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Postoperative atrial fibrillation (POAF) occurs in up to 20% to 55% of patients who
underwent cardiac surgery. Machine learning (ML) has been increasingly employed in
monitoring, screening, and identifying different cardiovascular clinical conditions. It
was proposed that ML may be a useful tool for predicting POAF after cardiac surgery.
An electronic database search was conducted on Medline, EMBASE, Cochrane, Google
Scholar, and ClinicalTrials.gov to identify primary studies that investigated the role of
ML in predicting POAF after cardiac surgery. A total of 5,955 citations were subjected
to title and abstract screening, and ultimately 5 studies were included. The reported
incidence of POAF ranged from 21.5% to 37.1%. The studied ML models included:
deep learning, decision trees, logistic regression, support vector machines, gradient
boosting decision tree, gradient-boosted machine, K-nearest neighbors, neural net-
work, and random forest models. The sensitivity of the reported ML models ranged
from 0.22 to 0.91, the specificity from 0.64 to 0.84, and the area under the receiver
operating characteristic curve from 0.67 to 0.94. Age, gender, left atrial diameter, glo-
merular filtration rate, and duration of mechanical ventilation were significant clinical
risk factors for POAF. Limited evidence suggest that machine learning models may
play a role in predicting atrial fibrillation after cardiac surgery because of their ability
to detect different patterns of correlations and the incorporation of several demo-
graphic and clinical variables. However, the heterogeneity of the included studies and
the lack of external validation are the most important limitations against the routine
incorporation of these models in routine practice. Artificial intelligence, cardiac sur-
gery, decision tree, deep learning, gradient-boosted machine, gradient boosting deci-
sion tree, k-nearest neighbors, logistic regression, machine learning, neural network,
postoperative atrial fibrillation, postoperative complications, random forest, risk
scores, scoping review, support vector machine. © 2023 Elsevier Inc. All rights
reserved. (Am J Cardiol 2023;209:66−75)

Keywords: machine learning, postoperative atrial fibrillation, cardiac surgery, artificial intelli-
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Postoperative atrial fibrillation (POAF) is the most com-
mon arrhythmic complication after cardiac surgery and can
be generally attributed to a combination of inflammatory
response, oxidative stress, autonomic imbalance, and struc-
tural-functional remodeling of the atrial muscle.1 Its peak
incidence occurs on the second postoperative day with a
reported average incidence rate of 35% among all cardiac
surgical procedures.2,3

In general, risk factors for developing POAF include
advanced age, obesity, the presence of co-morbidities (such
as chronic obstructive pulmonary disease, diabetes mellitus,
and arterial hypertension),4 the need for intraoperative
blood transfusion, surgery for valvular heart disease,5,6 and
the development of postoperative complications (such as
stroke, and infections).6

It was also reported that POAF may an independent pre-
dictor of several adverse outcomes in post-cardiac surgery
patients, including renal insufficiency, stroke, cognitive dys-
function, and both short and long-term mortality.2,7 In addi-
tion, POAF can be associated with prolonged hospital length
of stay and increased resource utilization.2 Despite advance-
ments in surgical and anesthetic techniques, the incidence of
POAF has not decreased significantly in the last decades,
and it is expected to increase given the increasingly aging
and poly-morbid patient population.8 Therefore, identifying

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amjcard.2023.09.079&domain=pdf
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patients with a high probability of developing POAF and ini-
tiating preventive treatments during the perioperative period
is critical for effective management.8,9

The mechanisms for developing new-onset AF after car-
diac surgery are very complex and multi-factorial.10 Never-
theless, multiple risk stratification models have been
introduced to predict POAF, including the FHS (Framing-
ham Heart Study), the ARIC (Atherosclerosis Risk in Com-
munities Study), and the Cohorts for Heart and Ageing
Research in Genomic Epidemiology- Atrial fibrillation
(CHARGE-AF) scores.11−13 These models employ easily
obtainable variables, such as age, ethnicity, height, weight,
blood pressure, smoking status, antihypertensive medica-
tion use, history of diabetes, and heart failure.14 Moreover,
structural cardiac abnormalities, such as atrial fibrosis and
atrial enlargement have also been used to predict the risk of
developing POAF.14

Several healthcare industries have been increasingly
applying machine learning (ML) for diagnosis, image inter-
pretation, treatment strategy, and outcome prediction.7 ML
algorithms, a subdiscipline of artificial intelligence, can
process complex inputs and identify subtle relations that
traditional statistical methods may miss.15 It is generally
divided into 3 main types: supervised, unsupervised and
reinforcement learning.15 During training, the former type
of learning requires labels, such as whether a POAF event
has occurred or not and as a result, the algorithm is given
both the input and output labels. Conversely, unsupervised
learning aims to find connections between the data without
the aid of labels, and as such, several techniques, including
clustering, have been described for this type of learning.
The concept of reward maximization is used in the latter
form of learning, where the ML algorithm takes on the role
of an agent that gets either positive or negative reinforce-
ment to aid it in the decision-making process.15

The aim of this scoping review is to consolidate the
available literature on the role of different ML models in
the prediction of POAF in patients who underwent cardiac
surgical procedures.
Methods

Search strategy and study selection

The Preferred Reporting Items for Systematic Reviews
and Meta-Analysis (PRISMA) were followed when con-
ducting this scoping review.16 Requests for access to the
extracted data or the data extraction template may be pro-
vided upon contact with the corresponding author. The fol-
lowing databases were electronically searched for primary
studies evaluating the use of ML in predicting POAF in
patients who underwent cardiac surgical procedures: Med-
line, EMBASE, Cochrane, ClinicalTrials.gov, and Google
Scholar (December 30, 2022). A combination of keywords,
“machine learning,” “artificial intelligence,” “cardiac sur-
gery,” and “postoperative atrial fibrillation,” were used in
the literature search. For consideration, articles had to be
written in English, be primary studies including adults at
least 18 years old, and present results for an ML model
used to predict POAF after cardiac surgery.
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Study outcomes

Outcomes of interest included specificity, sensitivity,
area under the receiver operating characteristic curve
(AUROC), and incidence of POAF.

Screening

Literature search results were uploaded to Covidence
review software (Covidence Systematic Review Software,
Veritas Health Innovation, Melbourne, Australia. http://
www.covidence.org).

Data extraction

The author, publication date, study design, prevalence of
POAF, initial study population demographics, and pertinent
results were among the data that were extracted. A table of
study characteristics was created to extract and compile all
the articles. Two independent blinded reviewers assessed
all of the studies’ quality using the Newcastle Ottawa Qual-
ity Assessment.
Results

Through the literature search, a total of 5,955 citations
underwent title and abstract screening by 2 blinded inde-
pendent reviewers (AES and AS), of which all conflicts
were resolved by a third reviewer (RC). Fourteen studies
were eligible for a full-text evaluation by 2 blinded inde-
pendent reviewers (AES and RC), and conflicts were
resolved by a third reviewer (AS). From that, 7 studies were
ultimately included for data extraction in this scoping
review (Figure 1).7,9,17−19 Five of the studies were retro-
spective, and 2 were prospective in design, compiling data
from a total of 26,703 patients who underwent cardiac
surgery.7,9,17−19 The mean age of the patients across all the
studies ranged from 50.4 to 65.8 years, and the proportion
of males across all studies ranged from 51.6% to
75.2%.7,9,17−19 The incidence of POAF across all the stud-
ies ranged from 21.5% to 37.1% across the studies.7,9,17−19

The studies within this scoping review varied in their
inclusion criteria and cardiac surgical procedures
(Table 17,9,17−21, Figure 2). The most common cardiac pro-
cedure included was coronary artery bypass grafting
(CABG). Other studies included patients who underwent
single valve surgery,7,9,17,18 multiple valve surgery,18 aortic
surgery,7,9,17−20 minimally invasive surgery,17 or a combi-
nation of these procedures. The diagnostic modalities used
to identify POAF across the studies were also diverse, with
3 studies relying on electrocardiogram (ECG) data,17,18,21

while the remaining 4 studies utilized clinical documenta-
tion, administrative data, or Holter monitoring.7,9,19,20

The ML algorithms utilized in the studies included deep
learning (DL),21 decision trees (DT),9 logistic regression
(LR) models,7,9,19 support vector machines (SVMs),7,9,18,20

gradient boosting DT (GBDT),7,17 gradient-boosted
machine (GBM),9 K-nearest neighbors (KNNs),9 neural
network (NN),20 and random forest (RF) models.9,20 These
ML algorithms used a range of patient characteristics such
as age, sex, body mass index, history of hypertension, dia-
betes, congestive heart failure, glomerular filtration rate,
ial Security de ClinicalKey.es por Elsevier en diciembre 05, 2023. Para 
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Figure 1. PRISMA diagram.
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left atrial diameter, previous myocardial infarction, and
chronic obstructive pulmonary disease to predict the proba-
bility of a POAF occurrence.7,9,17−19 Four studies also
incorporated intraoperative variables such as cardiopulmo-
nary bypass time and mechanical ventilation time as risk
predictors.7,18−20 Reported performance metrics, such as
sensitivity and specificity, varied across the studies and
ranged from 0.22 to 0.91 and 0.64 to 0.84, respectively;
Table 2.7,9,17−21 The area under the receiver operating char-
acteristic curve (AUC-ROC) values ranged from 0.67 to
0.94, and the overall accuracy of the ML algorithms ranged
from 67% to 72%.7,9,17−19 Study outcomes are summarized
in Table 3.7,9,17−21

The model that was produced by Hiraoka et al,17

was based on using a GBDT ML model to detect POAF
after a variety of cardiac surgical procedures using pulse
rate data output from an Apple watch with built-in
photoplethysmography. In this study, pulse rate was col-
lected from 79 patients who underwent cardiac surgery for
24 hours during hospitalization and continuously after dis-
charge for up to 14 days.17 Features of pulse data were com-
puted every minute up to 10 min of POAF diagnosis and
treated respectively as a single record for training.17 The
median of mean heart rate and SD up to the time of diagno-
sis were compared with baseline.17 The GBDT model was
trained on 59 patients and tested on 20 patients.17 Specific-
ity was measured at 0.838, sensitivity was measured at
0.909, and AUROC was measured at 0.942.17 The authors
found the main predictors contributing to AF diagnosis
(with GBDT) to be age and baseline changes in HR.17
Descargado para Anonymous User (n/a) en National Library of Health and Soc
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Another model, produced by He et al,18 used a SVM ML
model to predict POAF after cardiac surgery. Long-term
single-lead ECG was collected on 94 patients more than
24-H before surgery and more than 7 days after surgery.18

The model was trained in total on 38 patients and tested on
56 patients with optimal hyperparameters determined by
fivefold cross-validation and grid search.18 Two schemes
were adopted such that one included all patient data
(scheme A) while another included random patient data sets
to ensure data balance as far as possible (scheme B).18 In
scheme A, an accuracy of 0.66, a specificity of 0.74 and a
sensitivity of 0.22 were reported18 while in scheme B, an
accuracy of 0.67, a specificity of 0.78 and a sensitivity of
0.56 were reported.18 Two multivariate prediction models
were then adopted: one based solely on clinical patient
characteristics: age, sex, left atrial diameter, glomerular fil-
tration rate, and duration of mechanical ventilation (model
1), and another with these characteristics in addition to P-
wave ECG data (Pmax., Pstd, and PWd) (model 2).18 Models
1 and 2 reported an AUROC of 0.86 and 0.89, respectively,
suggesting that the model combining P-wave parameters
and clinical data performed better in predicting POAF.18

In their study, Tohyama et al21 reported the use of DL on
12-lead ECG data collected for 30 days before surgery to
predict POAF. A total of 27,563 patients were included in
this study and the DL model was trained, tuned, and inter-
nally validated in a ratio of 7:1:2, respectively.21 At 7 days
postoperatively, the model was found to achieve a sensitiv-
ity of 79.9%, specificity of 73.5%, positive predictive
value of 10.2%, and negative predictive value of 99.0%.21
ial Security de ClinicalKey.es por Elsevier en diciembre 05, 2023. Para 
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Table 1

Study Characteristics

Author Country Study design Machine learning

model(s)

Incidence

of POAF

Type of cardiac

surgery

Cross-validation Diagnostic

modality

Training

sample size

Validation

sample size

Test sample size

He et al.

202218
China Prospective support vector

machine (Two mod-

els: clinical model

or clinical + ECG

model)

31.00% single valve surgery

(n=41), multiple

valve surgery

(n=32), CABG

(n=7), AVR (n=21)

5-fold Single-led ECG and

clinical data

38 NA NA

Hiraoka

et al. 202217
Japan Prospective gradient boosting

decision tree

34.20% off-pump CABG

(n=18), valve sur-

gery (n=57), other

surgery (n=4), mini-

mally invasive sur-

gery (n=7)

Bayesian

Optimization with

cross-validation

Wearable device

(Apple Watch

Series 4)

59 NA 20

Karri

et al. 20219
Australia Retrospective Random forest

classifier, decision

tree classifier, logis-

tic regression, K

neighbours’ classi-

fier, support vector

machine, and gradi-

ent boosted

machine

21.50% CABG, valvular oper-

ation, revision pro-

cedures, and

indicators of cardiac

surgery such as car-

dioplegia or cardio-

pulmonary bypass

5-fold Multivariate

Characteristics

80% of

6040 = 4832

NA 20% of 6040 = 1208

Lu et al.

20237
China Retrospective Logistic Regression,

Gradient Boosting

Decision Tree, Sup-

port Vector

Machine

37.10% Valve and/or Coro-

nary Artery Bypass

Grafting Surgery

under Cardiopulmo-

nary Bypass (CPB)

10-fold Multivariate

Characteristics

70% of

1400 = 980

NA 30% of 1400 = 420

Magee

et al19
United

States

Retrospective Logistic Regression 21.50% CABG Hosmer-Lemeshow

x2

Multivariate

Characteristics

NA NA NA

Parise

et al20
Netherlands Retrospective multivariate adaptive

regression spline,

neural network,

random forest,

support vector

machine

10.66% CABG 10-fold Multivariate

Characteristics

296 patients

(75%)

NA 96 patients (25%)

Tohyama

et al21
Japan Retrospective deep learning 3.60% NA NA ECG 30786 ECG (70%) 8796 ECG (20%) NA
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Figure 2. Machine learning process of predicting postoperative atrial fibrillation.
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The C-statistic was reported to be 0.83, which can be com-
pared with a reference of 0.63 derived from a single net-
work (without ML) of clinical variables that included age
and sex only.21 The authors noted a high negative predictive
value of the model to underscore the potential for preopera-
tive ECG data analyzed with DL to be effective in screen-
ing and identifying high-risk patients with POAF who will
require appropriate ECG monitoring during the postopera-
tive period.21

The remaining 4 studies developed ML models based
exclusively on clinical data of multivariate patient char-
acteristics, either preoperatively, postoperatively, or a
combination of such factors. For example, Karri et al,9

generated multiple ML models using a RF classifier, DT
classifier, LR, KNN, SVM, and GBM to predict POAF
after cardiac surgery. These ML models were trained on
4,832 participants and tested on 1,208 participants, with
fivefold cross-validation.9 Performance was then com-
pared with the established gold standard scoring tool
known as the POAF score, which was reported in this
study, and consistently in literature, to have a specificity
of 0.65, a sensitivity of 0.60 and an AUROC of 0.63.9
Table 2

Study findings

Study ML Models

He et al.18 SVM (clinical +/- ECG)

Hiraoka et al.17 GBDT

Karri et al.9 RF, DT, LR, KNN, SVM, GBM

Lu et al.7 LR, GBDT, SVM 0

Magee et al.19 LR

Parise et al.20 MARS, NN, RF, SVM, DL

Tohyama et al.21 DL

Descargado para Anonymous User (n/a) en National Library of Health and Soc
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The best model in this study was the GBM, which per-
formed better than the POAF score (specificity 0.64, sen-
sitivity 0.73, AUROC 0.74).9 Notably, all ML models
performed superior (AUROC range from 0.67 to 0.74) to
the POAF score except for the DT classifier, which sub-
stantially underperformed (AUROC of 0.59).9 The
authors found age, other cardiac procedures, congestive
heart failure, and valvular disease to be among the largest
patient characteristics predictive for POAF.9

In another study, Lu et al,7 generated an LR, GBDT, and
SVM model that was trained on 980 participants and tested
on 420 participants with a 10-fold cross-validation. All
models performed similarly with a specificity range of 0.72
to 0.79, a sensitivity range of 0.60 to 0.68, and an AUROC
of 0.77 to 0.78.7 As the relative importance of predictors
showed by GBDT algorithm, the 6 most influential predic-
tive variables were left atrial diameter postoperative white
blood cell count count, advanced age, preoperative platelet
count, arrhythmia, and type of surgery.7

In their publication, researchers Magee et al19 produced
an LR model from perioperative risk factors for POAF after
CABG across 19,083 patients and compared the prediction
Specificity Sensitivity AUROC

0.74-0.78 0.22-0.56 0.86 − 0.89 (+ ECG)

0.838 0.909 0.942

0.64-0.83 0.36-0.73 0.67 − 0.74 (GBM)

.716-0.795 0.600-0.684 0.77− 0.78

NA NA 0.72

0.74-1 0.67-1 0.78− 0.95 (SVM)

0.735 0.799 0.83

ial Security de ClinicalKey.es por Elsevier en diciembre 05, 2023. Para 
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Table 3

General study conclusions

Study General Conclusion Risk factors for POAF

Tohyama et al. (2023)21 DL model is effective in screening for POAF in the

post-operative period.

Preoperative ECG changes

Parise et al. (2023)20 RF outperformed all other models in clinical

prediction of POAF following CABG.

Age, preoperative creatinine values, time of aortic

cross-clamping, body surface area (BSA), and

Logistic Euro-Score

Lu et al. (2022)7 SVM was the best predictor and may be an effective

tool for predicting POAF.

Increased left atrium diameter (LAD), postoperative

white blood cell count (WBC) and age

He at al. (2022)18 Clinical + ECG model and the ML model based on

P-wave parameters could predict POAF.

P wave parameters

Hiraoka et al (2022)17 Apple Watch could potentially detect AF with a ML

classifier during the recovery period after heart

surgery.

Age and baseline standard deviation (SD) of heart

rate

Magee et al. (2022)19 The model demonstrates acceptable accuracy and

concordance, good selectivity.

Age, the need for prolonged ventilation (24 hours or

more), the use of cardiopulmonary bypass and

preoperative arrhythmias.

Karri et al. (2021)9 ML can outperform clinical scoring tools. Age, coagulopathy, valvular disease, valve opera-

tions, renal failure, liver disease, other neurologi-

cal disorders and congestive heart failure

Miscellaneous/Machine Learning for Postoperative Atrial Fibrillation 71
model to the true outcomes of the disease. Prolonged venti-
lator use, pump status (on/off), and race were factors found
to be of significant consideration within the study (odds
ratio >1.50).19 To that end, a weighted variable algorithm
consisting of 14 readily obtainable clinical indicators was
created and demonstrated to be of strong prediction capabil-
ity for POAF after CABG (AUROC 0.72).19

Finally, Parise et al20 assessed the performance of ML
models based on multivariate characteristics in 394 patients
who underwent CABG surgery. Researchers trained and
tested 4 separate models (multivariate adaptive regression
spline [MARS], NN with 3 hidden layers, RF, and SVM) in
a 75:25 participant ratio.20 When analyzed within a confu-
sion matrix calculated at the threshold value of 0.50, the
authors reported the RF model to outperform all others in
the clinical prediction of POAF after CABG with observed
specificity, sensitivity, and accuracy of 0.81, 0.60, and 0.79,
respectively.20 All other models ranged from (0.60 to 0.70),
(0.57 to 0.70), and (0.58 to 0.69) within the same respective
categories.20 Furthermore, the MARS, NN, RF, and SVM,
reported a maximal AUROC of 0.87, 0.94, 0.78, and 0.95,
respectively.20 As noted, no single model achieved maxi-
mal ROC, sensitivity, and specificity together. Among all
multivariate characteristics, the RF model demonstrated
that age, preoperative creatinine values, time of aortic
cross-clamping, and body surface area, to be among the
greatest predictive factors (normalized contribution to
model greater than 40%).20
Discussion

Based on the available literature, ML models can poten-
tially predict POAF after cardiac surgery with promising
specificity, sensitivity, and AUROC scores. The mechanics
of ML require several crucial elements to operate fluidly
together. To effectively train an ML model, it is imperative
to provide sufficient and reliable data. Various forms of
monitoring, such as ECG, Holter monitoring, and wearable
devices, can also provide a source of very valuable data
Descargado para Anonymous User (n/a) en National Library of Health and Soc
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that can be input into these models.22 In order for ML algo-
rithms to function appropriately, it is imperative that the
data be preprocessed before it is utilized in the algorithms.23

This entails determining and eliminating outliers, dealing
with missing data, and scaling the data to guarantee that all
variables are considered equally.23 Numerous algorithms
are available, including supervised learning algorithms
(SVM, DT, or LR) and unsupervised learning techniques
such as clustering and dimensionality reduction to be
trained on the chosen diagnostic modality. The basic princi-
ples, advantages, and limitations of each of these models
are summarized in (Table 424−35).36

The algorithm depends on the diagnostic modalities’
respective data and the purpose of the model.37 While SVM
works by identifying the best hyperplane that separates dif-
ferent classes of data points,38 other models such as GBDT,
RF, DT, KNN, and GBM are ensemble algorithms that
combine multiple weak models to create a stronger predic-
tion model.39 Also, MARS, NN, and DL are nonparametric
regression algorithms that can capture nonlinear relations
between predictor variables and outcomes.39 The algorithm
receives input data and the related output during the train-
ing.37 After learning from the input-output pairings, the
algorithm modifies its internal parameters to minimize the
discrepancy between the predicted and actual output.37 The
algorithm is refined this way until it achieves acceptable
accuracy when it is prepared for testing. The test sets find-
ings are utilized to fine-tune the model and provide
improvements where they are required.40

In the study by Hiraoka et al,17 the AUROC curve shows
that their algorithm had a diagnostic accuracy of 0.9416
(Sensitivity 0.909 and Specificity 0.838 at the point closest
to the top left). Other publications showed that wearable
technology has good diagnostic accuracy for non-surgical
AF with an area under the ROC curve of ≥0.9.41−43 These,
however, are predicated on data sampling with a prese-
lected group of patients who have a history of AF and in a
constrained ideal setting (e.g., at rest or when data collec-
tion duration is only a few hours).
ial Security de ClinicalKey.es por Elsevier en diciembre 05, 2023. Para 
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Table 4

Benefits and Setbacks of ML models

ML Algorithm

Model

Description of Model Advantages Limitations

Logistic

regression

(LR)24,25

� Uses flow properties, such as con-

tinuous, discrete, or hybrid, prior

to linearly combining the inputs

by passing them through a logistic

function.
� Most widely used supervised ML

algorithm as it produces more

reliable results in large datasets.

� Associated with low variance.
� Offers probability for output.
� Simple to use, and training takes little

time.

� May be modified to multiclass classifica-

tion using a variety of applications but

cannot naturally categorize multi-class

data.
� Does not function well in the presence of

interconnected attributes
� In situations where there are too few

observations compared to features, logis-

tic regression may result in overfitting.
� Regression models need relevant and

biologically important independent pre-

dictor variables to be valid.
� Collinearity can cause errors or uncer-

tainty in estimating effects.
� Variables must have consistent associa-

tion magnitudes, and interactions

between predictors must be considered

for valid estimates.

K-nearest

neighbor

(KNN)26

� Simplest of the supervised ML

algorithms
� To apply the algorithm, attribute

vectors must be constructed.
� Next number of neighbourhoods

is specified by the k parameter,

which also determines the nearest

neighbor that each data input

should be assigned to.

� Simple to implement and comprehend

since it is free of assumptions.
� Heuristic in nature.
� Swiftly adapts to input changes while

being used in real-time.
� Could be easily utilized to solve multi-

class classification problems.

� The pace of the algorithm slows down

significantly as the amount of data

increases.
� As the number of variables rises, it gets

more challenging to obtain the desired

output.
� It is impacted by outliers and is unable to

handle missing numbers.
� The variable characteristics must all be

stated in the same scale for the system to

function effectively.

Naı̈ve Bayes (NB)27,28 � Implements the conditional inde-

pendence rule, which stipulates

that all properties are independent

variables and thus changes in

each variable would do not

impact others.
� Useful supervised ML algorithm

when classifying larger data sets.

� Very reliable findings are produced using

this relatively

quick and adaptable model.
� Highly suited for larger data sets.
� Training doesn’t require much of your

time.
� Reduces unnecessary specifications to

improve grading performance.

� To attain favourable results, large data

records are required.
� Compares poorly to the other classifiers

in terms of performance depending on

the type of problem.
� Conditional Independence assumption

may not always work due to feature

dependence, causing issues like zero-

probability and suboptimal binning with

Multinomial Naive Bayes.
� Imbalanced data may not be handled well

with Complement Naive Bayes.

Support vector

machine

(SVM)29,30

� A supervised ML algorithm that

is based on statistical learning

theory.
� Used prominently for the classifi-

cation of binary, multiclass or

non-linear data.
� The foundation of SVM is the

prediction of the decision func-

tion that can discriminate

between classes.

� Produces reliable findings despite the

lack of sufficient data.
� Particularly effective with unstructured

data.
� Uses a handy kernel solution function to

solve difficult problems.
� Is comparatively excellent at high dimen-

sional data scaling.

� Choosing the right kernel solution func-

tion is often challenging.
� When working with extensive data sets,

training takes a while.
� The model could be challenging to per-

ceive and comprehend due to issues

brought on by individual circumstances

and varied weights.
� The contribution of each variable to the

outcome varies because the variable

weights are not constant.
� SVM struggles with complex classifica-

tion problems.

Random

forest (RF)31,32
� Simple supervised ML algorithm

utilized for classification of data

and generation of decision trees

since it is not vulnerable to

overfitting.

� Because of the relationship between

training and testing data,

the likelihood of encountering a classifier

that does not

perform well is decreased.

� Visually challenging to comprehend and

interpret.
� Significantly more time-consuming and

difficult to build than decision trees.
� Computation-intensive and the algorithm

itself is less heuristic.

(continued)
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Table 4 (Continued)

ML Algorithm

Model

Description of Model Advantages Limitations

� When training this ML algorithm,

it produces many decision trees

from the subset of the problem

and estimates each tree.
� The most voted estimations are

used for classification.

� Extremely flexible with very high accu-

racy that is present even

when a large proportion of the data are

missing.
� Versatility in solving regression and clas-

sification problems.
� Handling both categorical and continu-

ous variables
� Automatic addressing of missing values,

no feature scaling requirement
� Efficient handling of non-linear

parameters
� Robust to outliers and noise
� Stable in handling new data without sig-

nificant impact on accuracy.

Extreme gradient

boosting

(XGBoost)33

� A scalable form of gradient

boosting which combines outputs

from trees to generate predictions.
� By building more trees, this

supervised ML algorithm reduces

the errors of the prior trees and as

such the model increases in reli-

ability as trees are added.

� When the data is clean, it can avoid

overfitting.
� Can deal with missing values.
� Enables for cross-validation at each itera-

tion of the process,

maximizing the number of iterations.

� More challenging to comprehend com-

pared to other linear algorithms.
� Data that is noisy could overfit.

Light gradient boosting

machine (LightGBM)34,35
� Another type of supervised, deci-

sion tree-based ML algorithm that

effectively implements aspects of

the gradient boosting framework.
� Main difference is that it grows

trees vertically instead of hori-

zontally as other ML models

would.

� Utilizes an optimization technique called

histogram-based split finding, which

accelerates the training process by divid-

ing continuous feature values into dis-

crete bins.
� Reduces memory use by switching con-

tinuous data to discrete bins.
� By using a leaf-wise tree growth strategy

instead of a level-wise split approach (the

primary element in getting greater accu-

racy), it creates far more complicated

trees.
� With a considerable reduction in training

time, it can perform just as well with

larger datasets as other gradient boosting

models

� Since it employs leaf-wise tree develop-

ment to build deeper, more intricate trees,

it can be more challenging to analyze and

comprehend.
� Prone to overfitting, especially in small

data sets
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Several artificial intelligence models are routinely used
in cardiac surgery to enhance patient outcomes and opti-
mize surgical techniques. Convolutional Neural Networks
(CNNs) are oftentimes used to evaluate diagnostic data to
detect patients at the highest risk of cardiovascular disease
or related risk factors.44 Similarly, recurrent NNs are fre-
quently used to assess physiological data, such as ECGs, to
detect aberrant cardiac rhythms.45 DL, a subset of ML, can
also to forecast results and identify patients vulnerable to
postoperative complications.46,47

For POAF detection, both conventional and DL ML
techniques have been employed.48 In studies comparing
ML and traditional risk scores for predicting POAF after
cardiac surgery, ML has been demonstrated to have several
advantages. First, conventional risk measures, such as
CHA2DS2-VASc score, are based on a few clinical criteria
and do not account for all the critical risk factors for
POAF.49 ML algorithms, on the other hand, can examine a
wide range of factors, such as patient characteristics,
Descargado para Anonymous User (n/a) en National Library of Health and Soc
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medical history, and laboratory data, to find patterns and
associations that might be predictive of POAF.20 Second,
traditional risk assessments need more flexibility, as they
may be unrevised after the release of new information.49

Third, ML algorithms may be able to handle missing data
more effectively because they do not rely on data distribu-
tion assumptions and can perform more sophisticated com-
putations. In addition to assisting in processing imaging or
electrocardiographic data, ML algorithms may also incor-
porate and understand vast amounts of clinical data and iso-
late novel clinical patterns and concepts.14,50 Finally, it is
also important to understand that clinical risk assessment
models for POAF assume that each of the risk factors iden-
tified by LR has a linear relation with the dependent vari-
able, POAF in this case.9 However, because of the
sensitivity of multicollinear independent variables in the
model, LR is unsuitable for analyzing various variables,
especially if the correlations between them are not linear in
nature.7
ial Security de ClinicalKey.es por Elsevier en diciembre 05, 2023. Para 
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Future Directions of Research

There are several domains that future studies should
focus to improve the performance of ML models in predict-
ing POAF. First, data from electronic health records should
be integrated in different ML algorithms to collect pertinent
clinical data for the prediction of POAF and for creating
quicker and more accurate management strategies. Second,
real-time monitoring of patients and the processing of con-
tinuous ECG data, collected using wearable or implantable
devices, can be effective in improving the diagnostic capa-
bility of ML models. Third, in addition to identifying indi-
viduals who are more likely to develop POAF, future ML
models may be implemented to personalize therapeutic
options, such as the use of antiarrhythmic and anticoagulant
therapies, and the detection or forecasting of POAF-related
complications such as stroke or mortality.

Limitations

The current review has several limitations. First, several
studies had a relatively small training and testing sample
size with lack of external validation. Second, there were
several methodological inconsistencies in some of the
included studies such as the limited-quality ECG signals or
the lack of continuous ECG monitoring which could poten-
tially have resulted in underestimation of the reported inci-
dence of POAF.7,18 Third, there was a degree of
heterogeneity in terms of defining POAF and the reported
period of patient monitoring. Finally, the multi-factorial
nature of POAF and its underlying complex mechanism
may make it challenging to create a “perfect” predictive
ML model with reliable performance that can be incorpo-
rated in routine practice.
Conclusions

Our findings suggest that ML may play a role in predict-
ing the development of atrial fibrillation after cardiac sur-
gery. ML modes may offer an advantage over conventional
risk scores because of their ability to analyze different cor-
relations and their potential for incorporating several demo-
graphic and clinical variables. Future ML models may also
be useful to predict complications related to POAF and tai-
lor management strategies to each patient’s clinical data
and risk profile. However, the methodologic heterogeneity
among the included studies and the lack of external valida-
tion mandate the need for future studies with adequate sam-
ple size that can be robust to overfitting.
Declaration of Competing Interest

The authors have no competing interests to declare.

Data Availability

All data is available upon request to the corresponding
author.

1. Rezaei Y, Peighambari MM, Naghshbandi S, Samiei N, Ghavidel AA,
Dehghani MR, Haghjoo M, Hosseini S. Postoperative atrial fibrillation
Descargado para Anonymous User (n/a) en National Library of Health and Soc
uso personal exclusivamente. No se permiten otros usos sin autorización
following cardiac surgery: from pathogenesis to potential therapies.
Am J Cardiovasc Drugs 2020;20:19–49.

2. Greenberg JW, Lancaster TS, Schuessler RB, Melby SJ. Postoperative
atrial fibrillation following cardiac surgery: a persistent complication.
Eur J Cardiothorac Surg 2017;52:665–672.

3. Yang H, Yuan C, Yang J, Xiang H, Lan W, Tang Y. A novel predic-
tive model for new-onset atrial fibrillation in patients after isolated car-
diac valve surgery. Front Cardiovasc Med 2022;9:949259.

4. Seo EJ, Hong J, Lee HJ, Son YJ. Perioperative risk factors for new-
onset postoperative atrial fibrillation after coronary artery bypass
grafting: a systematic review. BMC Cardiovasc Disord 2021;21:418.

5. Ishibashi H, Wakejima R, Asakawa A, Baba S, Nakashima Y, Seto K,
Kobayashi M, Okubo K. Postoperative atrial fibrillation in lung cancer
lobectomy-analysis of risk factors and prognosis. World J Surg
2020;44:3952–3959.

6. Auer J, Weber T, Berent R, Ng CK, Lamm G, Eber B. Risk factors of
postoperative atrial fibrillation after cardiac surgery. J Card Surg
2005;20:425–431.

7. Lu Y, Chen Q, Zhang H, Huang M, Yao Y, Ming Y, Yan M, Yu Y, Yu
L. Machine learning models of postoperative atrial fibrillation predic-
tion after cardiac surgery. J Cardiothorac Vasc Anesth 2023;37:360–
366.

8. Filardo G, Damiano RJ, Ailawadi G, Thourani VH, Pollock BD, Sass
DM, Phan TK, Nguyen H, da Graca B. Epidemiology of new-onset
atrial fibrillation following coronary artery bypass graft surgery. Heart
(Br Card Soc) 2018;104:985–992.

9. Karri R, Kawai A, Thong YJ, Ramson DM, Perry LA, Segal R, Smith
JA, Penny-Dimri JC. Machine learning outperforms existing clinical
scoring tools in the prediction of postoperative atrial fibrillation during
Intensive Care Unit admission after cardiac surgery. Heart Lung Circ
2021;30:1929–1937.

10. Gaudino M, Di Franco A, Rong LQ, Piccini J, Mack M. Postoperative
atrial fibrillation: from mechanisms to treatment. Eur Heart J
2023;44:1020–1039.

11. Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM,
D’Agostino RB, Newton-Cheh C, Yamamoto JF, Magnani JW, Tadros
TM, Kannel WB, Wang TJ, Ellinor PT, Wolf PA, Vasan RS, Benjamin
EJ. Development of a risk score for atrial fibrillation (Framingham
Heart Study): a community-based cohort study. Lancet 2009;373:739–
745.

12. Chamberlain AM, Agarwal SK, Folsom AR, Soliman EZ, Chambless
LE, Crow R, Ambrose M, Alonso A. A clinical risk score for
atrial fibrillation in a biracial prospective cohort (from the Atheroscle-
rosis Risk in Communities [ARIC] study). Am J Cardiol 2011;
107:85–91.

13. Alonso A, Krijthe BP, Aspelund T, Stepas KA, Pencina MJ, Moser
CB, Sinner MF, Sotoodehnia N, Fontes JD, Janssens AC, Kronmal
RA, Magnani JW, Witteman JC, Chamberlain AM, Lubitz SA, Schna-
bel RB, Agarwal SK, McManus DD, Ellinor PT, Larson MG, Burke
GL, Launer LJ, Hofman A, Levy D, Gottdiener JS, K€a€ab S, Couper D,
Harris TB, Soliman EZ, Stricker BH, Gudnason V, Heckbert SR, Ben-
jamin EJ. Simple risk model predicts incidence of atrial fibrillation in
a racially and geographically diverse population: the CHARGE-AF
consortium. J Am Heart Assoc 2013;2:e000102.

14. Tseng AS, Noseworthy PA. Prediction of atrial fibrillation using
machine learning: a review. Front Physiol 2021;12:752317.

15. Jovel J, Greiner R. An introduction to machine learning approaches for
biomedical research. Front Med (Lausanne) 2021;8:771607.

16. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mul-
row CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R,
Glanville J, Grimshaw JM, Hr�objartsson A, Lalu MM, Li T, Loder
EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA,
Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA
2020 statement: an updated guideline for reporting systematic reviews.
BMJ 2021;372:n71.

17. Hiraoka D, Inui T, Kawakami E, Oya M, Tsuji A, Honma K, Kawasaki
Y, Ozawa Y, Shiko Y, Ueda H, Kohno H, Matsuura K, Watanabe M,
Yakita Y, Matsumiya G. Diagnosis of atrial fibrillation using machine
learning with wearable devices after cardiac surgery: algorithm devel-
opment study. JMIR Form Res 2022;6:e35396.

18. He K, Liang W, Liu S, Bian L, Xu Y, Luo C, Li Y, Yue H, Yang C,
Wu Z. Long-term single-lead electrocardiogram monitoring to detect
new-onset postoperative atrial fibrillation in patients after cardiac sur-
gery. Front Cardiovasc Med 2022;9:1001883.
ial Security de ClinicalKey.es por Elsevier en diciembre 05, 2023. Para 
. Copyright ©2023. Elsevier Inc. Todos los derechos reservados.

http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0001
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0001
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0001
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0001
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0002
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0002
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0002
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0003
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0003
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0003
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0004
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0004
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0004
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0005
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0005
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0005
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0005
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0006
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0006
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0006
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0007
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0007
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0007
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0007
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0008
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0008
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0008
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0008
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0009
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0009
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0009
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0009
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0009
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0010
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0010
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0010
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0011
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0011
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0011
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0011
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0011
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0011
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0011
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0012
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0012
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0012
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0012
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0012
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0013
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0013
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0013
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0013
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0013
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0013
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0013
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0013
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0013
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0013
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0014
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0014
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0015
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0015
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0016
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0016
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0016
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0016
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0016
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0016
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0016
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0016
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0017
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0017
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0017
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0017
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0017
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0018
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0018
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0018
http://refhub.elsevier.com/S0002-9149(23)01075-5/sbref0018
www.ajconline.org


Miscellaneous/Machine Learning for Postoperative Atrial Fibrillation 75
19. Magee MJ, Herbert MA, Dewey TM, Edgerton JR, Ryan WH, Prince
S, Mack MJ. Atrial fibrillation after coronary artery bypass grafting
surgery: development of a predictive risk algorithm. Ann Thorac Surg
2007;83(5):1707–1712:discussion 1712.

20. Parise O, Parise G, Vaidyanathan A, Occhipinti M, Gharaviri A, Tetta
C, Bidar E, Maesen B, Maessen JG, La Meir M, Gelsomino S.
Machine learning to identify patients at risk of developing new-onset
atrial fibrillation after coronary artery bypass. J Cardiovasc Dev Dis
2023;10:82.

21. Tohyama T, Ide T, Ikeda M, Nagata T, Tagawa K, Hirose M,
Funakoshi K, Sakamoto K, Kishimoto J, Todaka K, Nakashima N,
Tsutsui H. Deep learning of ECG for the prediction of postopera-
tive atrial fibrillation. Circ Arrhythm Electrophysiol 2023;16:
e011579.

22. Bayoumy K, Gaber M, Elshafeey A, Mhaimeed O, Dineen EH,
Marvel FA, Martin SS, Muse ED, Turakhia MP, Tarakji KG,
Elshazly MB. Smart wearable devices in cardiovascular care:
where we are and how to move forward. Nat Rev Cardiol
2021;18:581–599.

23. Wei J, Chu X, Sun X, Xu K, Deng H, Chen J, Wei Z, Lei M. Machine
learning in materials science. InfoMat 2019;1:338–358.

24. Tolles J, Meurer WJ. Logistic regression: relating patient characteris-
tics to outcomes. JAMA 2016;316:533–534.

25. Tu JV. Advantages and disadvantages of using artificial neural net-
works versus logistic regression for predicting medical outcomes. J
Clin Epidemiol 1996;49:1225–1231.

26. Cunningham P, Delany SJ. k-Nearest Neighbour Classifiers - A Tuto-
rial. ACM Comput Surv 2022;54:1–25.

27. Wickramasinghe I, Kalutarage H. Naive Bayes: applications, varia-
tions and vulnerabilities: a review of literature with code snippets for
implementation. Soft Comput 2021;25:2277–2293.

28. Chen H, Hu S, Hua R, Zhao X. Improved naive Bayes classification
algorithm for traffic risk management. EURASIP J Adv Signal Process
2021;2021:30.

29. Auria L, Moro RA. Support vector machines (SVM) as a technique for
solvency analysis. SSRN. Available at: http://www.ssrn.com/
abstract=1424949. Accessed on May 19, 2023.

30. Pisner DA, Schnyer DM. Support vector machine. In: Mechelli A,
Vieira S, eds. Machine Learning: Mathods and Applications to Brain
Disorders. Amsterdam: Elsevier; 2020:101–121.

31. Statnikov A, Wang L, Aliferis CF. A comprehensive comparison of
random forests and support vector machines for microarray-based can-
cer classification. BMC Bioinformatics 2008;9:319.

32. Fawagreh K, Gaber MM, Elyan E. Random forests: from early devel-
opments to recent advancements. Syst Sci Control Eng 2014;2:602–
609.

33. Nielsen D. Tree boosting with XGBoost - why does XGBoost win
“every” machine learning competition? Available at: https://ntnuopen.
ntnu.no/ntnu-xmlui/handle/11250/2433761. Accessed on May 19,
2023.

34. Rufo DD, Debelee TG, Ibenthal A, Negera WG. Diagnosis of diabetes
mellitus using gradient boosting machine (LightGBM). Diagnostics
(Basel) 2021;11:1714.

35. Fan J, Ma X, Wu L, Zhang F, Yu X, Zeng W. Light Gradient Boosting
Machine: an efficient soft computing model for estimating daily refer-
ence evapotranspiration with local and external meteorological data.
Agric Water Manag 2019;225:105758.
Descargado para Anonymous User (n/a) en National Library of Health and Soc
uso personal exclusivamente. No se permiten otros usos sin autorización
36. Bkassiny M, Li Y, Jayaweera SK. A survey on machine-learning tech-
niques in cognitive radios. IEEE Commun Surv Tutorials 2013;15:
1136–1159.

37. El Naqa I, Murphy MJ. What is machine learning? In: El Naqa I, Li R,
Murphy MJ, eds. Machine Learning in Radiation Oncology. Cham:
Springer International Publishing; 2015:3–11.

38. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medi-
cine: a practical introduction. BMC Med Res Methodol 2019;19:64.

39. Che D, Liu Q, Rasheed K, Tao X. Decision tree and ensemble learning
algorithms with their applications in bioinformatics. In: Arabnia HR,
Tran QN, eds. Software Tools and Algorithms for Biological Systems.
New York: Springer; 2011:191–199.

40. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and
prospects. Science 2015;349:255–260.

41. Tison GH, Sanchez JM, Ballinger B, Singh A, Olgin JE, Pletcher MJ,
Vittinghoff E, Lee ES, Fan SM, Gladstone RA, Mikell C, Sohoni N,
Hsieh J, Marcus GM. Passive detection of atrial fibrillation using a
commercially available Smartwatch. JAMA Cardiol 2018;3:409–416.

42. Aschbacher K, Yilmaz D, Kerem Y, Crawford S, Benaron D, Liu J,
Eaton M, Tison GH, Olgin JE, Li Y, Marcus GM. Atrial fibrillation
detection from raw photoplethysmography waveforms: A deep learn-
ing application. Heart Rhythm 2020;1:3–9.

43. Harju J, Tarniceriu A, Parak J, Vehkaoja A, Yli-Hankala A, Korhonen
I. Monitoring of heart rate and inter-beat intervals with wrist plethys-
mography in patients with atrial fibrillation. Physiol Meas 2018;
39:065007.

44. Shirakawa T, Koyama Y, Shibata R, Fukui S, Tatsuoka M, Yoshitatsu
M, Toda K, Fukuda I, Sawa Y. Automated heart segmentation using a
convolutional neural network accelerates 3D model creation for car-
diac surgery. Eur Heart J Cardiovasc Imaging 2021;22(suppl 1).
jeaa356.353.

45. Chenga L, Tavakolia M. Neural-network-based heart motion predic-
tion for ultrasound-guided beating-heart surgery. IEEE. Available at:
https://ieeexplore.ieee.org/document/8843136/. Accessed on March
27, 2023.

46. Raghu VK, Moonsamy P, Sundt TM, Ong CS, Singh S, Cheng A, Hou
M, Denning L, Gleason TG, Aguirre AD, Lu MT. Deep learning to
predict mortality after cardiothoracic surgery using preoperative chest
radiographs. Ann Thorac Surg 2023;115:257–264.

47. Allou N, Allyn J, Provenchere S, Delmas B, Braunberger E, Oliver M,
De Brux JL, Ferdynus C, EpiCard investigators. Clinical utility of a
deep-learning mortality prediction model for cardiac surgery decision
making [published online February 2, 2023]. J Thorac Cardiovasc
Surg doi:10.1016/j.jtcvs.2023.01.022.

48. Denysyuk HV, Pinto RJ, Silva PM, Duarte RP, Marinho FA, Pimenta
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