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Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, 
immune status monitoring is not implemented in clinical practice due in part to the current absence of direct 
therapeutic implications. Technological advances in immunological profiling could enhance our understanding of 
immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of 
the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for 
progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in 
current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, 
including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid 
of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable 
algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient 
outcomes.

Introduction
In recent years, the use of evidence-based treatment 
guidelines, such as those developed as part of 
the Surviving Sepsis Campaign, has been associated 
with significant improvements in early-phase sepsis 
outcomes.1 Nonetheless, with an estimated 
48·9 million incident cases worldwide in 2017, and 
11·0 million deaths, sepsis remains a leading cause of 
morbidity and mortality.2

Extensive research has emphasised the role of 
dysregulated immune responses in sepsis patho
physiology, but only a few immunoadjuvant treatments 
have shown signals of efficacy and robust positive 
findings have yet to be produced for clinical endpoints.3–6 
The heterogeneity of immune dysregulation in patients 
with sepsis explains the many failed attempts to target 
the dysregulated immune response in clinical trials.7–9 No 
individualised immune status assessment is routinely 
used and no internationally adopted guidelines provide 
recommendations on preferred biomarkers for sepsis 
research and clinical practice. In this Review, we 
emphasise the urgent need to profile the dysregulated 
immune response in sepsis. Progress in immune 
profiling would help to make precision medicine a reality 
in order to improve early-phase outcomes and reduce the 
incidence of late sepsis complications.10 We provide an 
overview of the immunopathophysiology of sepsis and 
discuss current and innovative strategies to characterise 
the immune status of patients, including recent 
advancements in sepsis endotyping, machine 
learning (ML), and artificial intelligence (AI) approaches. 
We also examine attempts to implement personalised 
medicine in sepsis, highlighting associated challenges 
and proposing solutions. Finally, we draw on the lessons 

learnt during the COVID-19 pandemic to improve the 
future treatment of sepsis.

Immunopathophysiology of sepsis
Our understanding of sepsis pathophysiology has 
evolved substantially during the past century. Currently, 
sepsis is viewed as a complex and heterogeneous state 

Key messages

•	 A dysregulated immune response with a lack of 
physiological balance between hyperactivation and 
hyporesponsiveness is a key component of the 
pathophysiology of sepsis

•	 Immune dysregulation in patients with sepsis is 
heterogeneous and dynamic, requiring personalised 
treatment strategies

•	 Successful immunomodulation trials in severe COVID-19 
underscore the potential of therapies that target the 
immune system in the management of sepsis

•	 Specific immunological biomarkers and high-throughput 
omics-based techniques provide novel insights into 
immune dysregulation and allow the identification of 
sepsis endotypes

•	 Integration of various types of information, including 
immunological, clinical, microbiological, and high-
throughput omics data in so-called combitypes, with the 
aid of machine learning and artificial intelligence 
techniques, could be an important step towards the 
realisation of precision medicine in sepsis

•	 The development of internationally adopted guidelines 
for assessment of the dysregulated host response in sepsis 
would lead to better standardisation and clinical utility
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characterised by concurrent proinflammatory and anti-
inflammatory responses, in which detrimental sequelae 
can be caused by both persistent hyperinflammation 
and prolonged hyporesponsiveness of the immune 
system (figure 1).

The heterogeneity of the immune response can be 
ascribed to a variety of factors, including age (sepsis 
typically affects the very old [>70 years] and very young 
[<1 year]), different infectious causes, sites of infection, 
host genetics, applied treatments, and rapidly changing 
illness dynamics. An overview of predisposing factors 
for sepsis is provided in the appendix (p 1).

In sepsis, the immune response is initially activated 
through sensing of pathogen-associated molecular 

patterns (PAMPs) by pattern recognition receptors. The 
activation of pattern recognition receptors induces broad 
biological responses, including the release of cytokines 
and other inflammatory mediators,11 as well as the 
induction of immune cell death (eg, of macrophages 
through activation of caspases).12 Furthermore, activated 
granulocytes released from the bone marrow produce 
neutrophil extracellular traps to capture microorganisms, 
which might aggravate inflammation and tissue injury.13 
The inflammatory response in sepsis is also characterised 
by neuroendocrine alterations, activation of the 
complement and coagulation systems, and alterations in 
lipid mediators—all of which act synergistically to 
enhance inflammation.14,15 If systemic or sustained, this 
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Figure 1: Sequence of immune dysregulation in sepsis
Many patients with sepsis have predisposing factors, such as ageing or comorbidities, that are known to contribute to immune dysregulation (appendix p 1), thereby 
impairing their ability to mount an effective response against an infecting microbe. An impaired initial response typically translates into poor microbial control, 
leading to excessive activation of the innate immune response and acute-on-chronic endothelial dysfunction or activation of coagulation. This hyperinflammatory 
signature is paralleled by the emergence of an immunosuppressive phenotype, exemplified by uncontrolled migration of leukocytes to the extravascular space, 
increased apoptosis and impaired function of lymphocytes, defective expression of molecules required for antigen presentation such as HLA-DR, as well as relative 
expansion of suppressor cells such as T-reg cells, MDSCs, and IGs. This immunosuppressive phenotype frequently leads to sepsis-associated immunosuppression, 
which renders the host unable to clear the primary infection, provokes reactivation of dormant viruses, and renders the host vulnerable to secondary infections, 
culminating in a vicious pathogenic cycle. These events are compounded by the induction of tissue injury by microbial and immunological factors, leading to organ 
dysfunction. Many sepsis survivors face long-term clinical consequences, including so-called PICS, frequently accompanied by cardiovascular and neurological 
complications, and cancer, which represent chronic immunological sequelae. ICU=intensive care unit. IGs=immature granulocytes. MDSCs=myeloid-derived 
suppressor cells. PICS=persistent inflammation, immunosuppression, and catabolism syndrome. T-reg cells=regulatory T cells.
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inflammatory cascade potently activates the 
endothelium, which loses its homoeostatic functions, 
becomes pro-coagulant and leaky, and contributes 
substantially to the development of shock, organ 
dysfunction, and ultimately death in a considerable 
proportion of patients.16 An important mechanism 
leading to imbalanced coagulation and endothelial 
dysfunction in septic shock is depletion of activated 
protein C, which has important anticoagulant and anti-
inflammatory effects, and can promote fibrinolysis and 
inhibit thrombin generation.17 However, in the 
PROWESS-SHOCK trial, treatment with recombinant 
human activated protein C did not reduce 28-day 
mortality in adults with septic shock.18

In a subset of patients, an uncontrolled  
hyperinflammatory response might occur, resulting in 
hyperferritinaemic sepsis, macrophage activation-like 
syndrome (MALS), or in the most severe form, haemo
phagocytic lymphohistiocytosis. All these conditions are 
associated with high mortality and typically occur early in 
the disease course (figure 1).19,20

However, in some patients with sepsis, concurrent 
immunoregulatory compensatory mechanisms might be 
predominant (figure 1).21,22 For example, early findings 
revealed that circulating monocytes of patients with sepsis 
display impaired proinflammatory cytokine secretion in 
response to PAMP exposure.23,24 Similarly, innate immune 
cells (eg, dendritic cells, natural killer cells, and 
neutrophils) also display a reduced capacity to produce 
mediators essential for effective pathogen clearance.25–27 
Instead, these cells secrete increased amounts of anti-
inflammatory or immunoregulatory molecules, such as 
interleukin (IL)-10, that dampen antimicrobial effector 
mechanisms.28 These innate immune defects are explained 
by one or both of the following: (1) metabolic and epigenetic 
reprogramming triggered by the initial inflammatory or 
hyperinflammatory insult;29 and (2) altered leukocyte 
differentiation or generation in the bone marrow.30 Sepsis-
induced immunosuppression is also characterised by 
major defects in adaptive immune function.31 For instance, 
T-cell counts are reduced due to apoptosis, while surviving 
T cells frequently display an exhausted phenotype. This  
phenotype is characterised by and might be due to 
increased expression of immune checkpoint molecules, as 
well as impaired production of immunostimulatory 
cytokines such as interferon (IFN)-γ. Finally, a relative 
expansion of regulatory T (T-reg) cells has repeatedly been 
reported.32–35 In most cases, hyporesponsiveness of the 
immune system in sepsis presents in the post-acute phase, 
although its molecular hallmarks are apparent very early 
after the onset of sepsis. This immunocompromised state 
can have serious consequences, such as reactivation of 
latent viral infections—a phenomenon that can negatively 
affect recovery and overall outcome.36,37 Furthermore, 
sepsis-induced immune alterations render the host highly 
vulnerable to secondary infections, often with 
opportunistic, difficult-to-treat pathogens.38

Sepsis-induced immune alterations might persist, at a 
low grade, for years after hospital discharge. There is 
compelling evidence that a significant proportion survivors 
do not fully recover after sepsis, but have dismal long-term 
functional, cognitive, and physical derangements.10,39 In 
these individuals, evidence for the presence of persistent 
low-grade inflammation, immune suppression, and lean 
tissue wasting has been reported.40 Patients with so-called 
persistent inflammation, immunosuppression, and 
catabolism syndrome  (PICS; figure 1) are now recognised 
as having a specific syndrome of chronic critical illness 
associated with poor long-term outcomes.41

Taken together, the evidence suggests that the 
pathophysiology of sepsis involves a major imbalance in 
the immune response to infection. Depending on the host, 
pathogen, and sepsis phase, this response might take the 
form of a dominant hyperinflammatory or immuno
suppressive phenotype. Both are linked to poor prognosis, 
but might necessitate contrasting immunoadjuvant 
therapeutic approaches (figure 2). Due to the absence of 
clinical signs indicative of a patient’s immune status, 
immune monitoring is crucial in identifying an appropriate 
treatment and therapeutic window.

Biomarkers to profile immune status in sepsis
An overview of the significance and suggested use of 
currently used biomarkers to profile immune status in 
sepsis is provided in the appendix (pp 3–7). Technologies 
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Figure 2: Potential immunological phenotypes in sepsis
Patients with sepsis can present with different features of immunological dysfunction and related endothelial and 
coagulation disturbances. These multisystem derangements can coexist, present with different magnitudes over 
the disease course, and are linked to varying degrees of organ failure. Accurate longitudinal profiling of the type 
and dimension of these features can guide appropriate interventions, not only with immunomodulatory drugs, 
but also with therapeutics targeting specific elements of the endothelial or coagulation derangements.
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to profile immune status in sepsis that are already 
available in most hospitals and moving towards broad-
scale clinical application are displayed in figure 3.

Routine clinical laboratory markers
Only a few immune biomarkers are available for routine 
use by clinicians in the management of sepsis. Acute-
phase inflammatory proteins, such as C-reactive protein 
(CRP), and more specific markers of bacterial infection, 
including procalcitonin, are used as diagnostic markers 
of infection and can aid in monitoring the response to 
antibiotics42—in particular, in paediatric patients.43,44 
These markers might also have prognostic value.45 
Similarly, a decreased lymphocyte count was identified as 

a marker of poor prognosis in sepsis and pneumonia.46,47 
An increased immature granulocyte fraction (assessed 
through measurement of the delta neutrophil index by 
some blood-cell analysers) has been proposed as a 
marker for early diagnosis and prognostication in 
sepsis.48–51 The latter also applies to alterations in the 
neutrophil-to-lymphocyte ratio.52 Finally, routinely 
measured ferritin is typically used to identify possible 
MALS.53

Soluble markers
An early elevation in inflammatory cytokines (eg, IL-6 
and IL-8) might be indicative of a hyperinflammatory 
phenotype.54–58 Conversely, increased concentrations of 

Figure 3: Technologies to profile immune status in sepsis
The presented technologies are either already available in most hospital settings or moving towards broad-scale clinical application. The figure was partly generated using Servier Medical Art, provided 
by Servier, licensed under a Creative Commons Attribution 3·0 unported license. CRP=C-reactive protein. IGRA=interferon-γ release assay. IL=interleukin. LPS=lipopolysaccharide. MDSCs=myeloid-
derived suppressor cells. NLR=neutrophil-to-lymphocyte ratio. PCT=procalcitonin. PD-1=programmed cell death 1. PE=phycoerythrin. PHA=phytohaemagglutinin. sPD-L1=soluble programmed cell 
death 1 ligand 1. suPAR=soluble urokinase plasminogen activator receptor. T-reg=regulatory T cell. TLR=toll-like receptor. TNF=tumour necrosis factor. 
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IL-10 and transforming growth factor-β are associated 
with immunosuppression and might be related to 
reduced expression of HLA-DR on monocytes (as 
discussed later).59,60 Activation of the complement 
system in sepsis leads to generation of complement 
C5a. This anaphylatoxin has been proposed as a 
therapeutic target, given that complement C5a 
inhibition enhanced immune function in preclinical 
studies.61–63 Furthermore, complement activation leads 
to consumption of factors such as complement C3, and 
a relationship between complement C3 depletion and 
the expansion of T-reg cells was identified in patients 
with sepsis.64 Finally, plasma concentrations of the 
soluble fraction of the immune-inhibitory receptor 
programmed cell death 1 ligand 1 (PD-L1) are elevated in 
sepsis.65,66 Although several of these markers (eg, some 
cytokines) are already routinely measured in some 
hospitals, they could be broadly implemented on clinical 
analysers, pending further evidence of clinical utility, 
and developed into point-of-care tests to facilitate their 
use in daily clinical practice.

Phenotypic cellular markers
HLA-DR is part of the MHC-II expressed by antigen-
presenting cells at the interface between innate and 
adaptive immunity. Its expression is generally 
measured by flow cytometry, although mRNA 
expression has been used as well.67,68 Several studies 
have shown an association between decreased monocyte 
HLA-DR expression (mHLA-DR) and functional 
alterations of monocytes, such as reduced 
proinflammatory cytokine release and diminished 
antigen presentation capacity.69,70 Most importantly, low 
mHLA-DR expression was shown to be independently 
associated with an increased risk of secondary 
infections and death in critically ill patients.71 Recent 
work identified clusters of patients with septic shock 
who exhibited specific mHLA-DR trajectories related to 
unfavourable outcomes.72,73 A wide consensus in the 
scientific community, therefore, claims that low 
mHLA-DR expression constitutes a surrogate marker 
of sepsis-induced immunosuppression.22,74

More complex cellular phenotyping by flow cytometry 
can provide detailed information on cellular activation 
or exhaustion, maturation, and function in patients 
with sepsis. With respect to neutrophils, low surface 
expression of CD16 and CD10 is indicative of low-
density immature granulocytes, and increased 
abundance of these immunosuppressive myeloid-
derived suppressor cells75–77 is associated with an 
increased risk of death and secondary infections in 
sepsis.75,78 T-cell exhaustion is defined by three inter-
related features: (1) impaired effector function; 
(2) sustained increase in cell-surface expression of 
inhibitory immune checkpoint molecules such as 
programmed cell death 1 (PD-1) on T cells or its ligand 
PD-L1 on antigen-presenting cells; and (3) a distinct 

transcriptional state that impairs development of 
functional T-cell memory. Increased expression of PD-1 
and PD-L1 is associated with progression of infection to 
sepsis,79 risk of nosocomial infections,80 and a more 
severe disease state.81 In older patients with sepsis, 
especially those who do not survive, a relative abundance 
of the immunocompetent CD28+ subset of CD4+ T cells 
was found to be decreased, whereas that of the 
immunosuppressive PD-1+ T cells and CD4+CD25+Foxp3+ 
T-reg cells was increased.82 An increased proportion of 
T-reg cells has been repeatedly observed in sepsis,32–35 
and is related to a decreased lymphoproliferative 
response.32 The CD4-to-CD8 cell ratio is another 
potential marker of immune functionality. For example, 
among older patients with sepsis, the mean CD4-to-
CD8 T-cell ratio is significantly lower in non-survivors 
than in survivors.83,84 Finally, an increasing number of 
studies has shown the feasibility of using dedicated flow 
cytometry panels in multicentric and longitudinal 
clinical studies. This analytical capacity illustrates its 
potential for clinical application.79,85,86

Functional tests
Functional testing is an attractive method to identify 
immune deficiencies in sepsis because it directly 
assesses the ex vivo capacity of a cell population to 
respond to an immune challenge by measuring its 
cytokine production, oxidative burst capacity, 
proliferation, or activation status. Low tumour necrosis 
factor (TNF) production by ex vivo-stimulated whole 
blood was used as an inclusion criterion to apply 
immunostimulatory therapy in paediatric patients with 
sepsis.87 Although commercial easy-to-use products are 
emerging,88 routinely available assays are yet to be 
developed in a standardised format, similar to the assay 
for IFN-γ release in response to tuberculosis antigens.

Monitoring of viral reactivation
There is growing evidence of reactivation of latent 
viruses in patients with sepsis.36,89,90 Compared with 
other critically ill patients (eg, those with burns or 
trauma), patients with sepsis show elevated herpes virus 
titres (mainly determined as DNAaemia via PCR assays 
available in most hospitals)91,92 that correlate with 
transcriptomic37 or humoral37 features of immuno
suppression, and are associated with disease severity 
and mortality.91–93 Although viral reactivation might be 
pathogenic and contribute to disease severity,37,94,95 viral 
titres are a potentially useful metric to gauge immuno
competence.

Broad profiling of immune status in sepsis
The emergence of high-throughput omics technologies 
combined with advanced data analysis is helping to 
delineate a broader picture of the immune status in 
sepsis. This approach is referred to as sepsis systems 
immunology.96
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Transcriptomics
Whole-blood (ie, leukocyte) gene expression profiling 
has contributed extensively to the derivation of 
transcriptomic panels that aid rapid diagnosis of sepsis 
and identification of different sepsis subclasses, also 
known as endotypes—eg, specific patterns of gene 
expression that are related to the host response in 
sepsis.97–108 Endotypes that are characterised by reduced 
expression of genes involved in lymphocyte signalling 
and antigen presentation pathways are indicative of 
impaired innate or adaptive immune responses, and 
identify patients with poor prognosis. These include the 
so-called sepsis response signature 1101 and the Mars1 
endotype in adults,100 as well as the A endotype in 
children.109 The findings suggest that impaired 
immunity is a common signature associated with 
severity in sepsis. The identification of a cluster of 
patients with sepsis who were characterised by an 
overall activation of adaptive immunity and improved 
survival supports this notion.98 Furthermore, endotypes 
have been shown to evolve during hospitalisation in 
parallel with disease severity, and the persistence of 
proinflammatory or coagulopathic endotypes predicts 
worse outcomes.110 Achieving the overarching goal of 
stratification of patients with sepsis into endotypes of 
clinical utility will require an international collaboration 
to establish a consensus sepsis endotype model, 
including variability stemming from geographically 
diverse patient populations. In addition, although blood 
transcriptomics have been key to improved 
understanding of the host response in sepsis, most 
studies have focused on samples obtained at intensive 
care unit (ICU) admission (ie, in acute sepsis). Recent 
work showed that blood transcriptional patterns of 
patients with surgical sepsis who developed chronic 
critical illness were partly distinct at both day 1 and 
day 14 post-sepsis from those of survivors who rapidly 
recovered, in support of the PICS endotype.111 Further 
work is needed to clarify whether survivors of sepsis 
exhibit consistent transcriptomic alterations in 
connection with these endotypes.40

A major evolution in transcriptomic analysis is the 
development of single-cell RNA sequencing (scRNA-seq) 
technologies, which permits the analysis of 
transcriptomic profiles at the level of single cells. So far, a 
few small studies limited to peripheral blood 
mononuclear cells have used scRNA-seq in the context of 
sepsis.112–116 Despite their limitations, these studies have 
uncovered potentially important cellular features—
eg, identification of a novel CD14+ monocyte subset 
(termed MS1) that was expanded in patients with 
bacterial sepsis.115 Furthermore, among survivors who 
develop chronic critical illness, scRNA-seq analysis (in 
combination with cellular indexing of transcriptomes 
and epitopes by sequencing [CITE-seq]) revealed 
lymphocytes characterised by gene expression profiles 
attuned to simultaneous immunosuppressive and 

low-grade proinflammatory states.114 Another study 
reported that myeloid-derived suppressor cells maintain 
a transcriptomic profile reflective of an immuno
suppressive state in patients with late sepsis,116 whereas 
scRNA-seq of circulating haematopoietic stem and 
progenitor cells revealed altered granulopoiesis in 
patients with sepsis and poor outcome.117 These studies 
show that scRNA-seq is a powerful tool that has potential 
in resolving diversity in patients’ immune status. Large 
population studies that profile millions of single cells, 
including the challenging granulocytes, are needed to 
confirm, refine, and operationalise scRNA-seq.

Proteomics
Liquid chromatography-based separation methods 
coupled with mass spectrometry have contributed to the 
identification of up to 3000 proteins involved in sepsis 
pathology—for instance, in the inflammatory response, 
induction of oxidative stress, and mitochondrial 
dysfunction.118 Other simpler tests to profile immuno
logical proteins are the bead-based multiplex assays, 
which have been used extensively for simultaneous 
quantification of cytokines, chemokines, and neutrophil 
degranulation markers in sepsis.119,120 A relatively new 
technology, proximity extension assay, combines a 
targeted immunoassay with PCR to provide multiplex 
quantification of hundreds of proteins in minimal 
volumes of any biological fluid.121 This technology has 
been used to identify new biomarkers in sepsis and 
COVID-19.122,123

Metabolomics
Metabolic pathways are crucial in regulating immune 
responses.124 An integrated metabolomics and 
proteomics analysis of septic patients’ plasma revealed a 
dysregulation of amino acid metabolism related to 
inflammation and immunity.125 For example, tryptophan 
degradation and kynurenine generation via the 
indoleamine-2,3-dioxygenase pathway is a driver of 
sepsis-associated immunosuppression, and is 
associated with increased T-cell apoptosis, decreased 
T-cell proliferation, and generation of T-reg cells.126 
Furthermore, metabolomic profiling of neutrophils of 
patients with sepsis revealed that inhibition of glycolysis 
contributed to the immunosuppressed cellular 
phenotype.127 In addition, leukocytes from patients with 
sepsis exhibit generalised metabolic defects at the level 
of both glycolysis and oxidative metabolism, which are 
restored in recovered patients and when exposed to 
ex vivo treatment with IFN-γ or IL-7.29,128 Finally, recent 
work has shown that metabolomics might have value in 
identifying subphenotypes of sepsis‑induced acute 
respiratory distress syndrome.129

Cytomics
The limitations of traditional flow cytometry, related to 
resolution and number of fluorescence channels, do not 
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apply to two novel cytomics technologies: mass 
cytometry by time of flight (CyTOF)130 and spectral 
cytometry.131 Both technologies enable simultaneous 
analysis of more than 40 markers. In sepsis, CyTOF 
identified shifts in B-cell subpopulations and novel 
subsets of myeloid cells.132 Furthermore, a barcoding 
method for standardised immunophenotyping to derive 
immune trajectories in critically ill patients has recently 
been reported.133

Emerging tools to rapidly profile immune status in 
sepsis
Although omics-based technologies can help to identify 
immune profiles relevant to sepsis diagnosis and 
prognosis, their application in clinical practice remains 
difficult given their complexity, labour intensity, and 
lack of standardisation. Emerging technologies have the 
potential to solve this problem. For example, new 
reverse transcription amplification technologies allow 
profiling of gene expression signatures within 
minutes.134,135 Such methods have already shown value 
for rapid diagnosis of sepsis.134,136 Furthermore, an 
automated multiplex quantitative PCR of several 
targeted genes on whole-blood samples (results within 
60 min) identified patients with sepsis with low 
mHLA-DR expression. The same technology was 
recently used to calculate a transcriptomic score that 
identified patients at risk of ICU-acquired infections.137 
New microfluidics-based platforms are able to quantify 
immunological and endothelial proteins in a multiplex 
format in less than 2 h.138 Finally, biosensors are 
emerging to rapidly profile host response proteins, cell-
surface markers, and even functional parameters such 
as neutrophil motility.139,140

Machine learning and artificial intelligence
An intuitive step towards establishing precision 
medicine in sepsis is the integration of various types of 
information, including immunological, clinical, 
microbiological, and high-throughput omics data in 
meaningful combinations—so-called combitypes. ML 
and AI algorithms have the potential to facilitate 
implementation of combinatorial strategies by 
assimilating large datasets to learn key patterns that 
could deliver timely and accurate information on the 
status of a patient and guide treatment decisions.141

Examples of AI approaches that have been used in 
sepsis research include a natural language processor-
enabled AI algorithm that was trained on clinicians’ 
free-text and electronic medical records for the early 
detection and diagnosis of sepsis.142 Additionally, 
unsupervised k-means clustering (a type of ML) was 
used to derive clinical subphenotypes of sepsis (α, β, γ, 
and δ),8 and another AI method with training on a 
29-gene signature was able to discriminate acute 
bacterial and viral infections.143 Although most studies 
have focused on different data modalities in isolation, 

combinatorial strategies using ML-based and AI-based 
methods deserve more attention, given evidence for 
their efficacy. For example, a ML algorithm was able to 
classify patients with all-cause sepsis as blood 
transcriptomic endotypes (Mars1–4), which when 
combined with Acute Physiology and Chronic Health 
Evaluation (APACHE) IV scores improved on mortality 
prediction compared with APACHE IV scores in 
isolation.144 A retrospective analysis of the 
PROWESS study (testing recombinant human activated 
protein C) reported that patient assignment to α, β, γ, 
and δ subphenotypes in the context of the treatment 
effect was significantly modified by integrating clinical 
microbiological data in a host–pathogen model versus 
host-only model.145 Recently, a ML approach that 
analysed blood transcriptional profiles and 
metagenomic data identified a multiomic signature 
that accurately distinguished sepsis from non-
infectious critical illness.146 Ultimately, combitypes need 
to be integrated into workable algorithms or decision 
trees that can be used effectively by clinicians. 
One example is the paediatric PERSEVERE model, 
which combines soluble markers of immune and 
endothelial responses, platelet counts, and mRNA 
expression to generate a prediction model and serve as 
a prognostic enrichment tool.147–150

Another emerging and futuristic data-driven approach 
is the creation of virtual replicas of a patient’s physiology. 
This concept, known as digital twinning, can facilitate 
an even more refined personalised treatment plan based 
on a patient’s unique physiological characteristics.151–153 
In theory, an AI clinician154 could use data from a 
patient’s digital twin to identify the most effective 
treatment strategies, considering their individual 
response to different medications and interventions, 
but the approach needs to be prospectively assessed. 
Panel 1 shows examples of emerging applications of 
immunological profiling in sepsis.65,98,104,134,146,149,155–165

Towards precision medicine in sepsis
Precision medicine is a new concept that embraces 
individual patient characteristics in clinical decision 
making, thus abandoning a one-size-fits-all 
approach.166,167 This personalised approach was first 
conceptualised in oncology and has become standard of 
care for the treatment of many cancers.168 For precision 
medicine to succeed, population-scale heterogeneity 
needs to be reduced by applying an enrichment 
strategy.167 The two main approaches, which are not 
mutually exclusive, are prognostic and predictive 
enrichment. In prognostic enrichment, a subgroup of 
patients who are more likely to meet clinically defined 
endpoints or outcomes (eg, mortality) is selected from a 
larger, heterogeneous patient population.169,170 In 
predictive enrichment, a subgroup of patients who are 
more likely to respond to a specific biologically driven 
therapeutic intervention is selected from a diverse 
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population.169,170 In contrast to oncology, enrichment 
strategies in sepsis, particularly predictive enrichment, 
are challenging because of the highly dynamic nature of 
sepsis and incomplete knowledge of the 
pathophysiological mechanisms of a given sepsis 
phenotype. There is consensus among researchers and 
clinicians that successful application of precision 
medicine in sepsis requires a balanced application of 
both prognostic and predictive enrichment strategies.170,171 
Although limited, we present an overview of clinical 
studies evaluating adjunctive immunotherapy in sepsis 
using precision medicine approaches. Unlike the 
numerous failed trials of immunomodulatory therapies 
in unselected patients with sepsis, these studies have 
produced some promising results.

Anti-inflammatory treatments
Methylprednisolone was investigated in a multicentre, 
double-blind randomised controlled trial (RCT) performed 
in patients with sepsis due to severe community-acquired 
pneumonia and pronounced inflammation (CRP 
>150 mg/L at admission).172 The methylprednisolone 
treatment group exhibited significantly less late treatment 
failure and a reduced mortality trend. These results are in 
line with those of a recent multicentre prospective cohort 
study, in which glucocorticoids significantly reduced 
30-day mortality in the subgroup of patients with septic 
shock or requiring mechanical ventilation and with a CRP 
of more than 150 mg/L.173

The effect of the anti-TNF monoclonal antibody 
afelimomab on survival was studied in the RAMSES 

Panel 1: Applications of immunological profiling in sepsis

Predicting risk of sepsis
•	 A profoundly altered peripheral adaptive immune 

compartment after critical injury is a potential biomarker to 
identify individuals at a high risk of developing sepsis 
(measured by flow cytometry in peripheral blood 
mononuclear cells).155

Identifying pre-sepsis or facilitating early diagnosis of sepsis
•	 Host biomarker signatures might be able to identify 

postoperative infection or sepsis up to 3 days in advance of 
clinical recognition.156

•	 Distinct immune signatures precede the onset of severe 
sepsis and lethality, providing a method for early triage of 
patients with sepsis.104

Combining strategies to improve diagnosis and severity 
stratification
•	 Combining host response and microbial signatures 

improves sepsis diagnosis.146

•	 Combining transcriptomic, lipidomic, and targeted 
proteomics facilitates early detection of neonatal sepsis.157

•	 Combining gene expression in leukocytes and inflammatory 
mediators improves infection diagnosis (SeptiCyte LAB plus 
C-reactive protein).158

•	 Combining gene expression and protein quantification 
improves severity stratification (PERSEVERE-XP).149

Adding immune signatures to clinical scores to improve 
outcome prediction
•	 A 29-mRNA host response whole-blood signature added to 

the quick Sepsis Related Organ Failure Assessment (qSOFA) 
improves mortality prediction.159

Improving differential diagnosis of sepsis of bacterial or 
viral origin using rapid transcriptomic tests in whole blood
•	 The host response bacterial or viral (HR-B/V) host gene 

expression test rapidly and accurately discriminates bacterial 
and viral infection (better than procalcitonin).160

•	 The TriVerity test uses two algorithms (IMX-BVN and 
IMX-SEV) to produce three separate scores that determine 

the likelihood of bacterial infection, viral infection, and 
requirement for organ supportive therapy.134,161

Using leukocyte transcriptomics to improve diagnosis of 
fungal infections
•	 Transcriptional analysis of circulating leukocytes differentiates 

candidaemia from viral and bacterial infection.162

Understanding interactions between the immune response 
and the coagulation system
•	 Prolonged prothrombin time is associated with stronger 

anomalies in pathways implicated in the pathogenesis of 
sepsis, suggesting that activation of coagulation affects 
other host response mechanisms.163

•	 Advanced computational techniques used on transcriptomic 
datasets identify inflammopathic, adaptive, and 
coagulopathic clusters.98

Profiling endotypes to predict response to steroids
•	 In a secondary analysis of the VANISH randomised trial, 

the immunocompetent SRS2 endotype was associated with 
significantly higher mortality when treated with 
corticosteroids compared with placebo.164

Understanding implications of sepsis-associated 
immunosuppression for antibiotic stewardship
•	 The upcoming RISC-sepsis trial will provide insights into the 

impact of sepsis-associated immunosuppression on a 
biomarker-guided antibiotic duration intervention. 
The primary outcome measures are monocyte HLA-DR; 
neutrophil CD88; programmed cell death 1 on monocytes, 
neutrophils, and T lymphocytes; and the percentage of 
regulatory T cells.165

Understanding long-term consequences of sepsis
•	 In a study that profiled long-term host immune response 

trajectories,65 persistent elevation of inflammation and 
immunosuppression biomarkers occurred in two-thirds of 
patients who survived hospitalisation for sepsis and was 
associated with worse long-term outcomes.
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RCT, which was conducted in patients with sepsis who 
had elevated serum IL-6 concentrations (>1000 pg/mL).174 
Although high IL-6 concentration identified a sepsis 
subgroup with higher mortality, the study was terminated 
early because the modest mortality reduction in the 
afelimomab-treated group was unlikely to achieve 
statistical significance, even with more enrolled patients. 
A few years later, in the larger MONARCS RCT, which 
used the same IL-6-based stratification, treatment with 
afelimomab showed a covariate-adjusted 5·8% reduction 
in the risk of death.175 Furthermore, afelimomab 
significantly reduced circulating TNF and IL-6 
concentrations, and rapidly improved organ failure 
scores compared with placebo.175

Anakinra is a recombinant, engineered variant of the 
IL-1 receptor antagonist, blocking activity of both IL-1α 
and IL-1β. Two previous phase 3 RCTs showed no efficacy 
of anakinra treatment in an unstratified patient 
population with severe sepsis.176,177 A reanalysis of the first 
trial showed a mortality benefit of anakinra in patients 
with an initial plasma IL-1 receptor antagonist 
concentration above an empirical threshold of 
2071 pg/mL.178 Moreover, a subgroup analysis of the 
second trial reported an absolute 30% reduction of 28-day 
mortality in anakinra-treated patients with MALS 
(identified by hepatobiliary dysfunction and disseminated 
intravascular coagulation) who were treated with 
anakinra.179 The PROVIDE pilot study stratified patients 
with septic shock into three endotypes based on 
circulating ferritin concentrations and mHLA-DR.180 
Patients with septic shock and MALS (ferritin 
>4420 ng/mL) or immunosuppression (mHLA-DR 
expression  <5000 mAb per cell) were randomly assigned 
to receive placebo (n=21) or personalised immuno
therapy (n=15). Anakinra treatment in patients with 
MALS was associated with improved Sequential Organ 
Failure Assessment scores, absolute lymphocyte counts, 
and international normalised ratio during the first week, 
but no improvement in survival by day 28.180

Immunostimulatory therapies
The use of IFN-γ to restore immune function in sepsis 
was first reported in 1997, in a case series of nine patients 
with sepsis with low mHLA-DR expression.23 IFN-γ 
restored mHLA-DR expression, enhanced TNF secretion 
by ex vivo monocytes stimulated with lipopolysaccharide, 
and resulted in clearance of sepsis in eight patients. 
Several case reports and series showing similar results in 
patients with sepsis with signs of overt immuno
suppression were published in the following decades,181–183 
the most recent example being the use of IFN-γ in 
five critically ill patients with COVID-19 who had 
impaired cellular immunity.184 So far, the aforementioned 
PROVIDE pilot study 180 on personalised immunotherapy 
has been the only RCT to evaluate the effects of IFN-γ 
therapy in sepsis-associated immunosuppression. 
However, only two patients with mHLA-DR expression 

<5000 mAb per cell were included in this study, so no 
conclusions can be drawn.

An RCT with a small sample size (n=38) showed 
promising results for granulocyte-macrophage colony-
stimulating factor (GM-CSF) in restoring mHLA-DR in 
patients with persisting sepsis-associated immuno
suppression (mHLA-DR <8000 mAb per cell).185 GM-CSF 
treatment was also associated with reduced duration of 
mechanical ventilation, although the study was not 
powered for this clinical endpoint.185 A double-blind RCT 
in patients who were admitted to the ICU with mHLA-
DR expression <10 000 mAb per cell after surgery showed 
that treatment with GM-CSF was safe and effective in 
restoring mHLA-DR, and reduced the duration of 
infection.186 Recently, the GRID study failed to show a 
beneficial effect of GM-CSF in terms of the prevention of 
ICU-acquired infections. However, the study was 
underpowered due to premature termination of the 
trial.187

IL-7 is a non-redundant potent cytokine involved in 
T-cell development, survival, and proliferation. As such, 
recombinant human IL-7 has primarily been developed 
to treat lymphopenia-associated disorders,188–190 but is 
currently under investigation in sepsis and COVID-19. 
Importantly, all published clinical reports of recombinant 
human IL-7 use (phase 2 RCT and clinical cases) were 
guided by an absolute lymphocyte count of 900 cells per 
μL or lower.191–195 Preliminary results indicated that 
recombinant human IL-7 enhances lymphocyte counts 
in patients with sepsis in the absence of severe side-
effects.191–195

Immune checkpoint inhibitors targeting PD-1, PD-L1, 
and CTLA-4, among others, are revolutionising cancer 
treatments. A double-blind, phase 1b RCT evaluated the 
anti-PD-1 treatment nivolumab in adult patients with 
sepsis stratified by absolute lymphocyte count (≤1100 cells 
per μL). The therapy was safe, without signs of a cytokine 
storm, and was associated with the restoration of 
mHLA-DR.196 Similarly, anti-PD-L1 therapy was well 
tolerated in a small group of patients with sepsis with 
absolute lymphocyte counts of 1100 or fewer cells per μL, 
with no evidence of drug-induced hypercytokinaemia.197 

Furthermore, at higher doses, anti-PD-L1 treatment 
increased mHLA-DR expression, an effect that persisted 
beyond 28 days. In two case reports, nivolumab combined 
with IFN-γ conferred a clinical benefit in patients who 
were immunosuppressed in the ICU with invasive 
bacterial and fungal infections. This result was based on 
the monitoring of PD-1 expression on T cells and 
mHLA-DR.198,199 In the appendix (p 2), we discuss 
additional biomarker-guided immunoadjuvant treat
ments using extracorporeal therapy and immuno
globulin supplementation.

Lessons learnt from COVID-19
COVID-19, in its most severe form, fulfils the diagnostic 
criteria for sepsis; however, it is far less heterogeneous 
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than classic sepsis due to pathogen cause and focus. 
The treatment strategies tested in COVID-19 have 
resurrected the notion that anti-inflammatory therapies 
could improve survival in sepsis,200–202 especially when 
applied to selected patients. For instance, in the 
SAVE-MORE trial, enrolment was guided by a biomarker 
(suPAR) that acts as a danger-associated molecular 
pattern.203 In that enriched patient population, treatment 
with anakinra improved survival.203 Furthermore, both 
dexamethasone and the IL-6 receptor antagonist 
tocilizumab were found to be most effective in patients 
with high CRP concentrations,204,205 and there was 
evidence of harm from tocilizumab in patients with low 
CRP.205 The results obtained with IL-6 receptor 
antagonists and Janus kinase inhibitors have renewed 
interest in these therapies for biomarker-guided 
treatment of patients with sepsis without COVID-19 
who have acute lung injury and hypercytokinaemia.206,207 
The fact that the general COVID-19 patient population 
is relatively homogeneous is a possible reason why the 
above therapies were frequently effective in unselected 
COVID-19 patient populations. This observation might 
underscore the promise of targeted application of 
immunomodulatory therapies in classic sepsis, 
following characterisation of immune status. 
Nonetheless, an important consideration for future 
intervention studies involving anti-inflammatory drugs 
in bacterial sepsis is the potential impact on the 
resolution of ongoing infections and the risk of 
developing secondary infections. In this respect, a low 
risk of protracted and secondary infections might also 
contribute to the beneficial effects of anti-inflammatory 
therapies in severe COVID-19.200,201 For example, patients 
with COVID-19 have less pronounced immune 
suppression (measured by mHLA-DR expression) 
compared with patients with bacterial sepsis.208 
Additionally, peak viral shedding typically occurs early 
in the course of COVID-19,209 whereas anti-inflammatory 
agents were shown to improve outcomes in hospitalised 
patients who progressed to severe disease.200,202,210 Unlike 
influenza, in which high-dose corticosteroids increase 
mortality211 and bacterial superinfections are common 
and contribute to poor clinical outcomes, bacterial co-
infection on admission is rare in COVID-19.212–214 As a 
result, the potential negative effect on pathogen 
clearance from the use of anti-inflammatory drugs in 
studies of severe and critical COVID-19 might have 
been minimal. These considerations underscore the 
potential value of the combitypes in future studies 
investigating anti-inflammatory agents in bacterial 
sepsis. Using such an approach, patients could be 
characterised according to their immunological 
endotype, enriched by clinical and microbiological 
features. The pandemic has also highlighted the 
importance of sex-based differences in the dysregulated 
immune response to infection, as men with COVID-19 
are at a higher risk of worse outcomes,215 which 

underscores the need to consider sex as an important 
factor in sepsis-immunology research.

Challenges and opportunities for progress 
In this Review, we describe the status of profiling of the 
dysregulated host response in sepsis and consider future 
clinical perspectives. Although targeted immuno
therapies have the potential to transform care for 
patients with sepsis, current challenges include the 
following: (1) poor performance of routinely available 
biomarkers; (2) limited access in routine clinical care 
to more specific immune-related biomarkers; 
(3) uncertainty about when and how often immune 
biomarkers should be measured; (4) absence of direct 
therapeutic implications; and (5) failure of single 
biomarkers to profile the full complexity of the 
dysregulated host response. In the paragraphs below, we 
discuss these challenges and identify steps that could be 
taken to create opportunities for progress in the care of 
patients with sepsis.

First, routinely used biomarkers—including CRP, 
procalcitonin, and lymphocyte counts—do not reflect 
the functionality of the immune system. These markers 
have no specificity and are insufficient to guide 
individual treatments or to monitor effects of 
immunotherapy. Nevertheless, they have shown value 
in enrichment strategies in preliminary RCTs that have 
evaluated immunoadjuvant therapies in sepsis and 
COVID-19. Increased use of these markers in clinical 
practice could expand clinicians’ empirical knowledge 
of the dysregulated immune responses in patients with 
sepsis and spark new ideas about how to use these (and 
related) biomarkers to improve patient outcomes. 
Additionally, increased use in clinical practice would 
increase the possibility of conducting large-scale sepsis 
studies based on retrospective data, considering at least 
some form of immunological profiling.

Second, this Review also highlights the potential of 
more specific markers (eg, mHLA-DR, viral reactivation, 
multicytokine panels, or functional tests) to distinguish 
patients with overriding hyperinflammation from those 
with persisting immunosuppression. These markers, 
primarily available in specialised and large centres, are 
increasingly used to guide decisions about individual 
patient treatments and as enrichment strategies in 
clinical trials. For example, detection of immuno
suppression can facilitate more rapid identification of 
secondary infections and viral reactivation through 
increased preparedness for specific nosocomial or 
opportunistic pathogens. This knowledge of 
immunosuppression should further motivate clinicians 
to combine immunological markers with therapeutic 
drug monitoring, because it is crucial to ensure that 
appropriate antibiotic administration is provided for 
patients whose immune responses fail to efficiently 
resolve infections. With ongoing technical improve
ments and the development of point-of-care devices, we 
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anticipate that such immune monitoring markers will 
become broadly available and integrated into routine 
care within the next decade.

Third, establishing the optimal timing of immune 
monitoring is challenging because sepsis is highly 
dynamic. Consequently, immune monitoring should 
start on the first day of ICU admission to identify 
patients who might benefit most from early inter
ventions (eg, targeting hyperinflammation). In addition, 
to distinguish between homoeostatic physiological 
responses and pathogenic immunosuppression, 
markers related to sepsis-induced immunoregulatory 
mechanisms should not be interpreted on the basis of a 
single measurement obtained at ICU admission. 
Instead, repeated measurements over time or 
assessment of levels after a few days of ICU admission 

could reveal persisting immunosuppression and help to 
identify patients who fail to recover or return to immune 
homoeostasis.

Fourth, a major reason why immune-related 
biomarkers are used infrequently is the lack of high-
grade evidence of the efficacy of biomarker-guided 
immunoadjuvant treatments in sepsis. As a result, there 
are no internationally defined guidelines for biomarker 
use in patients with sepsis. However, several small or 
retrospective studies in sepsis and COVID-19 suggest 
that a biomarker-driven approach is feasible and 
associated with beneficial outcomes. COVID-19 studies 
have shown that anti-inflammatory therapies can 
improve outcomes in subgroups of patients with 
hyperinflammation. However, there are significant 
disparities between severe COVID-19 and bacterial 

Panel 2: Recommendations for research

Pathophysiology
Improve understanding of the immune response during sepsis 
using systems immunology:
•	 Local versus systemic responses: identify shared or specific 

immunological alterations leading to the failure of specific 
organs in sepsis, and identify direct or indirect markers of 
the dysregulated immune response in different body 
compartments

•	 Pathogen-specific responses: develop tests to assess specific 
immunological responses against different types of 
infecting microbe, to assess the likelihood that a patient can 
clear the infection (immunobiogram)

•	 Delineate subpopulation-specific responses, such as 
differences due to age (eg, children or older patients), sex or 
gender, or immune status (eg, immunocompromised 
patients)

•	 Compare with and learn from immune responses in non-
infectious conditions

•	 Describe evolution over time, including long-term 
consequences

Basic immune monitoring
Current standardised tests profile mostly non-specific markers 
of systemic inflammation, which are also elevated in other non-
infectious conditions. Make better use of already available or 
basic markers:
•	 Use repeated measurements of these markers because 

features of immune dysfunction change over the course of 
sepsis

•	 Define international guidelines for the list of optimal 
immunological markers to be followed in patients and the 
measurement kinetics required

•	 Develop a list of markers that should be provided 
systematically in observational or clinical studies focused on 
the immune response in sepsis (minimal reported 
information)

•	 To achieve this goal, develop and support a large collaborative 
effort to standardise measurements of cellular and soluble 

biomarkers of the dysregulated immune response in sepsis to 
allow comparisons between studies, going beyond 
enumeration to also address functionality

•	 Use microbiology data more extensively because the 
presence of certain pathogens is associated with impaired 
immunity, and the persistence of positive results or a high 
microbial burden in blood or other samples serves as an 
indirect marker of impaired immunity in sepsis

New (combinations of) markers
Studies of the effects of endotypes derived from omics analysis 
combined with routinely assessed immunological biomarkers 
on outcome and response to treatment are warranted. In an 
effort to standardise omics technologies to transfer them from 
research laboratories to routine laboratories, we recommend 
the following:
•	 Identify consensual panels
•	 Perform cross-validation
•	 Transfer panels to simpler and standardisable assays or 

technologies
•	 Combine these markers with other parameters 

(microbiological data or clinical and demographic data) to 
generate combitypes

•	 Provide clinical validation of newly developed panels or 
combitypes

•	 Use validated panels or combitypes to create simple 
workable algorithms that can guide clinical decisions or 
patient enrichment in trials

Precision medicine
Provide the rationale for a precision medicine approach in 
sepsis by performing biomarker-guided randomised clinical 
trials with a high likelihood of a positive outcome:
•	 Define the appropriate design, target population, endpoint, 

treatment, marker or panel, combitype, and measurement 
techniques

•	 Show the safety of this approach (monitoring of side-effects)
•	 Show efficacy on clinically relevant endpoints
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sepsis regarding the risk of impaired pathogen clearance 
when using anti-inflammatory agents. Therefore, future 
stratification strategies in patients with sepsis without 
COVID-19 should be based on simultaneous evidence 
of a hyperinflammatory phenotype and assessment of 
clinical and microbiological features. The clinical and 
microbiological features would be indicative of the 
presence of infections that are or are not amenable to 
effective antimicrobial treatment. In other words, anti-
inflammatory treatments should be withheld when the 
causative pathogen is known to cause complicated 
infections. In this context, the recently published 
CAP-COD trial provides valuable insights, as it showed 
that low-dose hydrocortisone improved survival in 
patients with severe community-acquired 
pneumonia that was predominantly caused by 
Streptococcus pneumoniae, an easy-to-treat pathogen.3 
Recent findings further support the important role of 
microbial cause in treatment responses and the 
derivation of subphenotypes of sepsis.9,145 The ongoing 
IMMUNOSEP (NCT04990232) and IGNORANT 
(NCT05843786) trials will provide more information 
about the efficacy of biomarker-guided immunoadjuvant 
treatment.

Fifth, considering the complexity and diversity of 
mechanisms involved in immunological dysregulation 
in sepsis, combinations of multiple immune and non-
immune-related parameters such as clinical information 
and microbiology data are key in realising the potential 
of precision medicine. The use of such combitypes will 
be facilitated by the rapidly evolving development of 
high-throughput omics-based techniques and advanced 
point-of-care tests that measure multiple (panels of) 
biomarkers simultaneously and are subjected to ML or 
AI analytical scrutiny. In the final operationalisation 
step, the most precise combitypes would be integrated 
into simple workable algorithms to guide complex 
clinical decisions. Considering the challenges outlined 
in this Review, panel 2 delineates our specific 
recommendations for future research.

Conclusion
Accurate profiling of the dysregulated host response 
will be an essential step in the optimisation of care for 
patients with sepsis. Several candidate biomarkers have 
shown potential for patient enrichment in trials 
investigating immunomodulatory therapies. Never
theless, additional approaches to assess immune status 
that are combinatorial in nature need to be developed or 
refined for clinical operationalisation. A multifaceted 
research effort could pave the way for improved disease 
conceptualisation, sepsis diagnosis, disease prediction, 
patient enrichment, and therapeutic decision making. 
Ultimately, refined clinical trials that confirm the 
clinical benefits of biomarker-guided therapeutic 
strategies will be needed to achieve the widely desired 
goal of personalised medicine in sepsis.
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