Review article

Isolated Rosai-Dorfman disease of the spine: A systematic literature review

Maroua Slouma ${ }^{\mathrm{a}, \mathrm{d}, 1,{ }^{*}}$, Sirine Bouzid ${ }^{\mathrm{a}, \mathrm{d}}$, Karima Tlili $^{\mathrm{b}, \mathrm{c}}$, Dahmani Yedaes ${ }^{\text {c, }}$, Khaled Radhwen ${ }^{\text {c,d }}$, Imen Gharsallah ${ }^{\text {a,d }}$
${ }^{\text {a }}$ Department of Rheumatology, Military Hospital, Tunis, Tunisia
${ }^{\mathrm{b}}$ Department of Anatomy and Cell Biology, Military Hospital, Tunis, Tunisia
${ }^{\text {c }}$ Department of Neurosurgery, Military Hospital, Tunis, Tunisia
${ }^{\text {d }}$ University of Tunis El Manar, Tunisia

ARTICLE INFO

Keywords:

Histiocytosis
Extra-nodal
Central nervous system
Surgery
Myeloproliferative disorder

Abstract

Introduction: Rosai-Dorfman disease (RDD) is a rare non-Langerhans cell histiocytosis involving the central nervous system in 5% of cases. Spinal location occurs in less than 1% of extranodal RDD and can be responsible for neurological manifestations. We present a systematic review of cases of isolated spinal RDD. We also report a new case of isolated spinal RDD revealed by spinal cord compression. Materials and methods: The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline using the MEDLINE and SCOPUS databases and included case reports and case series describing isolated RDD of the spine. Results: There were 53 patients with isolated spinal RDD (including our case). The mean age was 35.85 ± 16.48 years. Neurological deficit was the most frequent clinical presentation (89\%). RDD lesions were mainly located in the thoracic spine (51%), then the cervical spine (32%). The lesion was reported to be extradural (57%), intradural extramedullary (26\%), intramedullary (7\%), and in the vertebral body (10\%). Histological examination showed emperipolesis in 73%. Histocytes were positive for S-100 protein in 83%. Treatment was based on surgery 96%), radiotherapy, chemotherapy, and adjunctive steroid therapy were indicated in four, one, and eight cases. After a mean follow-up period of 14.84 ± 13.00 months, recurrence of RDD was noted in 15\%. Conclusion: Spinal RDD is a rare condition, requiring meticulous histological examination for accurate diagnosis. Complete surgical resection is the treatment of choice. Adjuvant chemotherapy and radiotherapy can also be indicated in patients demonstrating partial improvement following surgery.

1. Introduction

RDD is a myeloproliferative disorder of histiocytes. It can be responsible for a broad spectrum of clinical manifestations [1]. It is typically revealed by massive and bilateral cervical lymphadenopathy [2]. Extranodal manifestations are present in 43% of patients, with spinal location observed in only $0.6-1 \%$ of cases [3]. Isolated spinal involvement is rare and can mimic spinal tuberculosis, meningioma, extradural hematoma, and other tumors [4].

The diagnosis of spinal RDD, which is based on histopathological and immunohistochemical examinations, can be challenging [4]. Histologically, the lesion biopsy shows abnormal histiocytes characterized by

CD68+ and CD1a - markers [1].
The pathology of RDD is still not fully understood. It involves viral infections, autoimmune conditions, and gene mutations [2]. The clinical course can range from a self-limited process to disseminated refractory disease with increased mortality. Due to the heterogeneity of the disease, treatment options for RDD vary, including both local and systemic approaches [1].

This systematic review summarized isolated spinal RDD's clinical, radiological, and histopathological findings. We also report a case of an adult patient with an isolated spinal RDD revealed by spinal cord compression.

[^0]

Fig. 1. : (a) Preoperative sagittal T1-weighted imaging (T1-WI) sequences magnetic resonance imaging of the dorsolumbar spine showing isointense extradural lesion extending from T 8 to T 10 . (b) The lesion is isointense to the spinal cord in T2-weighted imaging. (c) T1-WI post gadolinium showing intense homogeneous enhancement of the lesion.

Fig. 2. : (a) X10: pseudo tumoral proliferation with low cell fibrosis (red arrow) and polymorphic inflammatory infiltrate (black arrow), (b) X20: inflammatory infiltrate with foamy histiocytes (red arrows).

2. Materials and methods

2.1. Case-report

We obtained written consent from the patient to publish this case report.

The following data were extracted from the patient's record: patient age and sex, initial symptoms, results of different investigations, and
therapeutic management.

2.2. Search strategy for systematic review

2.2.1. Publication search

A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [5].

The search included studies published in the SCOPUS and the MEDLINE databases until Mai 2023. We used the following keywords chosen from the Medical Subject Headings (MeSH) of MEDLINE:
(disease, rosai Dorfman\$ [MeSH Terms]) AND (compression, spinal cord [MeSH Terms]);
(disease, rosai dorfman [MeSH Terms]) AND (spine [MeSH Terms]); (sinus histiocytosis with massive lymphadenopathy [MeSH Terms]) AND (compression, spinal cord [MeSH Terms]); (sinus histiocytosis with massive lymphadenopathy [MeSH Terms]) AND (spine [MeSH Terms]).

2.2.2. Inclusion criteria

The search included case reports and case series describing isolated spinal localization of RDD. Only English publications were included.

2.2.3. Exclusion criteria

We excluded cases with extraspinal manifestations of RDD. Non-fulltext articles and duplicates were also excluded.

2.2.4. Data collection

Data collection was performed by two independent authors. Any discrepancies were resolved through a consensus discussion with a third author.

The following data were collected from each case report: gender, age at diagnosis, symptoms, laboratory investigations, histological findings, imaging features, treatment, and outcome.

Statistical analyses were performed using SPSS.

3. Results

3.1. Case presentation

A 50-year-old male patient with no medical history complained of a one-month history of progressive weakness and numbness in both lower limbs. He also reported gait unsteadiness. He denied bowel or bladder incontinence. There was no history of spinal trauma, fever, weight loss, or night sweats.

Physical examination revealed pyramidal signs in the lower limbs with proximal spastic paraparesis and sensory loss of all the dermatomes

Fig. 3. : Abdominal, pelvic, and thoracic CT-Scan performed after surgical resection (arrowhead) showing no extra-spinal manifestations of RDD: no hepatomegaly (white arrow) and no splenomegaly (black arrow).

Fig. 4. : (a) Sagittal T1-weighted imaging (T1-WI) sequences magnetic resonance imaging of the dorsolumbar spine (b) Sagittal T2-WI sequences magnetic resonance imaging of the dorsolumbar spine (c) T2-WI axial view at the level of T9: the sequences are showing laminectomy with the absence of recurrence of the RDD lesion 18 months after surgery.
under T8. There were no lymphadenopathy, splenomegaly, or hepatomegaly. The physical examination was otherwise unremarkable. The complete blood count was without abnormalities. Inflammatory biomarkers, liver tests, and renal function were within normal ranges.

The spine magnetic resonance imaging (MRI) showed a thoracic extradural lesion dorsolateral to the spinal cord extending from T8 to T11 with signs of cord compression. The mass was isointense on T1 weighted imaging (WI), and hypo intense on T2WI, and marked gadolinium enhancement (Fig. 1).

The patient underwent urgent surgery consisting of T8-T11 decompressive laminectomy. The mass was strictly epidural and wellencapsulated without any bone infiltration, which helped with complete lumpectomy.

Histopathological findings showed a pseudo tumoral proliferation, which combines in variable proportions extensive low-cell fibrosis with
an inflammatory infiltrate composed of plasma cells, lymphocytes, and essentially foamy histiocytes (Fig. 2).

These histiocytes had enlarged, round to oval hyperchromatic nuclei and abundant eosinophilic cytoplasm, often containing engulfed intact inflammatory cells known as emperipolesis. An immunohistochemical study showed a positive stain in histiocytes with PS100 antibodies.

The diagnosis of isolated RDD was established based on histological findings and the absence of visceral involvement. The chest-abdomenpelvis CT scan did not reveal any other locations of RDD (Fig. 3).

The patient had an uneventful postoperative recovery and continued dexamethasone 12 mg daily starting a day before surgery for 10 days.

At the follow-up one month after the surgery, a physical examination showed a complete resolution of neurologic deficits. The spine MRI found no lesion's recurrence at 18 months after surgery (Fig. 4).

3.2. Systematic literature review

The initial search yielded 110 articles. Non-relevant and duplicated articles were removed (Fig. 5). The identified literature cases, including ours, are shown in Table 1 [6-51].

We included 46 articles reporting 52 patients with isolated spinal RDD. There were 53 patients, including our case: 36 males and $17 \mathrm{fe}-$ males. The mean age was 35.85 ± 16.48 years, ranging from 14 to 78 years. The delay between clinical signs onset and the diagnosis of RDD was 4.08 ± 5.03 months [0.2-30]. Clinical manifestations were spinal pain $(58 \%, \mathrm{n}=31)$ [9-13,15,21-23,25,26,29,32,33,35-38,40-42,45, $47-49,51]$, radicular pain $(n=3)$ [47,49,50], neurological deficit (89%, $\mathrm{n}=47$), and bowel or bladder dysfunction ($24 \%, \mathrm{n}=13$) [18,21,26,29,32, $34,36,39,43-45,50,51]$. Laboratory findings were normal in 20 patients (38\%). High erythrocyte sedimentation rate (ESR) was noted in 8 patients (15\%) [8,18,20,21,24,32,48,50], with a mean ESR of $41.38 \pm$ 20.69 mm [17-67]. Leukocytosis was reported in two patients [6,36]. One patient had a history of Hepatitis B viral infection [22].

Lesions were mostly located in the thoracic spine ($n=27,51 \%$), then the cervical spine ($n=17,32 \%$) and the lumbar spine ($n=4,8 \%$). In three cases, RDD was in the sacrum (6\%). In two cases reported, patients had multilevel spine lesions.

MRI was performed in all cases.
On T1-weighted image, RDD lesions were isointense in 18 patients (35\%) and hypointense in five patients (10%). On T2-weighted images, RDD lesions were isointense, hypointense, or hyperintense in 9 (17\%), 13 (25\%), and 6 patients (11\%), respectively. After the administration of gadolinium, RDD lesions had homogenous enhancement.

A dura tale sign was noted in three cases (6\%) [9,11,33]. The lesion was extradural in 30 patients (57\%), intradural extramedullary in 14 cases (26%), and intramedullary in four (7\%). It was in the vertebral body in five cases (10\%).

Six patients (11%) underwent a CT scan examination, revealing an osteolytic lesion [16,20,27,30,39,40]. PET scan was performed in two cases (4\%) showing moderate FDG uptakes $[14,16]$.

The diagnosis of RDD was based on histological findings in all patients. The results of the histological study were not detailed in three cases (6\%). The emperipolesis phenomenon was described in 39 patients (73%). Histocytes positiveness for $\mathrm{S}-100$ protein was the most frequent immunohistochemical finding ($n=44,83 \%$), followed by positiveness for CD68 ($\mathrm{n}=30,57 \%$) and negativity for CD1a ($\mathrm{n}=26,49 \%$).

Surgical treatment was indicated in 51 cases (96%) with a complete resection of lesions in $69 \%(\mathrm{n}=35)$ and incomplete resection in 21% ($\mathrm{n}=11$). It was not specified if resection was complete or not in five cases (10\%) [7,8,11,20,40].

Surgical treatment was associated with radiotherapy in four cases (8\%) [23,26,35,45]. The doses and regimen of radiotherapy were as follows: 35 Gy in 20 fractions [23], 50.4 Gy in 28 fractions [35], 20 Gy in 10 fractions[45], and 12 Gy in 4 fractions [26]. Chemotherapy was associated in one case (2\%), Vinblastin therapy was given intravenously (10 mg weekly) for 7 months [25]. Both radiotherapy and

Fig. 5. : Flow chart for the study selection process.
chemotherapy were administrated immediately after surgery in all four cases. Steroids were prescribed in eight cases (15\%) [6,14,16,37,45]. The exact dose of steroids was reported in three cases (6\%). The mean dose of steroids was $48.8 \pm 7.7 \mathrm{mg}$ [40-53.3] of prednisolone per day. Steroids were prescribed for three months in two patients (4\%) and for six months in the others (96\%), with a gradual tapering. In one cases (2%), spontaneous regression of the lesion with reconstruction of the concerned vertebra was reported [30].

The mean follow-up period was 14.84 ± 13 months [2-60]. After therapeutic management, clinical and imaging improvement were noted in 41 patients (77%). Eight patients (15%) experienced a recurrence of RDD.

Among these patients, seven underwent surgery only and one received an associated radiotherapy [26].

The mean time to recurrence was 19.52 ± 21.64 months [2-60]. [10, $14,19,22,26,37,45,49]$. It was not mentioned in one case.

The intradural extramedullary and intramedullary locations were associated with a high risk of recurrence (Odds ratio (OR): 3.91, p:0.048, 95% Confidence interval [0.032; 1.08]). However, male gender (OR: 0.73, $\mathrm{p}: 0.43$), increased ESR (OR: 2.14 , p:0.14), and the age (patients without recurrence: 35.87 years versus patients with recurrence: 38.86 years, p : 0.59) were not associated with recurrence.

The key findings for the entire cohort are summarized in Table 2.

4. Discussion

RDD was initially described by French pathologist Pierre Paul Louis Lucien Destombes in 1965 [52]. Then, Drs. Juan Rosai and Ronald Dorfman individualized it as a clinical entity [53]. RDD is a rare non-Langerhans cell histiocytosis, also called sinus histiocytosis with massive lymphadenopathy [54]. The pathogenesis of RDD remains unclear. Several studies highlighted the role of viral infections, such as herpes viruses, Epstein-Barr virus, cytomegalovirus, and human immunodeficiency virus (HIV) [55,56]. Hepatitis B viral infection was found in one of the reviewed cases [22]. However, data regarding the link between RDD and hepatitis B virus are scarce.

Other studies suggested that autoimmune dysregulation may contribute to the physiopathology of RDD. As for germline mutations in SLC29A3, which has also been reported in patients with familial RDD, suggesting that RDD may belong to a spectrum of disorders with SLC29A3 mutations [58].

RDD usually affects children and young adults, with a mean age at diagnosis of 20.6 years. A male predominance has been reported with a male-to-female ratio of 3:2. These findings are close to those found with isolated spinal RDD [2].

RDD is characterized by atypical expansion of histiocytes, presenting emperipolesis of leukocytes, associated with variable mixed inflammatory cells [2]. Emperipolesis is an uncommon process in which a normal

Table 1
Cases of isolated spinal RDD reported in the literature.

Authors (year)	Gender (age (years))	Symptoms Duration (months)	Laboratory findings	Level	Radiological findings	Diagnostic confirmation	Treatment	Follow-up (months) Outcome
$\begin{aligned} & \text { Chen C W R } \\ & \text { et al. [6] } \\ & (2012) \end{aligned}$	Female (16)	Progressive numbness of both legs with urinary incontinenceNS	Leukocytosis $17 \times 109 / l .$	T4-T5	MRI: Intradural extramedullary Intermediate T2- and T1-WIsignal intensity	Emperipolesis	SteroidsComplete resection	24No recurrence
$\begin{aligned} & \text { Andriko JA } \\ & \text { et al. [7] } \\ & (2001) \end{aligned}$	Male (35)	Weakness and numbness of lower extremities 1	NS	T4-T5	MRI: Intramedullary	Nodular cellular infiltrates of histiocytes, plasma cells, and lymphocytes EmperipolesisIHC: S100 protein (+), CD68 (+)	Resection	12Improvement
	Male (42)	Weakness and numbness of lower extremities 1	NS	T6-T8	MRI: extradural	NS	Complete resection	38No recurrence
Osenbach R et al. [8] (1996)	Male (35)	Progressive numbness and weakness of lower extremities 1	Elevated ESR ($35 \mathrm{~mm} / \mathrm{h}$)	T4-5	MRI: Intramedullary	A lymph histiocytic infiltrate with plasma cells IHC: S-100 protein (+)	Resection	12ImprovementNo recurrence
Wu Let al. [9] (2014)	Male (43)	Spinal pain Progressive numbness in both hands8	Normal	C5- C6	MRI: Intradural extramedullaryHomogeneous enhancement A dura tail sign	Mixed inflammatory infiltrates of lymphocytes, plasma cells, and histiocytes in fibrous tissueEmperipolesis	Complete resection	18 ImprovementNo recurrence
Tian Y et al. [10] (2015)	Male (43)	Spinal painNumbness in both hands 8	NS	C5-C6	MRI: extradural	Many lymphocytes, plasma cells, and foamy histiocytes IHC: CD68(+), lysozyme (+), S100 (+), EMA (-)	Complete resection	22Recurrence
Zhu H et al. [11] (2012)	Male (58)	Spinal pain and hypnalgia NS	NS	T8-T10	MRI: Intradural extramedullaryHyperintensity on T1-WI, iso intensity on T2-WI, with homogeneous enhancementA dura tail sign	Eosinophilic cytoplasm, in the background of many plasma cells and lymphocytesEmperipolesisIHC: S100 (+) CD1a (-)	Resection	NS
Fu X et al. [12] (2015)	Female (25)	Spinal pain Weakness and numbness in both upper limbs Gait unsteadiness 6	NS	C3-C6	MRI: Intradural extramedullaryHypointense on T1-WI, hypointense on T2-WI, homogeneous enhancement	Fibrosis with lymphocytes, plasma cells, and neutrophilsEmperipolesisRussell bodiesIHC: S-100 protein (+), CD68 $(+$), CD1a (-), pan-cytokeratin (AE1/ AE3) (-), EMA (-), GFAP (-), CD30 (-), CD20 (-), CD3 (-), CD34 (-)	Complete resection	12 No recurrence
Kim DY et al. [13] (2014)	Male (15)	Spinal pain 6	Normal	T6/ T12	Plain radiographs: osteolytic lesion of T6 and T12 MRI: 2 lesions Hyperintense on T2-WI, homogeneous enhancement	Fibro-osseous tissue with large histiocytes EmperipolesisIHC: CD68 $(+)$, S-100 (+), CD1a (-)	Complete resectionReconstruction	12No recurrence
Sciacca S et al. [14] (2015)	Female (75)	Lower limb spastic paraparesis and saddle paresthesiaNS	NS	T9-T11	MRI: extraduralPET-CT: lowgrade metabolically active disease confined to T10	Mixed lymphoplasmacytic infiltrate IHC: C20 (+), C79a (+), CD3 (+), CD68 (+), CD138 (+), CD56 (-), cyclin D1 (-)	SteroidsIncomplete resection	2Recurrence
Li Y et al. [15] (2018)	Male (28)	Spinal painBilateral lower limb numbness and weakness 12	NS	T6-T9	MRI: extraduraliso intense on T1WI, hypo intense on T2-WI, homogeneous enhanced lesion	Diffuse infiltration of plasmocytes and lymphocytesEmperipolesisIHC: CD68 (+), CD21 (+), CD21 (+), CD3 $(+)$, S-100 (+)	Incomplete resection	6Improvement No recurrence
$\begin{aligned} & \text { Jayaram A } \\ & \text { et al. } \\ & \text { [16] } \\ & (2020) \end{aligned}$	Male (24)	Progressive bilateral lower limb weakness 1/ 2	NS	C7-T4	CT: Focal cortical destruction of the T2 vertebraMRI: extraduralIsointense on T1-WI and iso to hypointense on T2-WI PET-CT: moderate uptake	NS	Steroids Complete resection	2Improvement
James J et al.	Male (35)	Progressive weakness, and numbness in both lower limbs 2	Normal	C3-L1	MRI: ExtraduralSpinal cord compression	Histiocytes, lymphocytes, numerous plasma cells, neutrophils, and proliferating blood	Steroids	NSImprovement

Table 1 (continued)

Authors (year)	Gender (age (years))	Symptoms Duration (months)	Laboratory findings	Level	Radiological findings	Diagnostic confirmation	Treatment	Follow-up (months) Outcome
$\begin{aligned} & {[17]} \\ & (2017) \end{aligned}$						vesselsEmperipolesis IHC: Histiocytes S100 (+), CD 68 (+) and CD1a (-)		
Rocha- Maguey et al. [18] (2016)	Female (27)	Progressive paraparesis Bladder and bowel symptoms2	Increased ESR ($25 \mathrm{~mm} / \mathrm{h}$)	C7-T1	MRI: Intramedullary Hypointense signal on T2-WI, and homogeneous enhanced lesion	A proliferation of large histiocytesEmperipolesis IHC: CD45 $(+)$, CD68 (+), CD60 (+), CD30 (+), CD15 (+), latent membrane protein-1 antibody (-)	Complete resection	6Improvement
Lima et al. [19] (2016)	Female (50)	Progressive spastic paraparesis1/2	NS	T4	MRI: Intradural extramedullary A homogeneous enhanced lesionDural tail sign	NS	Complete resection	NSRecurrence
Jiang H et al. [20] (2022)	Female (25)	Spinal pain1	Increased ESR ($64 \mathrm{~mm} / \mathrm{h}$)	L2-L3	CT: bone destruction in the right pedicle of L3MRI: Enhanced signal in the vertebral body of L2L3 and the right pedicle of L3	Numerous foamy histiocytic cells, lymphocytes, and neutrophilsEmperipolesis IHC: EMA $(+)$, vimentin (+), LCA (+), CD68 $(+)$, CD79 $~(+)$, CD3 (+), S100 (+) CK (-), CD1a (-), Ki-67 (-), P53 (-), CD30 (-)	Resection	36Improvement No recurrence
XuH et al. [21] (2017)	Male (34)	Spinal painProgressive bilateral lower extremity paresthesia Bladder and bowel dysfunction1	Increased ESR $(17 \mathrm{~mm} / \mathrm{h})$	T9-T10	MRI: ExtraduralIso-intense on T1WI, heterogeneously hypointense on T2WI, homogeneous enhanced lesion Spinal cord compression	Histiocytosis with an infiltrate of lymphocyte and plasma cellIHC: CD68 (+), S-100 (+)	Complete resection	5Improvement No recurrence
Lin CK et al. [22] (2019)	Male (32)	Spinal painLower limb weakness3	Hepatitis B virus infection	T11-12	MRI: Intradural extramedullaryVertebral body	Emperipolesis IHC: S-100 (+)	Incomplete resection	36Recurrence
$\begin{aligned} & \text { Baassiri W } \\ & \text { et al. } \\ & {[23]} \\ & (2019) \end{aligned}$	Male (54)	Spinal painBilateral hand numbness Difficulty in swallowing and dysphonia6	NS	Foramen magnumC1	MRI: ExtraduralLocal meningeal enhancement following gadolinium administration	Sheets of foamy histiocytes, multinucleated giant cells, lymphocytes, and plasma cells Emperipolesis IHC: CD68 (+), S-100 (+), CD1a (-)	Incomplete resectionRadiotherapy	Improvement
Kozac B et al. [24] (2015)	Male (26)	Progressive bilateral lower extremity numbness, weakness, and gait difficulty1/2	$\begin{aligned} & \text { Increased ESR } \\ & (19 \mathrm{~mm} / \mathrm{h}) \end{aligned}$	T1-T5	MRI: ExtraduralIso-intense to the spinal cord on T1WI, heterogeneously hypo-intense on T2WI with homogenous enhancement Spinal cord compression	Fibroconnective tissue with a lymphoplasmacytic infiltrate and clusters of atypical histiocytes EmperipolesisIHC: S-100 (+), CD1a (-)	Complete resection	18ImprovementNo recurrence
$\begin{gathered} \text { Kumar A } \\ \text { et al. } \\ {[25]} \\ (2020) \end{gathered}$	Male (35)	Spinal painParaparesis 2	Normal	C6-T7	MRI: Extradural Hypo-intense on T1- and T2-WISpinal cord compression	Inflammatory neoplastic tissue composed of clusters of large macrophages EmperipolesisIHC: CD68 (+), S-100 (+), CD1a (-)	Complete resectionFixationChemotherapy	24 ImprovementNo recurrence
$\begin{aligned} & \text { Hargett C } \\ & \text { et al. } \\ & {[26]} \\ & (2005) \end{aligned}$	Female (29)	Spinal painLowerextremity numbness, and weakness Bladder and bowel dysfunction1	NS	T5-T9	MRI: Extradural Slight enhancementSpinal cord compression	A granulomatous mass with eosinophilic histiocytes, lymphocytes, and plasma cellsEmperipolesis IHC: S-100 (+)	Complete resectionFixationRadiotherapy	3Improvement Recurrence
Robert EJ et al. [27] (2006)	Female (23)	Progressive left leg pain and weakness 12	NS		CT: osteolytic lesionMRI: a large sacral lesion infiltrating the soft tissues	CT-guided biopsy procedureEmperipolesis	Complete resectionFixation	12Improvement No recurrence
$\begin{aligned} & \text { Ma J et al. } \\ & {[51]} \\ & (2008) \end{aligned}$	Male (44)	Spinal pain Progressive weakness of both lower limbsBladder and bowel dysfunction 6	Normal	L3	Plain radiographs: a lytic process MRI: Intradural, extramedullary 4 lesions Hypo intensity on both T1- and T2-WI,	Large lymphoplasmacytic areas infiltrated with histiocytic cellsEmperipolesis IHC: CD68 (+), S100 protein (+), CD1a (-)	Complete resection	12ImprovementNo recurrence

Authors (year)	Gender (age (years))	Symptoms Duration (months)	Laboratory findings	Level	Radiological findings	Diagnostic confirmation	Treatment	Follow-up (months) Outcome
Wang Y et al. [28] (2010)	Male (58)	Leg weakness 3	NS	T8-T10	with homogeneous enhancementLumbar spine MRI: Intradural, extramedullarySlight enhancement after gadolinium infusion	A chronic inflammatory process containing a multinucleated giant cellIHC: CD68 (+), S100 protein (+), vimentin (+)	Complete resection	7Improvement No recurrence
```Huang Y. C. et al. [29] (2006)```	Female (31)	Spinal painLegs weakness, and numbnessBladder dysfunction Relapsing uveitis3	Normal	T6-8	MRI: ExtraduralHomogeneous enhancementSpinal cord compressing	Clusters of large eosinophilic histiocytes and interspersed lymphocytes, plasma cellsEmperipolesis IHC: S-100 protein (+)	Complete resection	12Improvement No recurrence
Ramon A et al. [30] (2020)	Male (18)	Spinal pain 3	Normal	T9	CT: osteolysis of the posterior arch T9 vertebraMRI:   ExtraduralInflammation without spinal cord compression	Emperipolesis IHC: CD163 (+), S100 (+), CD1a (-), ALK1 (-), phosphorylated extracellular signalregulated kinase ( + )	None	3ImprovementSpontaneous reconstruction of the T9 vertebra
Chhabria BA et al. [50] (2018)	Female (19)	Spinal pain Radicular radiation to both lower limbs, and asymmetric weakness Bowel and bladder dysfunction3	Normocytic, normochromic anemia ( 10 g / dL)Elevated ESR ( $67 \mathrm{~mm} / \mathrm{h}$ )		MRI: ExtraduralLesion involving the nerve roots of the cauda equina extending up to the sacral level	A histiocyte-rich lesion with lymphoplasmacytic infiltrate Emperipolesis IHC: CD68 (+), S-100 (+), CD1a (-)	Incomplete resection	NSImprovement
El Molla M et al. [31] (2014)	Male (76)	Progressive right arm weakness and right footdrop2 and 1/2	NS	C2-C4	MRI: Intramedullary Spinal cord compression	Dense fibrosis and intense chronic inflammation with focal neutrophilic infiltratesIHC: S-100 (+)	Complete resection	12Improvement No recurrence
$\begin{aligned} & \text { Hollowell J. } \\ & \text { P et al. } \\ & \text { [32] } \\ & (2000) \end{aligned}$	Male (78)	Spinal pain Loss of sensation and strength in the left arm and the legsBladder dysfunction6	$\begin{aligned} & \text { Elevated ESR } \\ & (42 \mathrm{~mm}) \end{aligned}$	Cervical, thoracic, and lumbar spine	MRI: ExtraduralAn intermediate isointense signal on T1WI and diffuse low signal on T2WI with heterogenous enhancement Spinal cord compression	A dense collagenous matrix containing histiocytes, plasma cells, and lymphocytes EmperipolesisIHC: CD68 ( + ), KP1 ( + ), vimentin ( + ), Pan-cytokeratin (+), CAM-5.2 (-), LMW cytokeratin (-), SMA (-), HMB45 (-), mucin (-)	Incomplete resection	18Improvement
Tu J et al. [33] (2017)	Male (41)	Spinal pain 12	NS	C7-T7	MRI: Extradurallsointense on T1WI and hypointense on T2-WIA dura tail sign	Fibrous connective tissue with diffuse or nodular tissue cell, lymphocyte, and plasma cell infiltrationEmperipolesisIHC: CD68 $(+)$, CD163 (+), S100 (+), CD1a (-), CD34 (-)	Complete resectionFixation	3Improvement
$\begin{aligned} & \text { Bhandari A } \\ & \text { et al. } \\ & {[34]} \\ & (2006) \end{aligned}$	Female (23)	Progressive weakness of both lower limbsBowel and bladder dysfunction30	Normal	$\begin{aligned} & \text { C3-6, } \\ & \text { D1-4, D5 } \end{aligned}$	MRI: Intradural, extramedullary 3 lesionsHypointense on T1-WI and T2-WI with marked homogeneous enhancement	Lymphoplasmacytic infiltrate with intervening histiocytic cells IHC: S- $100(+)$	Complete resection	5Improvement No recurrence
Roy C et al. [35] (2012)	Male (32)	Spinal pain Asymmetric spastic paraparesis2	Normal	T11-L2	MRI: ExtraduralIsointense on T1WI and hyperintense on T2-WI and STIR	Histiocytes admixed with lymphocytes and plasma cellsIHC: S100 (+)	Complete resectionRadiotherapy	3Improvement
Abou-Zeid   A. H et al.   [36]   (2010)	Male (24)	Spinal pain Bilateral lower-limb weaknessBladder dysfunction1 week	Leukocytosis $13.1 \times 109 / \mathrm{L}$	T4-T7	MRI: Extradural Isointense on T1and T2-WI with diffuse enhancement after gadolinium	A histiocytic lesion in a fibrous background admixed with lesser populations of T and B lymphocytes and plasma cellsEmperipolesisIHC: CD68 (+), S100 (+), CD1a (-)	Incomplete resectionFixation	18Improvement No recurrence
Al Saad K et al. [37]	Male (17)	Spinal pain Leg numbnessGait unsteadiness 3	Normal	T8-T10	MRI: ExtraduralA T9 vertebral lesion	Neutrophils, lymphocytes, plasma cells, and histiocytesEmperipolesisIHC: CD68	Steroids Complete resection Reconstruction	8Recurrence


Authors (year)	Gender (age (years))	Symptoms Duration (months)	Laboratory findings	Level	Radiological findings	Diagnostic confirmation	Treatment	Follow-up (months)   Outcome



Authors (year)	Gender (age (years))	Symptoms Duration (months)	Laboratory findings	Level	Radiological findings	Diagnostic confirmation	Treatment	Follow-up (months) Outcome
	Male (35)	Spinal pain Lower-limb numbnessNS	Normal	T2-T5	MRI: Extradural	Fibrosis with dense infiltration of a population of abnormal histocytesEmperipolesisIHC: S100 (+), CD68 (+)	SteroidsComplete resectionRadiotherapy	60Recurrence
Singh Setal.   [46]   (2019)	Female (15)	Progressive spastic quadriparesis2	NS	C3-C5	MRI: Intradural extramedullaryHomogenous enhancement	Histiocytes and multinucleated giant cells mixed with dense inflammatory infiltrates EmperipolesisIHC: S-100 protein (+), CD1a (-)	Complete resection	2Improvement
$\begin{aligned} & \text { Parmar V } \\ & \text { et al. } \\ & {[47]} \\ & (2013) \end{aligned}$	Male (64)	Spinal pain Radicular pain1	Normal	C5-C6	MRI: Intradural extramedullary	Fibrosis with mixed inflammatory infiltrates of lymphocytes, plasma cells, and histiocytesIHC: S100 (+), CD68 (+), CD1a (-)	Complete resection	9Improvement No recurrence
Maiti T k   et al.   [48]   (2011)	Female (19)	Spinal painSpastic quadriparesis2	Anemia ( $10.8 \mathrm{~g} /$ dL)Elevated ESR ( $62 \mathrm{~mm} / \mathrm{h}$ )	C2-C7	MRI: Extradural Homogenous enhancement	Soft tissue with dense aggregates of lymphocytes and histiocytesEmperipolesisIHC: S100 $(+)$, CD68 ( + ), CD1a ( - )	Complete resection	18 Improvement Doubtful recurrence
```Syed S ALI et al. [49] (2014)```	Male (28)	Spinal painRadicular pain3	NS	L3-L5	MRI: Extraduralisointense on T1-   WI, hyperintense on T2-   WIHomogenous enhancement	Histiocytes with mixed inflammatory cells composed of lymphocytes and plasma cellsIHC: S100 (+), CD68 (+),	Incomplete resection	6Recurrence
Our case	Male(50)	Weakness and numbness in both lower limbs Gait unsteadiness1	Normal	T8-T11	MRI: Extraduralisointense on T1WI, hypointense on T2-WIIntense enhancement	Fibrous tissue with histiocytes, lymphocytes, and plasma cellsEmperipolesisIHC: S100 (+), CK (-)	Steroids Complete resection	6Improvement No recurrence

 weighted image.

Table 2
Summary of the characteristics of the reviewed cases.

Patients' characteristics		$\mathrm{n}=52$
Age, mean \pm SD, years		$35.85 \pm$
		16.48
Male-to-Female ratio	High ESR, n (\%)	2.11
Laboratory findings	ESR, mean $\pm \mathrm{SD}, \mathrm{mm}$	$8(15)$
		$41.38 \pm$
Location	Extradural, n (\%)	20.69
	Intradural extramedullary, n (\%)	$30(57)$
	Intramedullary, n (\%)	$14(26)$
	Osseous lesion, n (\%)	$4(7)$
	Surgery, n (\%)	$6(10)$
	Steroids, n (\%)	$51(96)$
	Chemotherapy, n (\%)	$8(15)$
	Radiotherapy, n (\%)	$1(2)$
	Improvement, n (\%)	$4(8)$
Outcome	Recurrence rate, n (\%)	$41(77)$
	Time to recurrence, mean \pm SD, months	$19.52 \pm$
		21.64

ESR: erythrocyte sedimentation rate, SD: standard deviations.
cell penetrates another normal living cell [59].
The macrophage-dendritic cell lineage's histiocytosis and neoplasms encompass five groups, including RDD. This later is classified into five subgroups: classical (nodal) (1), familial (2), extranodal (3), neoplasiaassociated (4), and immune disease-associated RDD (5) [60].

The third subgroup (extranodal RDD) can involve the skin (10\%), subcutaneous tissue, deep soft tissue, bone ($5-10 \%$ of cases), visceral organs, central nervous system (7\%), upper respiratory tract, thyroid, and salivary glands [1,61].

Spinal RDD represents only 25% of extranodal RDD affecting the central nervous system. Spinal RDD can be spinal-dural or epidural. Reported cases of secluded spinal RDD are summarized in Table 1. We reported a case of a 50-year-old male patient with isolated RDD of the thoracic spine. Indeed, cervical and thoracic spine are the most common regions of RDD [1].

Clinical manifestations depend on the location and the size of the lesion. As shown in Table 1, all patients complain of signs of spinal cord compression, ranging from spinal pain to neurological deficit and cauda equina syndrome $[18,20]$. Laboratory findings do not seem to be specific [45]. They can reveal mildly increased ESR and leukocytosis [54].

Spine MRI can show spinal-dural or epidural lesions, which appear isointense or hypointense on T1-weighted images [38,39], and isointense, hypo, or hyperintense on T2-T2-weighted images [38,39]. After the administration of gadolinium, RDD lesions have homogenous enhancement [36]. A dura tail sign can also be seen, mimicking a meningioma [41]. The Dura tail sign was defined by Goldsher et al. as a thickening of the dura adjacent to the tumor and tapering away from it, seen as an enhancement more intense than the tumor, in at least two consecutive sections through the tumor at the same site in more than one imaging plane [62]. A CT scan can reveal osteolytic lesions of the concerned vertebra [27,40].

Histological findings showed fibrous tissue with mixed inflammatory infiltrates of histiocytes, lymphocytes, and plasma cells [7,11,32,38]. Emperipolesis is the hallmark of RDD [45]. It is different from phagocytosis because, during emperipolesis, histiocytes engulf intact cells, which remain viable and can even exit histiocytes [1]. Emperipolesis was present in 73% of the cases reviewed. Histocytes of RDD lesions exhibited positiveness for S-100 and CD68 and negativity for CD1a. The negativity for CD1 a would distinguish RDD histiocytes from Langerhans cells [63].

Until this date, no guidelines were established for the management of spinal RDD. In the reviewed cases, surgery was performed in most cases (Table 1). A complete resection of RDD lesion was obtained in 68%. Other teams opted for an association of surgical treatment with
radiotherapy, steroids, or chemotherapy. Radiotherapy and chemotherapy were indicated in patients with partial improvement in symptoms after surgery [23,26,35,45]. Since the RDD lesion was extensive (extending from C3 to L1 level), James J et al. reported treating it with steroids alone, which resulted in clinical improvement with radiological resolution of the spinal cord lesion [17]. Initial physical examination revealed spastic lower limbs with grade II power with remarkable improvement after steroids (the power of both lower limbs became Grade IV). In this case, the diagnosis was performed based on a biopsy taken from the lesion through a D1-D2 laminectomy [17]. Ramon A et al. reported spontaneous improvement of a spinal RDD lesion with spontaneous reconstruction of the concerned vertebra in an 18-year-old male patient [30]. Spinal RDD appears benign with a 70% improvement rate and only a 15% recurrence rate.

Our work is among the few systematic reviews emphasizing the clinical presentation, imaging features, and therapeutic management of isolated spinal RDD. However, our review has some limitations. First, we included studies with low class of evidence, such as case reports and small case series. Second, the publication bias was also anther limitation for our study as we only included published studies and we did not search for unpublished work.

5. Conclusions

This review focuses on spine RDD, a rare extranodal manifestation. Diagnosing isolated spinal RDD can be challenging due to the absence of common RDD manifestations such as massive cervical lymphadenopathy. The lack of specific imaging features highlights the importance of surgery, not only for lesion removal but also for ruling out alternative diagnoses. The choice of optimal adjuvant treatments requires further research.

Ethics approval

Our study complies with the Declaration of Helsinki.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of Competing Interest

None.

Acknowledgements

None.

Informed consent

Written informed consent was obtained from the patient.

Consent for publication

Written informed consent was obtained from the patient to publish this case report.

References

[1] I. Elbaz Younes, L. Sokol, L. Zhang, Rosai-Dorfman disease between proliferation and neoplasia, Cancers 14 (21) (2022 Oct 27) 5271.
[2] O. Abla, E. Jacobsen, J. Picarsic, Z. Krenova, R. Jaffe, J.F. Emile, et al., Consensus recommendations for the diagnosis and clinical management of Rosai-DorfmanDestombes disease, Blood 131 (26) (2018 Jun 28) 2877-2890.
[3] G. Goyal, J.R. Young, M.J. Koster, W.O. Tobin, R. Vassallo, J.H. Ryu, et al., The Mayo Clinic Histiocytosis Working Group Consensus Statement for the Diagnosis
and Evaluation of Adult Patients With Histiocytic Neoplasms: Erdheim-Chester Disease, Langerhans Cell Histiocytosis, and Rosai-Dorfman Disease, Mayo Clin. Proc. 94 (10) (2019 Oct) 2054-2071.
[4] P. pan Hu, F. Wei, X. guang Liu, Z. jun Liu, Diagnosis and treatment of RosaiDorfman disease of the spine: a systematic literature review, Syst. Rev. 10 (2021 Jan 18) 31.
[5] Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement | The BMJ [Internet]. [cited 2023 Aug 20]. Available from: https:// www.bmj.com/content/339/bmj.b2535.
[6] C.W.R. Chen, C. Kachramanoglou, T. Revesz, D. Choi, Rosai-Dorfman disease presenting as a thoracic intradural extramedullary spinal tumor but without extraspinal manifestations, Acta Neurochir. (Wien.) 154 (2) (2012 Feb 1) 367-368.
[7] J.A.W. Andriko, A. Morrison, C.H. Colegial, B.J. Davis, R.V. Jones, Rosai-Dorfman Disease isolated to the central nervous system: a report of 11 cases, Mod. Pathol. 14 (3) (2001 Mar 1) 172-178.
[8] R.K. Osenbach, Isolated extranodal sinus histiocytosis presenting as an intramedullary spinal cord tumor with paraplegia: case report, J. Neurosurg. 85 (4) (1996 Oct) 692-696.
[9] L. Wu, Y. Xu, Rosai-Dorfman disease: a rare lesion with dura tail sign mimicking spinal meningioma, Spine J. 14 (12) (2014 Dec) 3058-3059.
[10] Y. Tian, J. Wang, M. Li, S. Lin, G. Wang, Z. Wu, et al., Rosai-Dorfman disease involving the central nervous system: seven cases from one institute, Acta Neurochir. 157 (9) (2015 Sep 1) 1565-1571.
[11] H. Zhu, L.H. Qiu, Y.F. Dou, J.S. Wu, P. Zhong, C.C. Jiang, et al., Imaging characteristics of Rosai-Dorfman disease in the central nervous system, Eur. J. Radiol. 81 (6) (2012 Jun) 1265-1272.
[12] X. Fu, J. hong Jiang, X. ying Tian, Z. Li, Isolated spinal Rosai-Dorfman disease misdiagnosed as lymphoplasmacyte-rich meningioma by intraoperative histological examination, Brain Tumor Pathol. 32 (1) (2015 Jan 1) 72-75.
[13] D.Y. Kim, J.H. Park, D.A. Shin, S. Yi, Y. Ha, D.H. Yoon, et al., Rosai-Dorfman Disease in thoracic spine: a rare case of compression fracture, Korean J. Spine 11 (3) (2014 Sep 30) 198-201.
[14] S. Sciacca, K. Barkas, L. Heptinstall, C. McNamara, R. Shetty, Rosai-Dorfman disease with spinal cord compression: a diagnostic challenge, Eur. Spine J. 24 (4) (2015 May 1) 529-535.
[15] Y. Li, X. Wang, J. Gao, S. Yu, Z. Li, Isolated extradural Rosai-Dorfman disease causing the spinal cord compression: a case report, Med. (Baltim.) 97 (40) (2018 Oct) e12722.
[16] A. Jayaram, N.J. Al Maslamani, N.A.P.A. Rahiman, V.C. Negi, Rosai-Dorfman disease with paravertebral and epidural thoracic spine involvement: A case report and literature review, Radiol. Case Rep. 15 (5) (2020 May) 484-488.
[17] J. James, J. Jose, Spinal extradural Rosai Dorfman disease, Electron. J. Gen. Med. 14 (1) (2017). Available from: http://www.ejgm.co.uk/article/spinal-extradural-rosai-dorfman-disease-7367.
[18] J. Rocha-Maguey, J.A. Felix-Torrontegui, M. Cabrera-López, M. Gutiérrez-Castro, D. Montante-Montes de Oca, A new case of cervical intramedullary sinus histiocytosis causing paraplegia and review of the literature, Surg. Neurol. Int. 7 (2016 Jan 28) 9.
[19] G.L. Lima, O. de, A.C. Costa, B.H. da, Goes, P. de, N.P. Junior, Double compression caused by isolated spinal Rosai-Dorfman disease, Spine J. 16 (8) (2016 Aug 1) e521-e522.
[20] H. Jiang, J. Song, W. Lin, M. Yi, M. Yao, L. Ding, Rosai-Dorfman disease with spine involvement, Medicine 101 (8) (2022 Feb 25) e28413.
[21] H. Xu, F. Zhang, F. Lu, J. Jiang, Spinal Rosai-Dorfman disease: case report and literature review, Eur. Spine J. 26 (S1) (2017 May) 117-127.
[22] C.K. Lin, Y.D. Tsai, Nonresectable Thoracic Rosai-Dorfman disease: a case report and review of the literature, World Neurosurg. 132 (2019 Dec) 309-313.
[23] W. Baassiri, C.K. Moussalem, E. Massaad, Y.H. Zeidan, H. Darwish, Craniocervical Rosai-Dorfman disease involving the vertebral artery: case report and literature review, World Neurosurg. 133 (2020 Jan) 69-73.
[24] B. Kozak, J. Talbott, A. Uzelac, B. Rehani, Rosai-Dorfman disease isolated to the thoracic epidural spine, J. Radiol. Case Rep. 9 (11) (2015 Nov 30) 6-16.
[25] A. Kumar, B. Thirugnanam, S.A. Kareem, S.P. Ajay Kumar, S. Vidyadhara, Report of isolated epidural extra-nodal Rosai-Dorfman disease of cervicothoracic spine, Spinal Cord. Ser. Cases 6 (2020 Aug 27) 82.
[26] C. Hargett, T. Bassett, Atypical presentation of sinus histiocytosis with massive lymphadenopathy as an epidural spinal cord tumor: a case presentation and literature review, Clin. Spine Surg. 18 (2) (2005 Apr) 193.
[27] E.G. Robert, K.B. Fallon, G.C. Tender, Isolated Rosai-Dorfman disease of the sacrum: case illustration, J. Neurosurg. Spine 4 (5) (2006 May 1), 425-425.
[28] Y. Wang, X. Gao, W. Tang, C. Jiang, Rosai-Dorfman disease isolated to the central nervous system: a report of six cases, Neuropathology 30 (2) (2010) 154-158.
[29] Q. Huang, K.L. Chang, L.M. Weiss, Extranodal Rosai-Dorfman Disease involving the bone marrow: a case report, Am. J. Surg. Pathol. 30 (9) (2006 Sep) 1189.
[30] A. Ramon, H. Morel, C. Piroth, J.F. Maillefert, A spontaneous bone reconstruction, Rheumatology 59 (7) (2020 Jul 1), 1586-1586.
[31] M. El Molla, T. Mahasneh, S.E. Holmes, D. Al-Khawaja, Rare Presentation of RosaiDorfman disease mimicking a cervical intramedullary spinal cord tumor, World Neurosurg. 81 (2) (2014 Feb 1) 442.e7-442.e9.
[32] J.P. Hollowell, C.E. Wolfla, N.C. Shah, L.P. Mark, M.H. Whittaker, Rosai-Dorman disease causing cervical myelopathy, Spine 25 (11) (2000 Jun) 1453-1456.
[33] J. Tu, W.T. Li, C. Yang, Rosai-Dorfman disease of the subdural spine with a long segment lesion: a case report and literature review, J. Int. Med. Res. 45 (2) (2017 Apr 1) 875-881.
[34] A. Bhandari, P.R. Patel, M.P. Patel, Extranodal Rosai-Dorfman disease with multiple spinal lesions: a rare presentation, Surg. Neurol. 65 (3) (2006 Mar) 308-311.
[35] C. Roy, A. Saha, S. Roy, A. Ghosh, Extranodal Rosai-Dorfman disease presenting as spinal extradural lesion: a case report with a review of the literature, J. Cancer Res. Ther. 8 (4) (2012) 647.
[36] A.H. Abou-Zeid, A. Herwadkar, D.D. Plessis, K.K. Gnanalingham, Isolated extradural Rosai-Dorfman disease of the thoracic spine: a rare cause of spinal cord compression: case report, Neurosurgery 67 (2) (2010 Aug) E514-E515.
[37] K. Al-Saad, P. Thorner, B.Y. Ngan, J.T. Gerstle, A.V. Kulkarni, P. Babyn, et al., Extranodal Rosai-Dorfman disease with multifocal bone and epidural involvement causing recurrent spinal cord compression, Pedia Dev. Pathol. J. Soc. Pedia Pathol. Paediatr. Pathol. Soc. 8 (5) (2005) 593-598.
[38] B.Y. Huang, H. Zhang, W.J. Zong, Y.H. Sun, Rosai-Dorfman disease of rare isolated spinal involvement: report of 4 cases and literature review, World Neurosurg. 85 (2016 Jan) 367.e11-367.e16.
[39] A. Elsotouhy, M. Abozed, A. Marioud, A. Haider, A. Roux, Spinal Rosai-Dorfman disease: case report of a rare disorder, Egypt J. Radiol. Nucl. Med. 46 (4) (2015 Dec 1) $1081-1084$.
[40] Z. Igrutinovic, R. Medovic, S. Markovic, G. Kostic, Z. Raskovic, J. Tanaskovic-Nestorovic, et al., Rosai-dorfman disease of vertebra: case report and literature review, Turk. J. Pedia 58 (5) (2016) 566.
[41] Y. Xin, H. Shen, D. Kong, W. Jia, H. Liu, J. Yang, Isolated intradural Rosai-Dorfman disease of the spine: report of two cases, Chin. Neurosurg. J. 2 (1) (2016 May 18) 13.
[42] P.X. Nguyen, N.V. Nguyen, T.D. Le, Spinal extranodal Rosai-Dorfman disease: A case report and literature review, Int J. Surg. Case Rep. 88 (2021 Nov) 106491.
[43] A.A. Atal, S. Thakar, N. Ghosal, A. Hegde, Primary spinal Rosai-Dorfman disease: Report of an unusual extradural pathology, Neurol. India 67 (3) (2019 Jan 5) 896.
[44] R. Karim, M.M. Sultan, K. Hossain, H. Chowdhury, M. Rahman, Long segment Rosai-Dorfman disease-causing spinal cord compression: a case report, Int. J. Surg. Case Rep. 91 (2022 Jan 15) 106775.
[45] S.S. Baeesa, H. Mahboob, Y. Maghrabi, M. Binmahfoodh, J. Almaghrabi, Long-term outcome of spinal extranodal rosai-dorfman disease: a report of two cases and systematic review, World Neurosurg. 144 (2020 Dec) 1-14.
[46] S. Singh, A. Kumar, S. Pandey, R. Kumar, I. Singh, N. Kumari, Isolated Langerhans cell histiocytosis masquerading as intradural extramedullary meningioma: review on histiocytic disorders of spine, J. Pedia Neurosci. 14 (1) (2019) 46-51.
[47] V. Parmar, C. Seward, A. Huho, J. Qian, R. Gandhi, J.G. Pilitsis, Rosai-Dorfman disease presenting as cervical radiculopathy, Clin. Neurol. Neurosurg. 115 (6) (2013 Jun) 808-810.
[48] T.K. Maiti, J. Gangadharan, A. Mahadevan, A. Arivazhagan, B.A. Chandramouli, S. K. Shankar, Rosai-Dorfman disease presenting as cervical extradural lesion: a case report with review of literature, Neurol. India 59 (3) (2011 Jan 5) 438.
[49] S.S. Ali, S.M. Uttamrao, B. Mangaleswaran, Spinal Rosai-Dorfman Disease: A rare case report, J. Spinal Surg. 1 (4) (2014 Dec) 158.
[50] A quintessential syndrome with a rare marvelling aetiology: Rosai-Dorfman disease presenting as Conus-Cauda syndrome | BMJ Case Reports [Internet]. [cited 2023 Jul 23]. Available from: https://casereports.bmj.com/content/2018/bcr-2017-222398.short.
[51] Extranodal Rosai-Dorfman disease with multilevel lumbar spinal lesions in: Journal of Neurosurgery: Spine Volume 9 Issue 1 (2008) Journals [Internet]. [cited 2023 Jul 23]. Available from: https://thejns.org/spine/view/journals/j-neurosurg-spine/9/1/article-p55.xml.
[52] P. Destombes, [Adenitis with lipid excess, in children or young adults, seen in the Antilles and in Mali. (4 cases)], Bull. Soc. Pathol. Exot. Fil. 58 (6) (1965) 1169-1175.
[53] J. Rosai, R.F. Dorfman, Sinus histiocytosis with massive lymphadenopathy. A newly recognized benign clinicopathological entity, Arch. Pathol. 87 (1) (1969 Jan) 63-70.
[54] E. Foucar, J. Rosai, R. Dorfman, Sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease): review of the entity, Semin. Diagn. Pathol. 7 (1) (1990 Feb) 19-73.
[55] Y. Mehraein, M. Wagner, K. Remberger, L. Füzesi, P. Middel, S. Kaptur, et al., Parvovirus B19 detected in Rosai-Dorfman disease in nodal and extranodal manifestations, J. Clin. Pathol. 59 (12) (2006 Dec 1) 1320-1326.
[56] P. Middel, B. Hemmerlein, A. Fayyazi, U. Kaboth, H.J. Radzun, Sinus histiocytosis with massive lymphadenopathy: evidence for its relationship to macrophages and for a cytokine-related disorder, Histopathology 35 (6) (1999) 525-533.
[57] Al M., Am K., Ea G., Mk G. [A case of sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease) in a patient with diffuse large B-cell lymphoma and chronic hepatitis B virus infection]. Ter Arkh [Internet]. 2012 [cited 2024 Feb 19];84(11). Available from: https://pubmed.ncbi.nlm.nih.gov/ 23252252/.
[58] N.V. Morgan, M.R. Morris, H. Cangul, D. Gleeson, A. Straatman-Iwanowska, N. Davies, et al., Mutations in SLC29A3, encoding an equilibrative nucleoside transporter ENT3, cause a familial histiocytosis syndrome (faisalabad histiocytosis) and familial rosai-dorfman disease, PLoS Genet. 6 (2) (2010 Feb 5) e1000833.
[59] V. Rastogi, R. Sharma, S.R. Misra, L. Yadav, V. Sharma, Emperipolesis - a review, J. Clin. Diagn. Res. JCDR 8 (12) (2014 Dec). ZM01-2.
[60] J.F. Emile, O. Abla, S. Fraitag, A. Horne, J. Haroche, J. Donadieu, et al., Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages, Blood 127 (22) (2016 Jun 2) 2672-2681.
[61] I. ud Deen, A. Chittal, N. Badro, R. Jones, C. Haas, Extranodal Rosai-Dorfman Disease- a review of diagnostic testing and management, J. Community Hosp. Intern. Med. Perspect. 12 (2) (2022 Apr 12) 18-22.
[62] H. Sotoudeh, H.R. Yazdi, A review on dural tail sign, World J. Radio. 2 (5) (2010 May 28) 188-192.
[63] Review of Sinus Histiocytosis with Massive Lymphadenopathy (Rosai-Dorfman Disease) of Head and Neck - Antonino Carbone, Kenneth O. Devaney, Alberto Passannante, Alessandra Rinaldo, Annunziata Gloghini, Alfio Ferlito, 1999 [Internet]. [cited 2023 Aug 19]. Available from: https://journals.sagepub.com/ doi/10.1177/000348949910801113.

[^0]: * Correspondence to: Department of Rheumatology, Military Hospital, Tunis 1007, Tunisia.

 E-mail address: maroua.slouma@gmail.com (M. Slouma).
 ${ }^{1}$ ORCID: 0000-0002-6889-9687
 https://doi.org/10.1016/j.clineuro.2024.108206
 Received 19 January 2024; Received in revised form 21 February 2024; Accepted 24 February 2024
 Available online 29 February 2024
 0303-8467/© 2024 Elsevier B.V. All rights reserved.

