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Globally, an estimated 15 million infants are born preterm (at 
<37 weeks’ gestation) each year,1 and prematurity is the leading cause of 
neonatal death. For survivors of preterm birth, the risk of long-term dis-

orders, particularly neurologic and developmental disabilities,2 remains high, despite 
advances in perinatal health care. Over the past two decades, the incidence of 
cerebral palsy, particularly severe cerebral palsy, has declined.3,4 However, there 
has been no decline in the high incidence of cognitive impairment and social and 
emotional challenges among children and young adults born preterm.4,5 At a group 
level, the mean (±SD) IQ of very preterm children (those born at <32 weeks’ gesta-
tion) is 11 to 12 points (±0.7 to 0.8) lower than that of infants born at term,6 with 
deficits in IQ increasing to 15 to 20 points for those born at less than 26 weeks’ 
gestation.7 At an individual level, the long-term outcome for very preterm children 
varies greatly, with a proportion of such children free of any neurodevelopmental 
impairment. This heterogeneity in neurodevelopmental outcomes is likely to reflect 
the nature and severity of brain injury and dysmaturation after preterm birth, with 
infants born at the earliest gestational ages at greatest risk.

The immature brain is vulnerable to unique forms of brain injury, including 
white-matter injury, germinal matrix–intraventricular hemorrhage, and cerebellar 
hemorrhage. New insights from advanced neuroimaging techniques, complemented 
by progress in developmental neuroscience, have expanded our knowledge about 
both the nature of the primary injury and the secondary dysmaturational effects. 
Although the major forms of brain injury have adverse neurodevelopmental out-
comes, recent recognition of altered brain development in preterm infants has 
provided a new understanding of key factors during the period spent in the neo-
natal intensive care unit (NICU) that may modulate this critical phase of rapid 
brain development, with adverse neurodevelopmental consequences. Thus, not only 
brain injury but also impaired brain development, due to and potentially indepen-
dent of injury, contribute to adverse neurodevelopmental consequences in preterm 
infants.

This review outlines the three major forms of brain injury in very preterm in-
fants, the nature of the alterations in subsequent brain development (dysmatura-
tion), the factors that may mediate these alterations, and their neurodevelopmental 
consequences. An understanding of these factors will assist neonatal clinicians in 
using future neuroprotective strategies to improve long-term neurologic outcomes 
in the preterm infant (Fig. 1 and Table 1).

Br a in Inj ur y

Three major forms of recognized brain injury in preterm infants are associated with 
subsequent neurodevelopmental impairment: white-matter injury, germinal matrix–
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intraventricular hemorrhage, and cerebellar hem-
orrhage.

White-Matter Injury

Among the injuries affecting the developing pre-
term brain, white-matter injury is the most preva-
lent, owing to the exquisite vulnerability of early 
differentiating preoligodendrocytes. The key risk 
factors leading to white-matter injury include 
hypoxia–ischemia and inflammation, the latter 

often related to perinatal and neonatal infec-
tion.8 The period from 23 to 32 weeks’ gestation 
constitutes the period of highest risk for white-
matter injury, peaking at 28 weeks’ gestation.9 
White-matter injury comprises three major path-
ological forms — focal cystic necrosis, focal 
microscopic necrosis, and diffuse non-necrotic 
lesions — each accompanied by diffuse gliosis 
(reactive astrocytes and activated microglia)8 
(Fig. 2). The cystic form of white-matter injury, 

Figure 1. Timeline of Vulnerability or Exposure and Neurologic Consequences of Preterm Birth.

Shown are the key timing, patterns, and factors determining the neurologic consequences of preterm birth. GABA 
denotes γ-aminobutyric acid, and MRI magnetic resonance imaging.
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which is the most severe, affects less than 5% 
of preterm infants born before 32 weeks’ gesta-
tion.9,10 Microscopic focal necroses, usually vis-
ible on magnetic resonance imaging (MRI) as 
punctate white-matter lesions, are reported in 15 
to 25% of extremely preterm infants (born at <28 
weeks’ gestation). Diffuse, non-necrotic lesions 
with gliosis, associated with less visible abnor-
malities on MRI but often followed by diminished 
white-matter volume and ventriculomegaly, occur 
in nearly half of very preterm infants.9,11-14

The incidence of cystic white-matter injury in 
preterm infants is low and declining,9,10 possibly 
reflecting more widespread antenatal glucocor-
ticoid use in mothers at risk for premature deliv-
ery.15,16 Cystic white-matter injury is associated 
with clinically significant developmental impair-
ment (Table 1). Cerebral palsy develops in approxi-
mately 75% of infants with cystic white-matter 
injury. Half of affected infants have impairment 
in general cognition and vision, and 25% have a 
seizure disorder.17,18 In contrast, punctate white-
matter lesions and diffuse, non-necrotic white-

matter injury have been associated with lower IQ 
and academic functioning, with an increased risk 
of impairment in motor function, attention, in-
formation processing, language, memory and 
learning, and executive function.12,19,20

Germinal Matrix–Intraventricular 
Hemorrhage

Germinal matrix–intraventricular hemorrhage is 
the most common form of neonatal intracranial 
hemorrhage and is characteristic of central ner-
vous system bleeding in preterm infants. This form 
of brain injury affects approximately 25% of all 
preterm infants with very low birth weight 
(<1500 g).21 Despite advances in perinatal care, 
the incidence has not changed in the past two 
decades.5,10 The importance of such lesions re-
lates not only to their high incidence but also to 
the gravity of the more severe forms of intraven-
tricular hemorrhage and their attendant compli-
cations. The severity of intraventricular hemor-
rhage, classified with the use of a grading system 
(grades 1 through 4) first reported by Papile and 

Table 1. Evidence of Association of Brain Injury and Dysmaturation with Functional Impairment in Preterm Infants and Potential 
Interventions to Improve Outcomes.*

Functional Impairment Brain Injury MRI-Defined Brain Dysmaturation

High-Grade  
Intraventricular  

Hemorrhage

Cystic  
White-Matter  

Injury

Diffuse  
White-Matter  

Injury
Cerebellar  

Hemorrhage

Frontal  
or Temporal  

Region
Basal Ganglia  
or Thalamus Cerebellum

Early development Strong Strong Strong Moderate Moderate NC Moderate

Motor function Strong Strong Moderate Strong ND Moderate Moderate

IQ Strong Strong Moderate Strong Moderate Moderate Moderate

Language Moderate Strong Moderate Moderate Moderate NC Moderate

Visuospatial function Moderate Strong Moderate Weak NC NC Weak

Memory Moderate Moderate Moderate NC Moderate Moderate Weak

Attention and executive 
function

Moderate Moderate Moderate NC Moderate Weak Weak

Academic performance Moderate Strong Moderate NC NC Moderate NC

Behavior Moderate Moderate Moderate Moderate NC Moderate Moderate

Interventions Antenatal glucocorticoids, magnesium sulfate, delayed cord 
clamping

NICU: physiological stability — prevent fluctuations in car-
bon dioxide, glucose, blood pressure

Cerebrovascular monitoring to ensure stable cerebral perfu-
sion

Neurorehabilitation with parent–infant interaction and infant 
developmental therapy

Provide appropriate nutrition: macronutrients and 
micronutrients, maternal breast milk

Minimize distress and stressful or painful experi-
ences

Enhance nurturing: skin-to-skin care, parental 
presence and engagement, exposure to hu-
man voices

Home-based developmental programs

*	�Evidence is classified as strong, meaning that there is well-established evidence of a relationship; moderate, meaning that there is evidence 
of a relationship but that more research is needed; or weak, meaning that there is inconsistent evidence. MRI denotes magnetic resonance 
imaging, NC no clear evidence, ND not determined, and NICU neonatal intensive care unit.
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Figure 2. Patterns of Brain Injury.

Forms of injury that may be visible on MRI include white-matter injury, germinal matrix–intraventricular hemorrhage, and cerebellar 
hemorrhage (Panel A). Arrowheads denote focal areas of injury. The severity of the injury is graded from 1 (mild) to 4 (severe). Injury 
that is not visible on MRI also occurs in many neuronal regions (Panel B).
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colleagues in 1978 and later modified,22,23 is 
based on the amount of blood in the lateral ven-
tricles and cerebral parenchyma. Studies using 
serial cranial ultrasound imaging have shown 
that the onset of germinal matrix–intraventricu-
lar hemorrhage occurs at a mean of 24 to 48 
hours after delivery, with approximately 10% of 
cases developing within 12 hours after birth24 
(Figs. 1 and 2). Clinical signs do not play a major 
role in the diagnosis of germinal matrix–intra-
ventricular hemorrhage; most cases are silent at 
the time of occurrence.

The pathogenesis of germinal matrix–intra-
ventricular hemorrhage often involves complex 
interactions of multiple factors in the individual 
infant. Cerebrovascular factors relating to the 
stability of cerebral blood flow are particularly 
relevant. In the extremely preterm infant, im-
mature cerebral autoregulation during a period 
of major cardiorespiratory instability can result 
in both ischemic and reperfusion insults that 
injure the fragile germinal matrix vessels, with 
subsequent rupture and hemorrhage. Evidence-
based interventions to reduce the incidence of 
germinal matrix–intraventricular hemorrhage are 
limited because of the complexity of the etiologic 
factors and the current limitations in methods for 
accurately and continuously measuring cerebral 
blood flow.

The occurrence of germinal matrix–intraven-
tricular hemorrhage affects subsequent brain de-
velopment in multiple ways. Consequences may 
include destruction of the immature germinal 
cerebral region, resulting in loss of progenitor 
cells; compression of terminal veins, which can 
result in high-grade parenchymal venous hemor-
rhagic infarction; acceleration of white-matter 
injury through oxidative stress; and hydrocepha-
lus, which can follow intraventricular hemorrhage 
and lead to axonal and other injuries.

Germinal matrix–intraventricular hemorrhage 
is categorized as low grade (grade 1 or 2) or 
high grade (grade 3 or 4). Low-grade germinal 
matrix–intraventricular hemorrhage has been 
considered historically to have minimal long-term 
neurodevelopmental consequences.25,26 However, 
large geographic cohort studies involving very 
preterm and extremely preterm infants have 
shown that low-grade intraventricular hemor-
rhage is associated with a small increase in the 
risk of cerebral palsy and a marked increase in 
early cognitive delay and visual impairment.21,27 

Evidence of long-term impairment after low-
grade intraventricular hemorrhage remains lim-
ited, with one study showing no effect on out-
comes at 8 and 18 years.28 In contrast, high-grade 
intraventricular hemorrhage is associated with a 
high risk of neurodevelopmental impairment 
(Table 1). In early childhood, children who had 
high-grade intraventricular hemorrhage in in-
fancy are 6 times as likely to have cerebral palsy, 
11 times as likely to have a visual impairment, 
and 4 times as likely to have bilateral hearing 
loss as those who did not have intraventricular 
hemorrhage.21 Consequences of high-grade in-
traventricular hemorrhage that are observed in 
later childhood include low IQ and academic 
achievement, as well as deficits in language, at-
tention, working memory, processing speed, visuo-
spatial reasoning, visuomotor integration, and 
executive function.26,29

Cerebellar Hemorrhage

As with intraventricular hemorrhage, the suscep-
tibility to cerebellar hemorrhage in preterm in-
fants is related to several maturation-dependent 
vascular regions. These regions include the ger-
minal matrixes in the external granular-cell 
layer and subependymal region of the cerebel-
lum and a region of rapid growth at the junction 
of the developing inner granular-cell layer and 
cerebellar white matter. These regions are vul-
nerable to ischemic–reperfusion injury and rup-
ture.30 The assessed incidence of cerebellar hem-
orrhage depends on the method of assessment. 
Cerebellar hemorrhage was initially reported in 
only 3% of preterm infants (born at <30 weeks’ 
gestation) when hemorrhage was assessed by 
means of cranial ultrasonography through the 
anterior fontanel,31 but the incidence rose to 9% 
when the assessment was based on ultrasonog-
raphy through the mastoid fontanel windows 
and to 19% when MRI was used.32 Pathogenic 
factors in cerebellar hemorrhage overlap greatly 
with those in germinal matrix–intraventricular 
hemorrhage. The most prominent factors are 
immaturity and cardiorespiratory instability. In-
jury from cerebellar hemorrhage ranges from 
unilateral punctate hemorrhage to extensive bi-
lateral lesions33 (Fig. 2).

The outcome for children with extensive cer-
ebellar hemorrhage is often poor34 (Table 1), but 
determining the independent contribution of the 
cerebellar hemorrhage can be challenging be-
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cause it often coexists with supratentorial le-
sions.35 In a review of isolated cerebellar hemor-
rhage, a high incidence of delay in cognitive 
development (38%), motor function (39%), lan-
guage (41%), and behavioral development (38%) 
was reported.36 The location and size of the le-
sions contribute to the functional outcome.37 The 
long-term outcome for infants with small lesions 
remains unclear.

Br a in Dysm at ur ation

It has become increasingly clear that the adverse 
neurodevelopmental consequences of preterm 
birth are mediated by both the initial brain injury 
and the subsequent adverse effect of this injury on 
the development of both white and gray matter, 
referred to as dysmaturation. This unique vulner-
ability in the preterm brain is due to the multiple 
rapid and complex developmental cellular events 
occurring in the immature cerebrum from 20 to 
40 weeks’ gestation. In this section, we review 
the definition of brain dysmaturation in the pre-
term infant as delineated by MRI and the primary 
mechanism of dysmaturation due to white-matter 
injury, as well as evidence supporting primary 
dysmaturational effects of adverse exposures in 
the NICU. Finally, we summarize the literature on 
the developmental consequences of brain dysmatu-
ration (Table  1). Since these dysmaturational 
cellular mechanisms appear to occur over a rela-
tively long period, not just during the NICU stay, 
interventions in the NICU and after discharge 
that are designed to prevent or ameliorate dys-
maturation seem plausible (Table 1). Whether the 
absence of any in utero factors, such as neurohor-
mones, might have a role remains unknown.

Identifying Brain Dysmaturation in Vivo

The principal manifestations of dysmaturation in 
the preterm brain have been elucidated in living 
infants with the use of several MRI techniques. 
Volumetric MRI shows abnormalities as dimin-
ished regional volumes of the cerebral cortex, 
white matter, thalamus, and basal ganglia (Figs. 
3 and 4). Diffusion-based imaging shows cere-
bral white matter with decreased fractional an-
isotropy (a measure of connectivity within the 
brain) and relatively greater involvement of radial 
diffusivity (which is consistent with impaired 
preoligodendrocyte ensheathment of axons), with 
cerebral cortical blunting of the normal decline 

in fractional anisotropy (which is consistent with 
impaired dendritic development). Surface-based 
MRI measures show decreased cerebral cortical 
surface area and cortical folding, or gyrification 
(Fig. 4A and B), and functional MRI shows im-
paired connectivity, especially thalamocortical 
connectivity. There appear to be specific neuro-
nal populations and regions in the immature 
brain that are most vulnerable (Figs. 3 and 4), 
such as the thalamus, frontotemporal cortical 
gray matter, and the limbic regions. Although 
these abnormalities have been defined at term-
equivalent ages, they persist, or their manifesta-
tions may increase in later infancy, childhood, 
adolescence, or adulthood.38-43

Dysmaturation Due to White-Matter Injury

The neuropathological consequences of injury to 
preoligodendrocytes in immature white matter 
include failure of maturation to myelin-produc-
ing oligodendroglia, resulting in hypomyelination. 
A secondary form of dysmaturation can follow 
white-matter injury and involve an array of devel-
opmental events that are active in cerebral white- 
and gray-matter structures during the preterm 
period. This evolution begins with the failure of 
preoligodendrocyte maturation and its ensheath-
ment of axons, thereby causing, through antero-
grade and retrograde mechanisms, impairment 
of neuronal and axonal maturation. This combi-
nation of white-matter injury and secondary dis-
turbances of gray-matter structures has been 
termed the “encephalopathy of prematurity.”44 
The likely mechanisms that lead to impaired 
maturation of neuronal and axonal structures 
have been reviewed elsewhere.8

Primary Neuronal Dysmaturation

Clinical and experimental studies have suggest-
ed that altered neuronal maturation may be a 
primary event in the immature brain, distinct 
from the dysmaturation due to white-matter in-
jury. This notion was supported by a study using 
diffusion-based MRI in preterm infants at two 
time points during hospitalization.45 The princi-
pal finding was an impairment in the expected 
maturational decline in fractional anisotropy in 
the cortex without evidence of white-matter in-
jury, which is consistent with a delay in the mi-
crostructural development of the cortical gray 
matter. Anisotropy measures are known to de-
crease in the developing cortex, principally with 
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dendritic elaboration,46,47 which suggests that 
the findings of this study indicate a primary im-
pairment in the dendritic development of cortical 
gray matter. Definitive neuropathological evidence 
of primary neuronal dysmaturation has not been 
shown in clinical studies.

Observations in a study of an immature ovine 
model also suggest a primary impairment of 
cortical neuronal development. That study showed 
that relatively brief, isolated hypoxia resulted in 
altered dendritic arborization within the hippo-
campus, accompanied by impaired connectivity 
and altered working memory.48 The latter obser-
vation may be relevant, since disturbances in 
working memory have commonly been reported 
in survivors of very preterm birth.49 Additional 
studies in this model have shown hypoxia and 
ischemia, resulting in disruption of neuronal de-
velopment.50

In addition to hypoxia, other factors are likely 
to mediate disturbances in the development of 
both gray and white matter in preterm infants 
during the NICU stay, including nutrition and 
growth, as well as negative experiences (pain, 

stress, and exposure to harsh light or sound) 
and the absence of positive experiences (nurturing, 
exposure to human voices, and healing touch).8,51 
However, separating a primary dysmaturational 
effect of these factors from a neuromodulatory 
effect on dysmaturation after injury, particularly 
white-matter injury, is challenging.

Correlations of Brain Dysmaturation  
with Outcomes

Associations between cerebral dysmaturation and 
neurodevelopmental outcomes are often confound-
ed by the underlying injury, particularly white-
matter injury. The documented reductions in ce-
rebral cortical volumes in preterm infants at the 
time of discharge from the NICU have been re-
ported to have variable relationships to outcomes, 
although attempts to individualize volumetric 
comparisons may improve prediction.52 Altera-
tions in regional volumes in children born pre-
term, as compared with those born at term, can 
be related to specific later outcomes, such as 
socioemotional development.53

With regard to cortical surface area, regional 

Figure 3. Dysmaturation of the Premature Brain as Seen on MRI.

Panel A shows the brain in a preterm infant as compared with the brain in an infant born at term. Regions of vulnerability are shown in 
Panel B.
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reductions in the frontal, temporal, and parietal 
regions in children born preterm, with increased 
inner cortical curvature (due to shallower sulci 
in preterm infants), are negatively associated with 
later cognitive and language development51 (Ta-
ble 1). Numerous studies of cortical alterations 
and functional outcomes in older children and 
adults born preterm have shown that the pre-
frontal and temporal regions are particularly 
vulnerable54-58 (Figs. 3 and 4). Morphologic al-
terations in the frontal and temporal regions in 
children born preterm have been associated with 
lower IQ, as well as deficits in language and 
executive function59,60 (Fig. 4). Within the tempo-
ral cortex, the hippocampus has been reported 
to be smaller and straighter (with less infolding) 
in persons who were born preterm55,61 (Fig. 3 and 
Table 1), findings that have been inconsistently 
related to memory performance.55,62

Concerning subcortical structures, survivors 
of very preterm birth have a 6 to 10% reduction 
in basal ganglia and thalamic volumes at term-
equivalent age, as compared with children born 
at term (Fig. 4 and Table 1), and these volume 
reductions are associated with impairment in 
school-age functioning, including impairment re-
lated to IQ, memory, academic performance, be-
havior, and motor function.63 Reductions in deep 

Figure 4. Visible Alterations in Cortical Structure  
at Term-Equivalent Age and at 7 Years and the  
Association between Reduced Brain Volume and  
Impaired Performance.

Shown are representative images of the mean cortical 
thickness in the left hemisphere in an infant born at 
term (Panel A) and in a preterm infant at term-equiva-
lent age (Panel B). The temporal lobe is smooth in the 
preterm infant. The t-statistic–based maps of sulcal 
depth in the left hemisphere (Panel C, lateral view) 
show regions of significant difference (P<0.025)38 
(outlined in black) between preterm and term infants. 
Similar findings were observed in the right hemi-
sphere (not shown). Yellow and orange areas indicate 
differences that do not reach statistical significance. 
At 7 years of age, sulcal depth remains significantly 
different (P<0.05)38 in the temporal lobe (Panel D, lat-
eral view, areas outlined black). Yellow and orange ar-
eas indicate differences that do not reach statistical 
significance. As compared with infants born at term, 
preterm infants have corresponding significant reduc-
tions in brain volume (P<0.025)38 (Panel E, red). Re-
duced brain volume in these regions is associated 
with impaired function in several domains (Panel F).
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gray-matter structures in children born very pre-
term are associated with poor motor coordina-
tion and cognitive and language impairment at 
7 years of age64 (Table 1).

Cerebellar development is also disrupted after 
very preterm birth. Smaller cerebellar volumes are 
observed in the neonatal period,65,66 childhood,67 
and adulthood,68 with longitudinal analyses show-
ing slower growth during early and later child-
hood65,68 (Fig. 3). Reductions in cerebellar volumes 
in very preterm infants are associated with early 
signs of neurologic impairment69 and develop-
mental delay,70 as well as long-term deficits in 
IQ, language, and motor function65 (Table 1). In 
children, adolescents, and young adults born very 
preterm, a smaller cerebellum has been linked to 
lower scores on measures of IQ, working mem-
ory, verbal reasoning, visuospatial processing, 
language, and executive function.67,68

In terv en tions t o Coun ter ac t 
Br a in Dysm at ur ation  

in Pr e ter m Infa n t s

The possibility that dysmaturation of white- and 
gray-matter structures, whether directly or indi-
rectly related to brain injury, can be counteracted 
has been suggested by a variety of clinical, epi-
demiologic, and experimental studies. Factors 
that may play a role in counteracting dysmatura-
tion include not only the prevention of hypoxia, 
ischemia, and inflammatory insults but also 
nutritional support and a variety of experiential 
factors (Table 1).

Studies have shown that appropriate nutrition 
during the preterm period is important for neu-
rodevelopmental outcomes and that postnatal 
undernutrition is deleterious.71,72 The prevalence 
of impaired nutrition among preterm infants 
during the NICU stay is high. One study showed 
that 50% of very-low-birth-weight preterm in-
fants had a discharge weight below the 10th 
percentile for postmenstrual age and that 27% 
had a discharge weight below the 3rd percen-
tile.73 Discussion of the importance of specific 
nutrients is beyond the scope of this review. 
However, in several studies using volumetric and 
diffusion-tensor MRI, breast-feeding was shown 
to be associated with improved white-matter 
maturation in preterm infants,74,75 and there is 
some evidence that higher caloric and lipid in-

take is associated with less severe brain injury 
and dysmaturation.76

Experiential factors are also likely to play a 
major role in mediating alterations in brain de-
velopment during the stay in the NICU. Pain and 
stress are common experiences for preterm in-
fants in the NICU and have been shown to have 
adverse effects on neurodevelopmental, behav-
ioral, and cognitive outcomes.77-79 Abnormalities 
of brain development associated with pain and 
stress have involved neuron-rich areas such as 
the cerebral cortex, hippocampus, and thalamus, 
as well as functional connectivity among these 
structures.80,81 Nonpharmacologic approaches, in-
cluding sucrose administration, may help reduce 
the number of painful experiences or modify the 
stress associated with them.81 An example of non-
pharmacologic stress reduction was demonstrat-
ed in a small clinical trial of the Newborn Indi-
vidualized Developmental Care and Assessment 
Program (NIDCAP), which aims to modify the 
infant’s environment in order to reduce stress and 
maximize rest. The trial results revealed higher 
cortical gray-matter volumes and higher fractional 
anisotropy in growth-restricted preterm infants 
who received care in the NIDCAP than in those 
who received standard care.82

Experimental studies suggest that neuronal 
maturation can be altered by environmental sen-
sory factors, such as auditory and visual input.83 
Historically, the NICU has been a brightly lit 
environment with excessive noise throughout 
24 hours per day of continuous activity. Recent 
trends in NICU design have led to infants being 
cared for in single rooms, enhancing privacy for 
the family and reducing rates of infection.84 How-
ever, both the overstimulation of the historical 
NICU design and the quiet single-room design may 
have detrimental effects on brain maturation.

Concerning auditory input, several clinical 
studies have suggested a modulatory effect of the 
neonatal auditory environment on cortical neuro-
nal development.51,85 These studies show a correla-
tion between the auditory environment — with 
human voices and particularly parental voices — 
and language outcomes in very preterm infants.

Neonatal visual experience may also play a 
role in neuronal maturation. Development of the 
visual cortex is very active during the preterm 
period and into infancy, and studies in animals 
have shown that both premature visual stimula-
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tion and visual deprivation have dramatic effects 
on visual development.8

Finally, parental and family factors play a 
critical role in infant development. The socioeco-
nomic status of the family and the level of ma-
ternal education have been reported to have a 
modifying influence on brain development in 
very preterm infants, with lower socioeconomic 
status correlated with developmental disturbanc-
es of the cerebral cortex, thalamus, and hippo-
campus.86 Persistent emotional distress, which is 
understandably common in parents of very pre-
term infants,87 may adversely affect the infant’s 
neurodevelopment.88 Sensitive and responsive 
parenting has been associated with better neu-
rodevelopmental outcomes and, for boys, greater 
growth of basal ganglia and amygdala struc-
tures, findings that are possibly related to lower 
parental distress levels. Intrusive or overcontrol-
ling parental behaviors were reported to be associ-
ated with poorer neurodevelopmental outcomes, 
reductions in gray-matter volume, and delayed 
white-matter maturity.89,90

Given the important role of parenting and the 
family environment, family-based interventions 
may well improve the long-term outcome for chil-
dren born preterm. A Cochrane review of devel-
opmental interventions for infants born preterm 
showed benefits with respect to outcomes in 
preschoolers. The benefits were most apparent 
with interventions that commenced in the NICU 
and included both parent–infant interaction and 
infant development.91 The review suggested that 
the benefits did not persist into school age. How-
ever, meta-analyses have also shown that family-
based interventions are associated with fewer 
behavioral problems throughout childhood,92 as 

well as reduced anxiety and depressive symptoms 
in parents.93

Conclusions

An increasing number of infants born very pre-
term survive the neonatal period but too often 
have long-term adverse neurologic effects. Al-
though many extremely preterm infants do well, 
a greater understanding of the mechanisms of 
adverse outcomes is critical for attaining good 
outcomes for even more such infants. Adverse 
outcomes result from a combination of unique 
forms of brain injury and alterations in brain 
development. The common forms of brain injury 
most frequently occur in association with cardio-
respiratory instability, without any clinical signs 
during the first week of life. Future reductions 
in ischemia–reperfusion brain injury will require 
technological advances in the monitoring of 
brain perfusion to inform critical care manage-
ment. Along with early recognition of brain injury, 
the use of rehabilitative strategies both during 
the NICU stay and after discharge may contribute 
to neurorestoration.

With regard to brain development, systematic 
investigation must be prioritized. Gaps in knowl-
edge exist regarding the neurobiologic effects of 
the sensory environment, pain and stress, nurtur-
ing, and sleep in preterm infants during prolonged 
hospitalization in the NICU. Macronutrition and 
micronutrition, as well as parental support, with 
enhancement of parental engagement both in 
the NICU and after discharge, may improve neu-
rodevelopmental outcomes.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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