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Drugging the microbiome and bacterial live
biotherapeutic consortium production
Christopher WJ McChalicher and John G Auniņš

Research leading to characterization, quantification, and
functional attribution of the microbes throughout the human
body has led to many drug-development programs. These
programs aim to manipulate a patient’s microbiome through the
addition of new strains or functions, the subtraction of
deleterious microbes, or the rebalancing of the existing
population through various drug modalities. Here, we present a
general overview of those modalities with a specific focus on
bacterial live biotherapeutic products (LBPs). The bacterial LBP
modality has unique concerns to ensure product quality, thus,
topics related to manufacturing, quality control, and regulation
are addressed.

Address
Seres Therapeutics Inc, 200 Sidney St, Cambridge, MA 02139, United
States

Corresponding author: John G Auniņš (jgaunins1@verizon.net)

Current Opinion in Biotechnology 2022, 78:102801

This review comes from a themed issue on Pharmaceutical
Biotechnology

Edited by Sarah Harcum and Robert Kiss

For complete overview of the section, please refer to the article
collection, “Pharmaceutical Biotechnology”

Available online 10th October 2022

https://doi.org/10.1016/j.copbio.2022.102801

0958-1669/© 2022 The Authors. Published by Elsevier Ltd. This is an
open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Use of human-commensal bacteria as a drug precedes
the modern discovery of bacteria, dating to medicinal
concepts more than 1000 years ago. Early in the 20th
century, immunologist Ilya Metchnikoff posited that
colonic florae influence mental capacity, establishing the
gut–brain-axis hypothesis. In the 1950s, Eiseman uti-
lized fecal microbial transplant (FMT) administered by
retention enema to treat antibiotic-associated diarrhea
[1]. Intense anaerobic microbiology development in the
1960s through 1980s yielded discovery of new gastro-
intestinal (GI) microbes, development of GI simulators,
and understanding of colonization resistance to patho-
gens. More recently, the Human Microbiome Project [2]

and the European MetaHit Project helped shape an
understanding of human health conditions driven by
imbalances in microbial diversity or relative abundances
(collectively ‘dysbiosis’). Parameterization of GI eco-
systems launched current investments into ‘drugging the
microbiome’ via myriad modalities targeting indications
ranging from bacterial gut infections (e.g. Clostridioides
difficile) to more distant interactions between the gut and
brain, skin, lung, heart, and metabolism [3•]. This article
reviews microbiome therapeutic modalities with a par-
ticular focus on bacterial live biotherapeutic products
(LBPs) and their manufacture.

Modalities for microbiome modulation
Classic pharmaceutical development typically values
disruptive technologies (e.g. stem cells) first as tools and
targets [4], and later as therapies only when sufficiently
derisked. This pattern is emerging for the microbiome.
Drugs can affect the GI microbiome and vice versa
[5–8]. Anti-infectives have been used to treat microbial
disease for generations, however, current knowledge
recognizes that broad-spectrum antibiotics can lead to
alteration of the microbiome that increases susceptibility
to pathogens [4,9], including colonization by drug-re-
sistant (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and Enterobacter spp) ‘ES-
KAPE’ pathogens [10] or by promoting inflammatory
diseases [11]. Narrow-spectrum antibiotics may spare the
microbiome, targeting specific pathogens [12], but fea-
sibility is challenged in development and clinical de-
ployment.

Antibiotics may modulate microbiome constituents [13],
but are inherently subtractive and therefore cannot di-
rectly provide absent microbes and their associated un-
ique functions. To provide multiple novel beneficial
activities, and to displace deleterious microbes and their
activities, modification of the microbiome via introduc-
tion of new bacteria is a rational drug- development
approach. Probiotics contain dietary microbes that are
typically low abundance and transient in the GI tract
versus true commensal organisms [14]. In clinical stu-
dies, probiotics hinder post-antibiotic microbiome re-
storation [15•] and can have adverse consequences in
sick patients [16]. Regulated as over-the-counter nutri-
tional supplements and not as pharmaceuticals, probio-
tics can have inadequate safety and quality oversight
[17,18]. Additional modalities beyond anti-infectives and
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probiotics are likely required to produce meaningful
patient benefit.

The LBP portfolio contains multiple approaches ranging
from FMT to fermented organisms. Several FMT pro-
ducts are in development. Despite perceptions that
these crude preparations are effective [19], they contain
and transmit many uncharacterized elements beyond
bacteria [20–27] as recognized by U.S. Food and Drug
Administration (FDA) safety alerts on the observed
transmission of toxigenic E. coli [28]. Many FMT pro-
ducts have been explored in uncontrolled production
and clinical trial settings with attendant limitations.
Where rigorous controlled trials have been performed,
efficacy with FMT is ambiguous [29••].

Fermented commensal and recombinant organisms are
under development as LBPs [30], with compositions
ranging from single to multiple organisms. For specific,
single-activity targets such as host-enzyme deficiencies,
single-organism LBPs may be effective [31]. For com-
plex diseases such as inflammatory bowel disease, the
heterogeneity of GI species found in patients opposes
the single ‘silver bullet’ microbe hypothesis: in large
datasets, no single species was found common across all
subjects [2]. Certain commensal or recombinant mi-
crobes could provide specific activities for rare diseases
[32], however, one challenge to these products is sus-
tained delivery of the target activity in amounts required
to achieve clinical effect. Failure modes may include
insufficient specific activity, or lack of compatibility with
the patients’ existing microbiomes. Consortia of several
microbes may be designed as a drug to provide multiple
functions to address complex diseases, to ensure broad
compatibility, to provide diverse redundancy, or to serve
as an ecological scaffold sufficient to disrupt a dysbiotic
microbiome. Microbial consortia products adopting these
various strategies are in mid- to late-stage clinical de-
velopment, with significant proof-of-concept for treating
infectious diseases [33•,34].

Microbes as regulated LBPs have a decades-long pre-
cedent as live attenuated bacterial vaccines protecting
against diseases caused by Salmonella typhi, Vibrio cho-
lerae, and Mycobacterium tuberculosis (Bacille Calmette-
Guérin). Accordingly, development of single-organism
LBPs is well-established, except for the microbial phe-
notypes in the human GI microbiome. The remainder of
this review will focus on these organisms and production
of associated consortia products.

Donor-derived versus designed consortia live
biotherapeutic products
Donor-derived LBPs rely upon donor materials (e.g.
stool samples) as the source for the formulated microbes.
Designed LBPs rely upon cultivated microbes as the

active ingredient. The current candidates in late-phase
clinical development rely upon the donor-derived
model. This method of drug manufacture provides for a
ready-made mixture of human-commensal microbes that
require no upstream processing. As with blood- and
tissue-derived products, a multitier control strategy is
minimally necessary to ensure patient safety. Donor
health screening, donation management, and final pro-
duct testing must be components of the control strategy,
but may be insufficient, as demonstrated by U.S. Food
and Drug Administration (FDA) alerts related to the
transmission of infectious diseases associated with
minimally purified FMT [28]. A separate class of donor-
derived products incorporates further purification
methods targeting latent pathogen inactivation as an
additional control for product safety [35].

In one strategy, designed LBP consortia provide a re-
ductionist set of bacteria intending to shift a microbiome
composition [36]. Multiple design principles are utilized
to define component bacteria during discovery and de-
velopment of these products. Understanding keystone
species of health or disease as a structuring concept is
one method [37]. Other methods include incorporation
of specific functions for the target clinical indication
[38,39•], or catalyzing a community shift that enables
colonization resistance [40]. Consortia complexity is
limited by many technical aspects that are the reality of
Current Good Manufacturing Practices (cGMP) manu-
facturing, including production, quality control, drug
formulation, and product stability.

Manufacturing of designed consortia live
biotherapeutic products
The manufacture of LBP consortia requires unique
consideration across disciplines, including upstream and
downstream bioprocessing, formulation development,
quality control and analytical development, facility or-
ganization and operation, and the emerging regulatory
landscape. A generalized block-flow diagram for LBPs is
presented in Figure 1.

Upstream bioprocessing
Unlike typical Lactobacillus and Bifidobacter probiotics or
common biotechnology industry microbes, the diversity
of microbes, which may be considered for LBPs, is ex-
pansive [2], and many of interest are strict anaerobes.
These species often lack aerotolerance, dying rapidly
upon exposure to oxygen. When preparing cell banks,
the unique physiology of human-commensal bacteria
provides specific challenges for cryopreservation [41].
Many commensal taxa have fastidious nutritional re-
quirements and have been considered difficult to culti-
vate. Historical laboratory cultivation relies upon
medium components that are unrecognizable to Current
Good Manufacturing Practices (cGMP) expectations, for
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example, sheep blood, bovine brain/heart infusion, or
rumen fluid. Development of enhanced cultivation
techniques and media formulations to manufacture LBP
strains requires a combination of new microbiological
methods and machine-learning techniques [42–46]. In
some cases, cocultivation of two or more bacteria may
enable symbiotic cultivation of a desirable fastidious
microbe. However, depending on the precision required
for drug manufacture, the dynamics of mixed fermen-
tations may be difficult to control. For example, simply
the branching and degree of polymerization of poly-
saccharides influence the cultivation dynamics of con-
sortia [47].

Bioprocessing will also encounter a familiar strategic
decision: durable versus single-use equipment.
Among the typical considerations, the arithmetic for
bacterial LBPs is driven by the short cycle time of the
bacterial processes. Table 1 presents additional unique
considerations.

Downstream bioprocessing
The downstream purification operations for LBPs gen-
erally focus on concentration of harvested fermentation
broth, and washing into a stability-promoting buffer. A
major challenge for LBPs is preservation of viability
through processing, storage, and drug delivery. While
buffer-exchange operations such as centrifugation and
tangential flow filtration are well-known and generally
robust for bacteria, application of these methods within a
pharmaceutical manufacturing environment for a variety
of anaerobic bacteria requires consideration of the
oxygen exposures during processing to preserve viabi-
lity and decontamination between strains. Refrigerated
storage and dehydration is often required, which is
usually accomplished via lyophilization or spray-drying,
both established technologies [48].

Formulation
Formulations of bacterial LBPs must achieve the fol-
lowing goals: preserve the viability of the composition

Figure 1
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Generalized block-flow diagram for LBP manufacture and distribution. Upstream operations, including cell-line isolation and banking and fermentation
to expand the bacterial culture(s). Downstream operations include harvest and concentration of the cultivated cells, buffer exchange to remove spent
fermentation broth, and formulation to preserve cell viability. Drying and blending operations may be necessary before filling, depending on the target
product. Release testing ensures final adherence to product-quality attribute specifications. Warehousing, transport, and storage before patient
delivery is informed by product stability and may require significant control of environmental conditions to preserve viability.

Table 1

Unique considerations for the evaluation of durable versus single-use technology (SUT) for bacterial LBPs.

Consideration Durable equipment SUT

Fast turnover of bacterial
processing

Increased time spent per year on cleaning and
sterilization cycles

Increased consumable costs per year, and increased
supply-chain risks due to high utilization rate

Multiplicity of strains for
consortia products

Increased cleaning and sterilization validation,
including with spore-forming microorganisms.

Increased assurance against contamination. Increased
flexibility for process permutations

Heat and mass transfer of
bacterial fermentations

Easily designed for sufficient transfer Larger fermentation scales may suffer from slow heat
transfer, especially during temperature induction
Anaerobic bacteria usually have far lower heat and mass
transfer requirements.

Oxygen sensitivity Easily designed to prevent oxygen ingress Oxygen-barrier properties and degassing strategies key
to maintain viability
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throughout the intended shelf life, enable potent de-
livery of the drug to target, and limit risks associated
with biological outgrowth of either the product or bio-
burden.

Oral formulations consisting of encapsulated dried
bacteria blends have been investigated, including for
strict anaerobic bacteria [49•,50]. Oral dosing for the
upper alimentary canal must achieve fast disintegration
and dissolution to promote distribution. Conversely,
lower intestinal delivery via oral administration re-
quires protection against the acidic environment of the
stomach and consideration of the oxygen gradient
along the gastrointestinal tract. In the case of live oral
bacterial vaccines, this is achieved using sodium bi-
carbonate to temporarily neutralize stomach acid [51].
Other approaches may include the use of capsules that
contain intrinsic delayed release properties, tablets or
capsules that are coated with polymers providing en-
teric protection, or microencapsulated particles [52].
The oral dosing of bacterial spores is facilitated by the
natural resistance of spores to gastric stress [35]. Pe-
diatric formulations may present different challenges
owing to physiological differences in child digestive
tracts, and in the strong preference for oral solutions/
suspensions [53].

Nonoral formulation and administration methods continue
to emerge and are described for GI, dermatological
[54–56], vaginal [57,58], or nasal [59,60] delivery. Figure 2
shows additional routes of administration and drug for-
mulations that have been considered for bacterial
LBP development.

Formulations, in combination with drug packaging, must
stabilize the live bacterial components to preserve via-
bility throughout storage and dosing. Preservatives and
physical conditions (e.g. low water activity) typically
used in drug formulation for the purposes of microbial
control may be counterproductive for the successful
preservation of bacterial LBPs. Bacterial spores have
emerged as a product form that facilitates both dosing
and stability [35] owing to their resistance to various
environmental stresses encountered during storage, for
example, thermal, osmotic, and oxidative stress. Con-
trolled freezing and drying by lyophilization is a method
of bacterial preservation known for over one hundred
years, and is supplemented with new technologies, for
example, using polymeric film entrapment [61].

Quality control
Assays to define the safety, identity, strength, purity, and
pharmaceutical-quality elements ('SISPQ') of LBP pre-
parations require new interpretations and im-
plementation.

Safety and identity are interlinked. Each strain’s full
genome and plasmids should be assessed for suitability,
including presence of (pro)phage, antibiotic-resistance
genes, especially those on mobile elements, and toxin
genes [62–64]. Phenotypic assessments for toxin pro-
duction may be warranted. For human-commensal
strains, preclinical toxicology studies in animals have
limited applicability due to poor competition of human
commensals against an established host-adapted micro-
biome [65].

Figure 2
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Target microbiomes, routes of dose administration, and types of drug formulations that may be considered for bacterial LBPs.
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Dose strength can be measured via viability assays on
solid or in liquid media, or by flow cytometry with a
properly demonstrated viability stain [66]. Multiple
forms of a strain (e.g. both spore and vegetative) may
each require quantification to ensure reliable dosing.
Mixtures of bacteria likely require enumeration of each
strain to further ensure consistent dose strength and
enable tracking of per-strain stability. Assessments of
potency based on mechanisms of action may be appro-
priate and especially straightforward for LBPs containing
organisms providing a specific activity.

Microbiological purity is a significant concern for LBPs.
Established modalities have guidance for acceptable levels
of general bioburden and specific organisms of concern
[67,68], but existing guidance is incomplete owing to the
live-product microbes that complicate detection. The var-
ious formulations and delivery methods outlined in Figure
2 have inherently different risk profiles ranging from low-
risk nonaqueous oral dosages to higher-risk ophthalmic
solutions and injectables. Consortia LBPs made from
axenic fermentations of fastidious organisms have the po-
tential for (cross-)contamination, and therefore mitigation
strategies are essential for shared equipment, par-
allel workstreams, and multiproduct facilities. Classical
media prescribed for bioburden testing [69–71] may not be
useful for product testing due to nonselectivity and ob-
scuring of nonproduct bioburden content. Viability-based
bioburden measurements will need to be carefully devel-
oped for selectivity toward potential contaminants lever-
aging attributes that do not overlap with the intended
product strains. Additional methods may be necessary,
which specifically detect high-risk strains or high-risk
functionalities via, for example, nucleic acid amplification.
These methods may be applied to other strains manu-
factured within a multiproduct facility or microbes ob-
served during environmental monitoring. Species
presenting a risk to the intended patient population may
require additional consideration. In one case, a suppression
technique involving phage lysin specifically active toward a
product strain was demonstrated to enable counter-
selectivity and therefore detection of low-level nonproduct
contaminants [72].

Application of emerging technologies can suffer from a
lack of well-considered controls to ensure consistent
performance. A review of various microbiome-profiling
methods [73•] highlighted the effects of technical
sources of variability on the quantification of microbial
profiles and therefore on the importance of controls. The
2019 National Institute for Standards and Technology
(NIST) Workshop on Standards for Microbiome Mea-
surements focused on measurement-assurance tools for
next-generation sequencing and viability methods and
has led to ongoing collaborative work in the field. Con-
trols for flow-cytometry technology have also been re-
ported to address technical variation [74•].

Regulatory landscape
The regulatory landscape for bacterial LBPs is emer-
ging. In the United States, the U.S. Food and Drug
Administration (FDA) has issued guidance regarding
the manufacture of LBPs for early clinical trials [63],
and U.S. Food and Drug Administration (FDA) sci-
entists have authored papers outlining manufacturing
expectations throughout the clinical development
process, including the use of INDs even for commer-
cial probiotic supplements now intended for clinical
studies and the use of FMT [75•,76]. Firmicutes make
up the largest part of the gut microbiome and many are
spore-forming organisms. It is likely that many LBPs
will contain spore-formers as a component, perhaps
with spores as the intended dosage form. The U.S.
Food and Drug Administration (FDA) and European
Medicines Agency (EMA) have issued guidance on
the use of spore-forming microorganisms for drug
manufacture [77,78].
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