aid in meeting the complex metabolic demands and
maximizing the metabolic efficiency of multicellular or-
ganisms. Numerous studies have extensively characterized
the subcellular architecture in relation to metabolic ho-
meostasis, revealing that the structural organization of
cellular components is a critical factor influencing their
respective functions.'”

A primary biosynthetic role of the ER is to ensure
cotranslational folding of nascent polypeptides, whether
they are secreted proteins, proteins intended for the plasma
membrane and other membranous organelles, or luminal
proteins within the ER, Golgi, and lysosomes. Translation
of these proteins begins in the cytosol, where the
ribosome—mRNA complex is formed. A topogenic signal
sequence in the nascent polypeptide is identified by the
signal  recognition  particle, or SRP."""7  The
ribosome—mRNA complex encounters the nascent
polypeptide—SRP complex, and the four-component com-
plex, composed of the ribosome, mRNA, nascent poly-
peptide, and SRP complex, is recruited to the ER membrane
where it docks on the SRP receptor.'® Translation continues
on the ER membrane. Depending on whether the protein is
directed to be an integral membrane protein or secreted,
translocation will pause embedding the nascent polypeptide
in the ER membrane, or will be transported completely into
the ER lumen, respectively. In the event of misfolded pro-
teins or aggregates, proteins either remain in the ER lumen
or enter ER-associated degradation. Thus, ER quality con-
trol mechanisms prevent the secretion of anomalous
proteins.'’

Apart from protein synthesis, the second biosynthetic
process integral to the ER membrane is lipid biogenesis,
reviewed elsewhere in detail.'® In hepatocytes, the smooth
ER is abundant and is a site for the synthesis of almost all
lipid classes. Most lipid synthesis enzymes are trans-
membrane proteins located in both the smooth and rough
ER membranes, with some pathways focused in subdomains
of the ER membrane, such as ER—organelle membrane
contact sites.'® Phospholipids are synthesized in the cytosol-
facing lipid bilayer of the ER membrane. Ceramides formed
in the ER are exported to the Golgi where they are further
enzymatically modified to generate glycosphingolipids and
sphingomyelin in the lumen-facing Golgi lipid bilayer.'” In
addition to phospholipid and sphingolipid synthesis,
cholesterol synthesis, triglyceride synthesis, and LD and
lipoprotein formation occur in the ER membrane.”’

The nuclear envelope is a double membrane structure,
and the outer nuclear membrane is continuous with the ER.
Due to this continuity, the nuclear envelope and the ER
share many proteins. Like the ER, the nuclear envelope is
also a site for lipid metabolism. Mutations in protein of the
nuclear envelope proteins may be pathogenic, resulting in
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multisystem disease, including lipodystrophies and suscep-
tibility to MASLD and MASH. These genetic links
demonstrate that lipid metabolism at the nuclear envelope.
and through their connections to chromatin, can affect lipid
metabolism gene programs.”’

Lastly, the ER plays a crucial rule in calcium homeostasis
by employing proteins that aid in pumping Ca>" from the
cytosol into the lumen against the electrochemical gradient,
storing Ca®" by way of sequestering using luminal binding
proteins and releasing Ca®" back into the cytosol via
channels along the electrochemical gradient. Calcium ho-
meostasis is maintained by the smooth ER Ca®" ATPase
(SERCA) transporters, which pump Ca®>" into the ER
lumen, and inositol 1,4,5-triphosphate (IP;) receptor
activation—mediated release of stored Ca*" from the ER
lumen into the cytosol.'' The aforementioned processes
underscore that the ER is integral to both cellular and
organismal lipid homeostasis.

The Unfolded Protein Response

In homeostatic conditions, several checks and balances are in
place to prevent an accumulation of misfolded proteins in the
ER.”” When cells accumulate unfolded and/or misfolded
proteins in the ER, they undergo ER stress. In response to this,
to maintain homeostasis, several compensatory mechanisms
occur including translation inhibition, increase in chaperones
and folding enzymes and degradation of the unfolded/mis-
folded proteins. Failure to recover from ER stress triggers cell
death. In mammals, these signaling pathways are mediated by
the three proximal UPR sensors: inositol requiring enzyme 1o
(IREla), protein kinase-like ER kinase (PERK), and acti-
vating transcription factor 6o (ATF6a). The UPR sensors are
inactive basally, and in this configuration, their luminal do-
mains are bound to the chaperone 78-kDa glucose-regulated
protein (GRP78)/binding immunoglobulin protein (BiP)
(Figure 1). Misfolded proteins can trigger activation of the
UPR sensors by binding to GRP78/BiP or direct interactions
with the UPR sensors.

There are three described models of stress sensing by
IREla. In the direct association model, it is postulated that
the misfolded proteins trigger conformational changes,
which result in stabilization of IREla. homodimers by
binding to the peptide binding pocket created in the luminal
domain of dimers, activating its kinase and endor-
ibonuclease activities.'””® In the competition model,
GRP78/BiP prevents IREla dimerization by binding the
IRE1a luminal domain.”* The dissociation of BiP from the
IRE1a luminal domain is facilitated by nucleotide exchange
factors.”> In the allosteric model, binding of misfolded
protein to the BiP substrate binding domain (SBD) causes
dissociation of the BiP ATPase domain from the IREla
luminal domain via a conformational change.”® IREla. un-
dergoes autophosphorylation, activating its RNase activity,
which then splices X-box binding protein 1 (XBP1) mRNA
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to generate sXBP1 mRNA, which encodes a soluble active
transcription factor (sXBP1). sXBP1 can transcriptionally
induce genes encoding ER chaperones and ER-associated
degradation proteins. Although both spliced and unspliced
forms of XBP1 can activate the UPR, the sXBP1 is a more
potent transcription factor.

PERK, like IREq, is a transmembrane protein, whose N-
terminal domain is bound by BiP. PERK dimerization and
autotransphosphorylation leads to the phosphorylation of the
eukaryotic translation initiation factor 2-o. (eIF2a).”’ eIF2a.
phosphorylation results in the global attenuation of protein
translation with selective translation of activation transcrip-
tion factor 4 mRNA (ATF4). ATF4 can thereafter up-regulate
the expression of C/EBP homologous protein (CHOP), a
proapoptotic transcription factor. In a negative feedback loop,
CHOP induces the expression of GADD34, which along with
protein phosphatase 1 (PP1) dephosphorylates elF2a, thus
allowing for translation to proceed.”®

The third UPR sensor, ATF6a, translocates from ER to
the Golgi apparatus, where it is cleaved sequentially by site-
1 protease and site-2 protease to generate an N-terminal
fragment (ATF6f) from the cytosolic domain that functions
as a transcription factor.”” Overall, these pathways work in
concert to restore proteostasis. If restoration of proteostasis
fails, sustained activation of the UPR results in apoptosis.
ER stress—induced apoptosis has been implicated to occur
via the transcription factor CHOP, the mitogen activated
protein kinase c-Jun N-terminal kinase (JNK), the death
receptor 5, Bcl-2 family proteins, calcium, redox homeo-
stasis, and caspase activation.>®

Lipotoxic ER Stress

Lipotoxicity is defined as a dysregulation of the lipid envi-
ronment and/or intracellular composition that leads to accu-
mulation or transient generation of toxic lipids, resulting in
cell injury or death, described in many cell types including
hepatocytes and pancreatic B-cells.”’ Lipotoxicity can be
induced by several toxic lipid species such as saturated fatty
acids (SFA) like palmitate, sphingolipids (C16:0 ceramide),
the phospholipid lysophosphatidylcholine (LPC), and free
cholesterol. By contrast, monosaturated free FAs, such as
oleate and palmitoleate, protect from SFA-induced toxicity.
Although excess palmitate can be incorporated into tri-
glycerides and phospholipids, it can also serve as a substrate
for ceramide synthesis and LPC formation. Ceramide C16
accumulation induced ER stress by causing a disturbance in
the Ca>" homeostasis, leading to cell death through PERK/
ATF4 and ATF6a arms of the UPR, leading to induction of
CHOP expression.”” ** Ceramides can promote inflamma-
tion in MASH because palmitate induces the release of
proinflammatory extracellular vesicles in an IREla/XBP1-
dependent manner via transcriptional activation of the de
novo ceramide synthesis pathway.”>>*® Through motifs in the
transmembrane domain, ATF6a can be activated by specific
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The three unfolded protein response transducers. Inositol-Requiring Enzyme 1o (IRE1c), PKR-Llike ER kinase (PERK), and activating transcription

factor 6o (ATF6a.) are the three endoplasmic reticulum (ER) stress sensors that trigger a transcriptional program termed the unfolded protein response (UPR).
GRP78/BiP is an ER chaperone that is associated with all three transducers and inhibits them under normal physiological conditions. When ER stress or
misfolded proteins accumulate, BiP dissociates and allow the initiation of downstream signaling. IRE1a pathway: ER stress induces IRE1a. homodimerization
and autophosphorylation, which triggers its RNase activity to splice XBP1. As a transcription factor, X-box binding proteins 1 (XBP1s) activates genes related
to the UPR, ERAD, and chaperones. PERK pathway: The activated PERK phosphorylates the alpha subunit of eIF2a, which attenuates protein translation to
reduce the burden of misfolded proteins. Phosphorylated eIF2 up-regulates ATF4, which increases proapoptotic CHOP and UPR genes. ATF6a. pathway: ATF6a. is
cleaved by site-1 and site-2 proteases (S1P and S2P) in the Golgi apparatus to produce ATF6N. ATF6N further initiates the transcription of its target UPR genes
in the nucleus. All these pathways collectively aim to improve the protein-folding capacity and decrease the protein-folding burden by shutting down
translation and degrading the ER-bound mRNAs. When this adaptive response fails, upregulated UPR signaling induces apoptosis. This figure was generated

using BioRender.com (Toronto, ON, Canada).

sphingolipids (Figure 2).”” In addition to the role of ceramides
in ER stress, whether nuclear phenotypes associated with
MAFLD or MASH nuclear LDs can be resolved by inhibition
of ceramide synthesis remains to be elucidated.

In addition to ER—lipid composition, membrane stiffness
also affects ER function.’® Sterol content is a determinant of
membrane fluidity and is normally maintained at low
amounts in the ER membrane.”” Abnormally increased
sterol and SFA concentrations stretch the membrane,
increasing its stiffness, triggering oligomerization of IREla
and PERK (Figure 2) and thus activating UPR."’ Exploring
how UPR transducers detect lipid accumulation in ER
membranes might elicit a physical basis of chronic lipotoxic
ER stress and reveal potentially druggable targets.

LPC is a phospholipid that is an important mediator of
lipotoxicity in MASH.*"** LPC is a primary lipid species
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of cell membrane bilayers, LD envelope monolayers, and
very low density lipoprotein (VLDL).*’ This toxic lipid is
synthesized either intracellularly by the action of phos-
pholipase A2 (PLA2) from phosphatidylcholine (PC) or
extracellularly by the action of plasma lecithin-cholesterol
acyltransferase. Thus, inhibition of PLA2 has shown to
decrease intracellular LPC and palmitate-induced
apoptosis.** PLA2 activation also depletes membrane PC
resulting in loss of hepatocyte membrane integrity, lip-
otoxic extracellular vesicle (EV) release, inflammation, and
apoptosis.”” Additionally, LPC induces ER stress via eIF20.
phosphorylation, increased CHOP expression, and JNK
activation leading to the induction of the BH3-only protein
PUMA (p53 upregulated modulator of apoptosis).
Increased PUMA results in Bax and caspase 3/7 activation
and thus apoptosis.***
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Intersection of the unfolded protein response transducers, lipotoxicity, and lipid metabolism. Inositol-requiring enzyme 1o (IREla), PKR-like ER

kinase (PERK), and activating transcription factor 6o (ATF6a) are implicated in lipotoxicity and regulation of lipid metabolism. The IRE12-XBP1 axis is
important in regulating several aspects of lipid homeostasis including very low density lipoprotein (VLDL) lipidation, lipolysis, and de novo lipogenesis.
Hyperactivation of IREle results in regulated IREla-dependent decay of RNA (RIDD), which degrades several mRNAs and microRNAs that regulate lipid
metabolism. S-nitrosylation of IREla can occur in obesity, leading to a reduction in IREla-mediated XBP1 processing. PERK pathway regulates SREBP
activation by inhibition of the translation of INSIG and also by ATF4 mediated effects on lipid synthesis pathways. ATF6a can inhibit SREBP activation and can
directly also activate phospholipid biosynthesis and fatty acid oxidation. This figure was generated using BioRender.com (Toronto, ON, Canada). LD, lipid

droplets; TAG, triacylglycerol.

Bidirectional Association between Lipotoxic
and Proteotoxic Stress

The ER functions in protein and lipid homeostasis, and
disruption in either process triggers ER stress. This could
be due to unfolded/misfolded protein accumulation detec-
ted by the luminal domain or lipid-induced activation of
UPR sensors, as discussed above. Additionally, SFA
accumulation-induced ER stress changes the integrity and
structure of the ER, leading to a downstream disturbance in
ER proteostasis.’® The bidirectionality between these two
stressors has also been evidenced by SFA-induced lip-
otoxic stress leading to the degradation of ER proteins,
which disrupts normal ER structure and function in a
Saccharomyces cerevisiae ER stress model, where the
gene OPI3 is deleted, inhibiting PC synthesis.”’ To
demonstrate that proteotoxicity can occur downstream of
lipotoxic stress, 4-phenylbutyric acid, on binding to ER
misfolded proteins, stabilized and rescued lipotoxic stress-
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induced UPR.” Studies have shown the possible existence
of a threshold, only beyond which one stressor could
trigger the occurrence of the other. In Caenorhabditis
elegans, ablation of mdt-15, a regulator of lipid biosyn-
thesis genes, activated both IREla and PERK independent
of proteotoxic stress, possibly due to the lower threshold of
lipotoxic stress. To understand and explore the bidirec-
tional role of lipotoxic and proteotoxic stress in hepato-
cytes in the background of MASLD, more studies are
necessary.

ER Stress Sensors and Lipid Homeostasis

Independent of their roles in ER stress, each UPR sensor
plays a role in regulating lipid metabolism. Although
these roles are independent of canonical ER stress
signaling, proteotoxic or lipotoxic activation of each
sensor is necessary for most of their functions in lipid
homeostasis.
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IRE1a. Pathway

Structurally, IREla is a transmembrane protein that pos-
sesses  serine/threonine kinase and endoribonuclease
(RNase) activity on the cytosolic domain.”' At homeostasis,
it remains inactive because it is bound by the ER chaperone
BiP. Yet once activated, functionally, IREla represses lipid
accumulation and maintains lipoprotein secretion, thereby
regulating lipid homeostasis. This has been studied in
hepatocyte-specific deletion of IREle, which increased
hepatic steatosis and expression of transcriptional genes and
enzymes involved in lipid metabolism."® Studies have also
demonstrated that IREla deletion impairs VLDL assembly
and secretion by reducing protein disulfide isomerase, an
enzyme that aids in delivery of lipids to the smooth ER
lumen, thus highlighting the role of IREla in attenuating
hepatic steatosis via repressed lipolysis and export of
VLDL."

Manipulating transcription downstream of IREla by
XPBI deletion in mice resulted in IREla hyperactivation,
which induced regulated IRE1-dependent decay of mRNA
(RIDD), reduced plasma triglycerides, cholesterol and de
novo hepatic lipogenesis by gene down-regulation (DGAT2,
SCD, and ACAAT).”° When nitric oxide synthase—mediated
nitrosylation of IRE1la. occurs, there is a resultant reduction
in XBP1-mediated splicing causing impaired glucose ho-
meostasis and decreased PPARo and deacetylase sirtuin
I—mediated FA oxidation and lipolysis.’'

Recent data suggest that IRE1a activation leads to release
of proinflammatory extracellular vesicles from hepato-
cytes.” This ties into the understanding that IRElo. acti-
vation promotes hepatic inflammation. Factors that
determine the fate of IREla. are Bax inhibitor 1 (BI-1), a
negative regulator of IREla activation, and the degree of
RIDD. BI-1 deletion accelerates MASH by hyperactivation
of IREla and subsequent XBP1 activation. Concomitantly,
IREla hyperactivation results in greater RIDD with acti-
vation of inflammasome, inflammation, and liver injury.5 2

PERK Pathway

The PERK pathway’s role in hepatic lipid metabolism is
well documented. Knockdown of PERK gene expression
significantly  inhibited palmitate-induced  apoptosis.’
Downstream of PERK, drug-induced elF2a phosphoryla-
tion resulted in increased steatosis via SREBP-1c and
SREBP-2 activation, likely due to decreased protein syn-
thesis of INSIG.™ Mice resistant to elF2o activation
showed exacerbation of LD coat proteins in response to
drug-induced ER stress.”* Overexpression of GADD34
compromises elF2a phosphorylation, resulting in protection
from high-fat diet—induced hepatic steatosis in mice.”
Deletion of the transcription factor ATF4 attenuated lipid
accumulation and suppressed expression of SCD1, SREBP-
lc, ACC, and FA synthase.S(’ Additionally, ATF4-activated
CHOP contributes to disruption of FA oxidation and
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lipoprotein secretion through C/EBPa suppression. CHOP
deletion showed reduced C/EBPa, PPARa, SREBP-1, and
PPARY coactivator 1a.”’

ATF6a. Pathway

There are several unique aspects to the intersection of lipid
metabolism and ATF6a. The activation of ATF6c shares
some of the machinery employed by SREBP, including
translocation to the Golgi and cleavage by site-1 protease
and site-2 protease. ATF6a can also interact with PPARa to
regulate FA oxidation. In keeping with these observations,
ATF6 knockout mice showed hepatic steatosis secondary to
increased SREBP-1c expression and blockage of FA f-
oxidation. Overexpression of active ATF6a up-regulates the
transcription of genes involved in PC biosynthesis, inde-
pendent of XBP1. Uniquely, ATF6a, is the only UPR
sensor that can be activated directly by two sphingolipid
species, dihydrosphingosine and dihydroceramide, acti-
vating a downstream transcriptional program. This activa-
tion is mediated by the transmembrane domain of ATF6a;
mutations in the transmembrane domain abolish
sphingolipid-induced activation while retaining
proteotoxicity-induced activation of ATF6qa. via its luminal
domain, and vice-versa. Proteotoxic activation of ATF6a.
led to predominant transcriptional up-regulation of chaper-
ones, whereas sphingolipid-induced activation of ATF6a
induced lipid metabolism genes, including ACOXI, LRPI,
and PPARA, reflecting nonspecific up-regulation of multiple
pathways that affect lipid homeostasis.”” The specificity of
activation of ATF6a by dihydro-species of sphingolipids
and activation of a distinct transcriptional signature suggest
that there may be an ATF6a-mediated lipo-stasis pathway
similar to the canonical proteostasis mediated by all of the
UPR sensors.

EVs as a Language of ER Stress

EVs are being studied intensely with growing interest in the
development of minimally invasive biomarkers for MASLD
diagnosis and prognostication. EVs are a heterogenous
group of membranous structures, which are released by
multiple cell types and have a diverse repertoire of bioactive
compounds and metabolites, including RNA, surface pro-
teins, and cytosolic constituents.”® EVs can be derived from
endosomal compartments where intraluminal vesicles of
multivesicular bodies are released upon multivesicular body
fusion with the plasma membrane. The resultant EVs are
termed exosomes. Alternatively, EVs released by direct
blebbing from the plasma membrane are termed micro-
vesicles.” The need for disease-specific EV biomarkers is
justified given the evidence from recent studies that
demonstrate an increase in circulating EVs in patients with
MASH, alcoholic liver disease, and cirrhosis.®* %> In an
earlier study, the authors demonstrated that plasma levels of
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hepatocyte-derived small and large EVs correlate with
steatosis in MASLD patients and steatosis and inflammation
in MASH patients with a decrease in levels following
MASLD resolution secondary to bariatric surgery.®’

Mechanistic studies demonstrated that lipotoxic hepato-
cytes release EVs that are proinflammatory by virtue of
signaling molecules such as damage-associated molecular
patterns and chemokines contained within the EVs. The
formation of EVs from palmitate-stimulated hepatocytes
was mediated by IRElo.”” Examination of the mechanism
of biogenesis of EVs in MASH demonstrated that lipotoxic
EVs, enriched in S1P, are released following the activation
of IREla leading to XBPIl-mediated transcriptional up-
regulation of de novo ceramide synthesis.’® At a patho-
physiological level, proinflammatory S1P-containing EVs
from hepatocytes mediate liver inflammation in MASH by
recruiting monocyte-derived macrophages into the liver.”-°
Others have demonstrated the release of misfolded proteins
and chaperones in EVs.°%% Thus, ER stress could be
communicated to the extracellular milieu by the release of
EVs.

EVs from other cell types can also communicate and
elicit stress or salutary responses in hepatocytes by regu-
lating ER function. EVs isolated from the supernatant of
LPS-stimulated macrophages can induce expression of in-
flammatory genes and ER stress in hepatocytes through the
PERK pathway. Additionally, treated hepatocytes exhibit
altered lipid metabolism, where de novo ceramide synthesis
enzyme serine palmitoyltransferase expression decreases,
whereas cholesterol synthesis gene expression increases.
However, the composition of these EVs that activate the
UPR when co-cultured with hepatocytes remains un-
known.”® Additionally, adipocyte-derived EVs have been
shown to induce hepatic steatosis due to their abundance in
resistin. Resistin, by inhibiting phosphorylation of 5’-aden-
osine monophosphate-activated protein kinase oo (pAMPKoa)
on Thr172, generates ER stress and ultimately contributes to
the development of MASLD/MASH.®’ Melatonin treatment
led to an increase in the transcription factor brain and
muscle Arnt-like protein-1, which can reduce cellular
resistin levels and content in EVs and has thus been
explored as a therapeutic modality as discussed in later
sections. Mesenchymal stem cells have therapeutic poten-
tial; one postulated mechanism is via mitigation of ER stress
in an ischemia reperfusion injury model.*®

EVs are a heterogenous population released from
different sites and under various cellular states, both of
which influence their physical and biological characteristics.
This and the inherent complexities of biological fluids in-
crease the difficulty of isolating EVs and identifying
candidate prognostic and diagnostic biomarkers. Further-
more, there are no standardized techniques for isolating
EVs; studies rely on a general consensus, but many varia-
tions in isolation methods exist.”” These variations
contribute to inconsistencies in the literature and pose a
challenge to biomedical applications. Nonetheless, it is
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important to identify the different populations of EVs to
better understand whether the EV number, cargo, or phys-
ical characteristics are altered in disease. Characterization of
EVs is limited to population-based assays, which hinders
the identification of relevant subpopulations. Although sin-
gle particle analysis of EV size and number is possible using
nanoparticle tracking analysis, quantitative analysis of EV
cargo on a single particle analysis remains an area for
growth. In summary, EVs are a heterogenous population
that contributes to health and disease with diagnostic,
prognostic, and therapeutic potential. However, there are
technological hindrances to identifying and isolating rele-
vant populations for their use. A greater understanding of
their origin and characteristics may help in overcoming
these difficulties.

ER—Mitochondria Contact Sites

ER membranes make contact with the mitochondria
(Figure 3); these contact sites are termed mitochondria-
associated membranes, or MAMs. MAMs are dynamic
protein bridges that tether the mitochondria to the ER and
integrate cellular processes that require an interfacing plat-
form for efficient execution. These processes include Ca*"
homeostasis, lipid metabolism, autophagy, NOD-like re-
ceptor protein 3 (NLRP3) inflammasome activation, and
apoptosis, all of which are relevant to the pathogenesis of
fatty liver.” Proteomics studies have identified greater than
1000 proteins in isolated MAM fractions, many of which
play structural roles. The ER proteins MOSPD2, ORPS,
ORP8, VAPB, and PDCDS8 are associated with MAMSs.
MOSPD?2 and VAPB interact with the mitochondrial protein
PTPIP51. Additionally, inositol 1,4,5-triphosphate receptors
(IP3R1s) in the ER membrane form a MAM by binding
VDACI1 and GRP75 harbored in the outer mitochondrial
membrane. These interactions facilitate lipid exchange and
Ca”" transport, respectively.”””" The UPR sensors IREla
and PERK are both present at MAMSs where they are linked
to canonical, noncanonical, and regulatory properties.
Deletion of tethering proteins can activate the UPR, for
example, mitofusin 2 (mfn2) represses PERK activation,
such that deletion of mfn2 leads to activation of PERK,
IRElc, and ATF6a.”” ER stress is communicated to mito-
chondria via MAMs, and this communication helps
ameliorate ER stress. Studies have shown that ER stress
causes mitochondria to relocate toward the perinuclear ER.
These mitochondria are different as they have an increased
transmembrane potential and calcium uptake resulting in
higher ATP production, reductive power, and oxygen con-
sumption. This increase in ATP is needed to buttress the
prosurvival ER stress transcriptional factors that lead to an
increase in chaperones. An increase in ER—mitochondrial
MAMs is reported in fatty liver and correlates with the
severity of hepatic steatosis and inflammation.””
Conversely, disruption of ER—mitochondrial MAMs is
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Tethering proteins at endoplasmic reticulum (ER) membrane contact sites with other organelles. Representative illustration of the membrane

contact sites (MCSs) of the ER with mitochondria, endosomes, and lipid droplet (LD). ER-Lipid droplet: Three proteins highlighted are Seipin, Sorting Nexin 14
(SNX14), and Rab18. ER-Mitochondria-Associated Membrane: ER membrane protein IP3R1 interacts with proteins on the mitochondrial membrane such as
VDAC1 for lipid transport and GRP75 for calcium transport. PTPI51 on the mitochondrial membrane interacts with MOSPD2, VAP-B, ORP, and PDC8 in the ER
membrane. ER-Endosomes: Annexin Al and its ligand S100A11 in the endosomal compartment interact with the phosphatase PTP1B for EGFR down-regulation.
ORP1L, STARD3, and STARD3NL in the endosomal compartment interacts with VAP-A on ER membranes to aid cholesterol transfer from ER to the endosomes.

This figure was generated using BioRender.com (Toronto, ON, Canada).

noted to be an early event in high-fat diet—fed mice.”* In
other models, NLRP3 activation, which is a prominent
feature of fatty liver, occurs at MAMs. Future functional
studies are necessary to determine how lipotoxic ER
stress—associated MAMs regulate cellular fate and
inflammation.

Lipid Droplets

LD are dynamic, ER-derived, regulatory organelles of lipid
homeostasis that are encircled by a phospholipid monolayer
peppered with an array of proteins, and a hydrophobic core
composed of neutral lipids such as triglycerides and sterol
esters.””’> This arrangement allows for the storage of lipids
at the core and their use for signaling pathways, membrane
biosynthesis, and energy while preventing lipotoxic dam-
age. Defects in either their formation or breakdown have
been shown to contribute to disease pathogenesis in obesity,
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fatty liver, diabetes, and atherosclerosis, among others.”®
Although in-depth mechanistic understanding of LD
biogenesis remains elusive, it has been established that
many of the constituents of LDs are formed in the ER
membrane from which LD budding occurs (Figure 3).”’
Several protein constituents of LD—ER contact sites have
been identified, including seipin, sorting nexin 14, and
Rab18.”* " Given this intimate structural and functional
relationship, it is not surprising that LDs are affected by ER
stress. ER stress leads to LD formation; indeed, when
IREla function is intact, LD formation is attenuated under
conditions of ER stress.”® Conversely, failure of LD for-
mation can lead to ER stress, and free FA esterification into
triglyceride and LD formation mitigate lipotoxic ER
stress.””

In addition to the cytoplasm, LDs have been observed in
the nucleus of various cell types including hepatocytes.”’
Nuclear LDs arise from Apo-B free ER luminal LDs, and
LDs increase in pathologic conditions including high fat diet

ajp.amjpathol.org m The American Journal of Pathology

Descargado para Anonymous User (n/a) en National Library of Health and Social Security de ClinicalKey.es por Elsevier en diciembre 11, 2023. Para
uso personal exclusivamente. No se permiten otros usos sin autorizacion. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.


http://ajp.amjpathol.org

Lipotoxic ER Stress

feeding. Liver-specific deletion of the nuclear envelope
proteins TorsinA and lamina-associated polypeptide 1
(LAP1) lead to impaired VLDL secretion, increased nuclear
LDs, and steatosis.®” Thus, these data suggest an interde-
pendence in VLDL biogenesis and nuclear LD formation,
such that increased flux in this pathway or accumulation of
VLDL precursors, both increase nuclear LDs. The physio-
logical function of nuclear LDs and their role in MASH
remain unknown. Several LD proteins determine MASH
progression.”” Mechanosensing by LDs plays a role in he-
patocyte function.®” It remains to be determined whether
nuclear LDs contribute to cellular injury in MASH or
represent a spillover phenomenon. Studies in yeast have
demonstrated a role for LDs in the clearance of misfolded
protein inclusion bodies by supplying a sterol-based
metabolite.*> In mammalian cells, LDs are involved in
proteasomal degradation, as demonstrated for ApoB100 and
3-hydroxy-3-methylglutrayl CoA reductase.*>*” LD and LD
proteins play a key role in fatty liver, reviewed in detail
elsewhere.®” Many of the susceptibility loci for fatty liver
also occur in LD proteins. Collectively, the findings from
these studies provide evidence that LDs play a crucial role
in mediating the interplay between lipotoxicity and proteo-
toxicity. As a result, they are likely to impact the outcome of
ER stress in the context of fatty liver.

ER—Endosome Contact Sites

The presence of ER—endosome contact sites contributes to
various aspects of endosomal function, including fission,
maturation, and the formation of late endosomes. These
contact sites become more abundant as late endosomes are
established.®® Perturbations of proteins that form endosomal
ER contact sites are associated with diseases, such as muta-
tions in Niemann-Pick type C protein 1 (NPC1), which
mediates cholesterol transport. Endosomal heterogeneity is
reflected in the several types of contacts formed and the
functions they serve. For example, annexin A1l and its ligand
S100A11 form ER—endosome membrane contact sites upon
epidermal growth factor receptor (EGFR) stimulation, facil-
itating the interaction with ER-localized phosphatase PTP1B,
which dephosphorylates EGFR on the endosomal mem-
brane.”” Annexin Al treatment improves injury and inflam-
mation in fatty liver without impacting steatosis.”’ It is
unknown whether annexin Al’s role as ER—endosome
contact site plays a role in MASLD progression in addition
to its role in inflammatory signaling. S100A1l is up-
regulated in MASH and may also perturb endosomal func-
tion.”" Cholesterol transfers from the ER to the endosomes
via formation of contacts between endosomal proteins such
as ORPIL, STARD3, and STARD3NL with the ER protein,
VAP-A.*® The ER membrane contact sites with LDs and
endosomes contribute to lipid transfer between the tethered
organelles; how these membrane contact sites participate in
lipotoxic ER stress is an opportunity for future studies.
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Therapeutic Opportunities

ER stress and the UPR cascade are implicated in multiple
liver pathologies, owing to which, therapeutic targets that
modulate these pathways have gained importance.”” Both
naturally occurring compounds and pharmaceutical agents
have been studied in the background of ER stress in
MASLD. A selection of the naturally occurring compounds
or supplements are discussed here. Vitamin C ameliorates
murine hepatic steatosis by way of down-regulation of
ATF6a, elF2a, HSPAS, and XBP1. Taurine suppresses ER
and oxidative stress via caspase 3 activation and inducing
apoptosis in diet-induced MASLD models. Curcumin has
been shown to reduce ER stress markers [BiP, PERK, IREI1,
TRAF2, tumor necrosis factor (TNF), IL1B, MAPKI14,
MAP3KS5, and CEBPB] in diabetic rat liver. Quercetin re-
solves ER stress, oxidative stress, and hepatotoxicity by
reducing IREloa and MAPKS levels in rat livers subjected to
lead. Berberine, a naturally occurring plant alkaloid found in
Coptis chinensis, has been studied in oriental medicine for
its glucose-lowering and LDL-lowering effects. In vitro
studies have shown the berberine-reversed ER
stress—activated lipogenesis via the ATF6/SREBP-1c
pathway. Additionally, it reduces protein aggregation, and
FA-induced lipid accumulation and tunicamycin-induced
triglyceride and collagen deposition, altogether reducing
hepatic inflammation, fibrosis, and lipid peroxides.”” Obe-
ticholic acid, an agonist of farnesoid X receptor, in
advanced clinical trials for MASH reduces ER stress, likely
via regulating lipid metabolism.”*

Several pharmaceutical agents, including empaglifiozin,
liraglutide, metformin, pioglitazone, and rapamycin, are
associated with a reduction in ER stress, likely indirectly
given their mechanisms of action are not direct components
of the ER stress response.”” Among the multiple small
molecule compounds that have been discovered, few have
been studied in the context of MASLD and warrant future
studies in this direction. 4u8C binds to the IREla endor-
ibonuclease domain and thereby inhibits the RIDD activity
and XBP-1 splicing.” In studies that explored the interplay
of stellate cells, neoplastic hepatocytes, and ER stress in mice
with fibrotic hepatocellular carcinoma, 4u8C reduced tumor
burden and collagen deposition by blocking IRE1a-induced
stellate cell activation.”® Additionally, 4u8C has also shown
to reduce carbon tetrachloride (CCl4)-induced liver injury
and fibrosis.”” A modulator of the PERK pathway, salubrinal
prevents elF2a dephosphorylation and improves HepG2 cell
viability in response to tunicamycin-induced ER stress.”®

Ursodeoxycholic acid (UDCA), a chemical chaperone
that promotes protein folding and its appropriate assembly is
US Food and Drug Administration—approved to treat pri-
mary biliary cholangitis.”” Additionally, tauroursodeox-
ycholic acid (TUDCA) reduces apoptosis and mitochondrial
depolarization, and enhances insulin sensitivity. A com-
pound with similar mechanism of action, 4-PBA is also
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approved for treatment of urea-cycle disorders. 4-PBA
lowers the elF2a phosphorylation and inhibits ER
stress—mediated apoptosis and hepatic inflammation, evi-
denced by a reduction in plasma TNFo and MPO levels.”
Outside of its protein folding ability, 4-PBA also increases
the secretion of mutant alpha 1 antitrypsin (AAT) protein,
allowing for its use in reduction of lung and liver injury in
AAT deficiency.'"”

These studies suggest that reducing the overall burden of
lipotoxic species leads to an improvement in ER
stress—induced deleterious signaling outcomes. Addition-
ally, therapies that improve ER proteostasis and optimize
ER lipo-stasis may serve to mitigate lipotoxicity. For
example, selective transmembrane-domain—mediated acti-
vation of ATF6a may serve to increase FA oxidation.
Finetuning IREla activation to avoid deleterious conse-
quences of hyperactive IREla may benefit steatosis. Inhi-
bition of de novo ceramide synthesis, which is activated
downstream of IREla in MASH, is efficacious in mouse
models, yet remains untested in humans. Exploiting the
PERK pathway by increasing ATF4 activation while
inhibiting CHOP activation may also be of benefit in lip-
otoxic diseases.

Summary and Conclusions

Obesity and insulin resistance have increased the rates of
MASLD at an epidemic scale, both in the United States and
worldwide. The interconnectedness of the ER to other
membranous organelles allows it to function as a stress-
sensing platform. Lipotoxic stress in fatty liver is sufficient
to activate the UPR sensors with downstream effects on
multiple membrane-defined organelles. This orchestra of
intracellular communication is incompletely understood,
and further experimental testing is needed to expand
mechanistic understanding and therapeutic opportunities of
the structure—function relationship under conditions of
lipotoxic ER stress.
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