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The growing availability of targeted therapies for patients with advanced oestrogen receptor-positive breast cancer has 
improved survival, but there remains much to learn about the optimal management of these patients. The PI3K–AKT 
and mTOR pathways are among the most commonly activated pathways in breast cancer, whose crucial role in the 
pathogenesis of this tumour type has spurred major efforts to target this pathway at specific kinase hubs. Approvals 
for oestrogen receptor-positive advanced breast cancer include the PI3K inhibitor alpelisib for PIK3CA-mutated 
tumours, the AKT inhibitor capivasertib for tumours with alterations in PIK3CA, AKT1, or PTEN, and the mTOR 
inhibitor everolimus, which is used irrespective of mutation status. The availability of different inhibitors leaves 
physicians with a potentially challenging decision over which of these therapies should be used for individual patients 
and when. In this Review, we present a comprehensive summary of our current understanding of the pathways and 
the three inhibitors and discuss strategies for the optimal sequencing of therapies in the clinic, particularly after 
progression on a CDK4/6 inhibitor.

Introduction 
The PI3K-AKT and mTOR signalling pathways have 
crucial functions in physiological cellular homoeostasis 
and metabolism. These pathways are constitutively 
activated by genetic alterations in approximately 50% of 
oestrogen receptor (ER)-positive, HER2-negative breast 
cancer,1–3 which is a driver of resistance to endocrine-
based treatment. Moreover, these pathways are likely to 
be activated in the majority of ER-positive tumours 
without genetic alterations, due to upstream receptor 
tyrosine kinase (RTK) signalling. Although PI3K-AKT 
and mTOR signalling are attractive targets for therapy, 
the physiological functions of these pathways make 
therapeutic index the crucial concern, with approaches to 
maximise both drug tolerance and therapeutic benefit 
being paramount.

Treatment of ER-positive metastatic breast cancer is 
rapidly evolving, with the continued growth in precision 
medicine and reduced use of chemotherapy in early lines 
of treatment. CDK4/6 inhibition in combination with 
endocrine therapy is the gold standard first-line treatment, 
improving both overall survival and progression-free 
survival compared with endocrine therapy alone.4–6 Most 
patients eventually have disease progression, at which 
point multiple competing treatment options present a 
clinical challenge, with inhibitors of the PI3K, AKT, or 
mTOR kinases being an option, depending on local 
approval and reimbursement protocols. Here, we review 
inhibitors of the PI3K-AKT and mTOR pathways, 
contrasting their mechanisms of action, clinical evidence, 
and drug tolerance. We discuss selection strategies for 
individual patients in the context of changing 
management in the era of precision oncology.

The PI3K-AKT and mTOR pathways 
The PI3K-AKT and mTOR signalling pathways are key 
regulators of normal cellular growth, proliferation, 
metabolism, and survival.7 Although these pathways are 
often referred to as a single pathway, this simplification 

hampers our perception of how these proteins are 
activated in breast cancer as well as how best to target 
them in the clinic (figure 1). PI3K, AKT, and mTOR are 
major signalling nodes. In terms of activity, PI3K and 
AKT are more closely linked with each other than with 
mTOR, with mTOR ultimately having diverse inputs in 
addition to PI3K-AKT signalling (figure 2).

PI3Ks are a diverse group of lipid kinases that are 
located at intracellular and plasma membranes and 
divided into three classes (I, II, and III).8 In breast cancer, 
PI3K signalling commonly refers to class I PI3Ks, which 
consist of a p85 regulatory subunit and p110 catalytic 
subunit and are activated by RTKs, G protein-coupled 
receptors, and activated RAS.9,10 Two homologous catalytic 
subunits of class I PI3Ks, p110α (encoded by PIK3CA) 
and p110β (encoded by PIK3CB), are broadly expressed 
in breast cancer, whereas other p110 subunits (p110γ and 
p110δ) are only expressed in other cell types.9

On activation, the PI3Ks catalyse the phosphorylation 
of plasma membrane lipid PIP2 to PIP3, which promotes 
the recruitment and activation of AKT and PDK1.10 PTEN, 
the main negative regulator of PI3K signalling, 
modulates this pathway through the dephosphorylation 
of PIP3 to PIP211 (figure 1).

PDK1 and AKT activity are tightly regulated by PI3K 
activity, with AKT the key canonical effector of PI3K 
signalling. AKT binds to PIP3, recruiting it to the plasma 
membrane, and is further activated by PDK1 phos
phorylation.12,13 AKT, a serine-threonine kinase with three 
isoforms (AKT1, AKT2, and AKT3), is the central 
mediator of this pathway, modulating the function of 
more than 100 substrates, including MDM2, GSK3β, and 
the forkhead family of transcription factors.14 PI3K can 
signal independently of AKT, through SGK3, promoting 
downstream signalling,15 although the relevance of this 
particular pathway to breast cancer is uncertain.

mTOR is an atypical serine-threonine kinase that exists 
in two structurally and functionally distinct complexes; 
namely, mTORC1, with raptor and PRAS40, and 
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mTORC2, with rictor, mSIN1, and protor-1/2.16 In breast 
cancer, mTOR signalling generally refers to mTORC1, 
which is inhibited by everolimus. mTORC2 is not 
inhibited by everolimus, and, importantly, mTORC2 
phosphorylates AKT to promote AKT activation.13 AKT 
modulates mTORC1 activity via the phosphorylation and 
inhibition of TSC1 and TSC2, in turn increasing the 
activity of RHEB, which activates mTORC1.17 mTORC1 
has multiple other inputs (figure 2).

PI3K-AKT and mTORC1 have several distinct cellular 
roles. For example, activation of PI3K and AKT promotes 
glucose metabolism,18,19 whereas mTORC1 controls cap-
dependent translation and plays a role in normal T-cell 
homoeostasis.20,21

Activation of the PI3K-AKT and mTOR pathways 
in breast cancer 
Activation of the PI3K-AKT and mTOR pathways is a 
hallmark of cancer. Including genetic activation of 
upstream receptors, up to 70% of breast cancers are 
estimated to have mutations that lead to pathway 
hyperactivation.22 Alterations in this pathway can be 
present in the original primary cancer or acquired as a 
result of adaption to previous therapy.23,24

Genetic activation 
Mutations in PIK3CA (which encodes p110α) are 
observed in 35–40% of ER-positive, HER2-negative 
breast cancers.1,25 The majority of PIK3CA somatic 
mutations are located in the helical domain (1624G>A 
[Glu542Lys] or 1633G>A [Glu545Lys] in exon 9) or kinase 
domain (3140A>G [His1047Arg] or 3140A>T [His1047Leu] 
in exon 20) of p110α.25 Mutations outside these locations 
have been less explored in the clinical setting, as we 
discuss later. The majority of PIK3CA mutations are 
present in the primary tumour and subsequent 
recurrence, although a small minority of PIK3CA 
mutations are acquired through previous endocrine and 
CDK4/6 inhibitor therapy.23 Up to 25% of advanced 
cancers with PIK3CA mutations have a second mutation 
on the same allele (ie, in cis). Tumours with double 
PIK3CA mutations have a more active PI3K enzyme and 
might be more responsive to PI3K inhibitors than those 
with single mutations.26 These second mutations are 
frequently acquired as a result of APOBEC editing and 
often occur at distinct amino acids to the initial activating 
mutations.27 Although more frequently seen in triple-
negative breast cancers, mutations in the p85 regulatory 
subunit (PIK3R1) have been observed rarely in ER-
positive breast cancer.28,29

Loss-of-function PTEN mutations and homozygous 
deletion of PTEN are observed in 5–10% of breast 
cancers.2,30,31 Truncating mutations are highly likely to 
result in loss of PTEN function, whereas only a subset of 
missense mutations result in loss of PTEN function.32,33 
Loss-of-function PTEN mutations might be acquired 
through CDK4/6 inhibitor therapy as a mechanism of 

Figure 1: PI3K-AKT and mTOR pathways
On activation, PI3K catalyses the phosphorylation of PIP2 to PIP3. PTEN is the main negative regulator of PI3K 
signalling, through the dephosphorylation of PIP3 to PIP2. AKT binds to PIP3, recruiting it to the plasma 
membrane, which allows PDK1 to phosphorylate AKT at Thr308, within the kinase domain. For full activation of 
AKT, a second phosphorylation by mTORC2 is required at the regulatory domain Ser473. AKT modulates mTORC1 
activity via the phosphorylation and inhibition of TSC1 and TSC2, which increases RHEB activity, in turn activating 
mTORC1. Mutant-selective inhibitors are listed in table 1. GF=growth factor. RTK=receptor tyrosine kinase.

RTK

GF

PIP2 PIP3

PTEN

PI3K

TSC1 TSC2

PDK1

mTORC2

PRAS40

RHEB

mTORC1

AKT
Thr308

Ser473

PI3K inhibitors
Approved:
alpelisib
Trials ongoing:
inavolisib and
mutant-selective
inhibitors

Dual inhibitors
Trials ongoing:
gedatolisib

AKT inhibitors
Approved: capivasertib
Trials ongoing: ipatasertib

mTORC1 inhibitors
Approved: everolimus

Figure 2: Diversity of inputs into mTORC1
mTOR has multiple diverse inputs in addition to AKT signalling, including inputs from GFs, amino acids, cellular 
energy status, and cellular stress. GF=growth factor. RTK=receptor tyrosine kinase.
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resistance.34 Loss of PTEN strongly activates AKT, in part 
through activation of p110β signalling, limiting the 
activity of drugs that target p110α.35,36

Activating mutations of AKT1 occur in about 2–3% of 
primary ER-positive breast cancer and about 5–7% of 
advanced cancers.3,37,38 Approximately 80% of AKT 
mutations occur at Glu17Lys, which increases 
AKT activity independent of PI3K by promoting AKT 
localisation to the plasma membrane.39,40 Additional AKT 
mutations include Leu52Arg, Asp32Tyr, and Lys39Asn, 
and rare mutations occur in AKT2, at Glu17Lys.41 AKT 
activation, as well as activation of the whole pathway, has 
been shown to confer resistance to endocrine agents, 
PARP inhibitors, and chemotherapy.42–44

Non-genomic activation 
PI3K-AKT and mTOR activation can occur independent 
of genetic mutations. ER-positive breast cancers can 
upregulate PI3K-AKT and mTOR signalling as a key 
mechanism of acquired resistance to oestrogen 
deprivation.45 PI3K signalling is also strongly activated by 
amplified and overexpressed HER2 signalling.46 Crosstalk 
between the ER and PI3K pathways is complex; PI3K 
inhibition leads to upregulation of ER signalling and 
increases ER dependence in ER-positive breast cancer.47

Mutations in mTOR are essentially not observed in 
breast cancer; rather, mTORC1 is activated by upstream 
PI3K-AKT signalling, MAPK signalling, and other 
activators and as a mechanism of resistance to endocrine 

Patient mutation 
status

Line of treatment Combined therapy Primary endpoint Phase of 
development

Trial name Trial registration 
number

PI3K inhibitors

Inavolisib 
(trial 1) 

PIK3CA First line, advanced* Inavolsilib plus palbociclib plus 
fulvestrant vs placebo plus  
palbociclib, plus fulvestrant

Progression-free 
survival

3 INAVO120 NCT04191499

Inavolisib 
(trial 2)

PIK3CA After progression on CDK4/6 
inhibitor in advanced setting†

Inavolisib plus fulvestrant vs 
alpelisib plus fulvestrant

Progression-free 
survival

3 INAVO121 NCT05646862

Alpelisib PIK3CA DNA non- 
suppression C2D1

First line, advanced* Alpelisib plus fulvestrant vs 
palbociclib plus fulvestrant

Progression-free 
survival

2 SAFIR 03 NCT05625087

TOS-358 PIK3CA Not specified Monotherapy Dose-limiting toxicities, 
adverse events

1 TOS-358-001 NCT05683418

LOXO-783‡ PIK3CA (3140A>G 
[His1047Arg])

Arm dependent§ Multiple treatment groups¶ Dose-limiting toxicities 1 PIKASSO-01 NCT05307705

STK-478‡ PIK3CA 
(His1047Xxx)||

Not specified STX-478 as monotherapy or in 
combination with fulvestrant

Dose-limiting toxicities 1/2 SCORPION NCT05768139

RLY-2608‡ PIK3CA After endocrine therapy and 
CDK4/6 inhibitor, maximum one 
line of chemotherapy in advanced 
setting

Multiple treatment groups** Dose-limiting toxicities, 
adverse events

1/2 ReDiscover NCT05216432

Pan-AKT inhibitor

Ipatasertib ctDNA non- 
suppression C1D15

After endocrine therapy,†† 
maximum one line of 
chemotherapy in advanced setting

Ipatasertib plus palbociclib plus 
fulvestrant vs palbociclib plus 
fulvestrant

Progression-free 
survival

2 FAIM NCT04920708

Capivasertib Mutation not 
required

After endocrine therapy‡‡ Capivasertib plus fulvestrant plus 
CDK4/6inhibitor (palbociclib or 
ribociclib) vs fulvestrant plus 
CDK4/6 inhibitor (palbociclib or 
ribociclib)

Dose-limiting toxicities, 
adverse events, 
progression-free 
survival

1b/3 CAPItello-292 NCT04862663

mTOR inhibitor

RMC-5552§§ Mutation not 
required

Not specified Monotherapy Dose-limiting toxicities, 
adverse events

1 RMC-5552-001 NCT04774952

Dual inhibitor

Gedatolisib¶¶ Mutation not 
required

After CDK4/6 inhibitors plus 
aromatase inhibitor in advanced 
setting

Multiple treatment arms|||| Progression-free 
survival

3 VIKTORIA-1 NCT05501886

ctDNA=circulating tumour DNA. *Patients must have progressed on or within 12 months of completion of adjuvant endocrine therapy, with no previous systemic therapy for advanced disease. †Maximum two 
previous lines of systemic treatment in advanced setting; CDK4/6i-based therapy does not need to be the last treatment received before study entry. ‡Mutant-selective. §Between two and five lines of systemic 
treatment allowed, dependent on treatment arm. ¶Arm A: LOXO-783 plus physician's choice (fulvestrant or imlunestrant or aromatase inhibitor); arm B: LOXO-783 plus abemaciclib physician's choice 
(fulvestrant or imlunestrant or aromatase inhibitor); arm C: LOXO-783 plus fulvestrant; arm D: LOXO-783 plus paclitaxel; arm E: LOXO-783 monotherapy; arm F: multiple dose levels of LOXO-783 with 
fulvestrant. ||Other kinase domain mutations. **Arm A: RLY-2608 monotherapy; Arm B: RLY-2608 plus fulvestrant; Arm C: RLY-2608 plus fulvestrant plus palbociclib; arm D: RLY-2608 plus fulvestrant plus 
ribociclib (400 mg); arm E: RLY-2608 plus fulvestrants plus ribociclib (600mg). ††Patients must have progressed on or within 1 month of previous first-line endocrine therapy for advanced disease or have 
relapsed on or within 12 months of completing adjuvant endocrine therapy. ‡‡ Progression while on or within 12 months of completing adjuvant endocrine therapy, maximum one line of chemotherapy in 
metastatic setting. §§mTORC1 inhibitor. ¶¶Inhibitor of class I PI3K and mTOR. ||||Arm A: wild-type PIK3CA, gedatolisib plus fulvestrant plus palbociclib; arm B: wild-type PIK3CA, gedatolisib plus fulvestrant; 
arm C: wild-type PIK3CA, fulvestrant; arm D, mutated PIK3CA, gedatolisib plus fulvestrant plus palbociclib; arm E: mutated PIK3CA, alpelisib plus fulvestrant; arm F: mutated PIK3CA, gedatolisib plus fulvestrant.

Table 1: Selected ongoing trials of novel PI3K–AKT and mTOR pathway inhibitors for metastatic ER-positive, HER2-negative breast cancer
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therapy.48 The extent to which mTOR signalling in 
endocrine resistance depends on AKT activation is 
unknown.

Reported clinical trials in advanced breast cancer 
Pan-PI3K inhibitors 
First-generation PI3K inhibitors (pan-PI3K inhibitors) 
targeted all four isoforms of class I PI3Ks (α, β, γ, and δ). 
The lack of selectivity of these drugs for p110α resulted in 
high rates of adverse events, which limited the ability to 
give these drugs at a sufficiently high dose.

Buparlisib inhibits all class I isoforms and somatically 
mutant p110α. The BELLE-249 (n=1147) and BELLE-350 
(n=432) phase 3 trials evaluated buparlisib in combination 
with fulvestrant in postmenopausal women with 
endocrine-resistant, metastatic, ER-positive, HER2-
negative breast cancer. In BELLE-2, without previous 
everolimus, buparlisib modestly improved median  
progression-free survival overall (6·9 months, [95% CI 
6·8–7·8] with buparlisib vs 5·0 months [4·0–5·2] with 
placebo; hazard ratio [HR] 0·78, 95% CI 0·67–0·89; 
p=0·0002). In patients with PIK3CA mutations in 
circulating tumour DNA (ctDNA), median progression-
free survival was 7·0 months (95% CI 5·0–10·0) with 
buparlisib versus 3·2 months (2·0–5·1) with placebo 
(HR 0·58, 95% CI 0·41–0·82; p=0·001), with no benefit 
in patients without PIK3CA mutations in ctDNA (1·05, 
0·82–1·34; p=0·642).49 In BELLE-3, with previous 
everolimus, buparlisib improved median progression-
free survival in patients with PIK3CA mutations in 
ctDNA (4·2 months [95% CI 2·8–6·7] vs 1·6 months 
[1·4–2·8]; HR 0·46, 95% CI 0·29–0·73, p=0∙0003) with a 
more modest improvement in patients without PIK3CA 
mutations in ctDNA (3·9 months [95% CI 2·8–4·3] vs 
2·7 months [1·5–3·6]; HR 0·73, 95% CI 0·53–1·00; 
p=0·026).50 The BELLE series of trials was, therefore, 
important in showing that buparlisib was predominantly 
only effective in PIK3CA-mutated cancer and that there 
was no cross-resistance between buparlisib and 
everolimus. However, the adverse effects of buparlisib 
were unfavourable. In BELLE-2, 222 (39%) of 576 patients 
discontinued the study drug early. Additionally, 
buparlisib crosses the blood–brain barrier, and 
psychiatric issues such as anxiety, depression, and 
suicidal ideation were reported.49,50 Thus, buparlisib was 
not implemented in clinical practice. In preclinical 
studies, buparlisib was noted to interfere with 
microtubule polymerisation, which might have 
contributed to the adverse effects.51

Pictilisib, an oral drug that also inhibits all class I 
isoforms, was evaluated in FERGI52 (n=168), a phase 2 
trial in postmenopausal women with ER-positive, HER2-
negative disease resistant to aromatase inhibitors. No 
difference in median progression-free survival was seen 
in the intervention group, regardless of PI3KCA mutation 
status (intention-to-treat population HR 0·74, 95% CI 
0·52–1·06; p=0·096). As with buparlisib, this drug was 

limited by its toxicity profile, with 53 (60%) of 89 patients 
experiencing grade 3 or worse adverse events.52

Isoform-specific PI3K inhibitors 
Taselisib, the first of the selective inhibitors, was designed 
to inhibit p110α and not p110β, with greater selectivity for 
mutant than wild-type PI3Kα. However, taselisib also 
inhibited p110δ and p110γ isoforms, which might have 
contributed to the failure of this drug in the clinic. 
SANDPIPER53 (n=516), a phase 3 trial, evaluated taselisib 
plus fulvestrant versus fulvestrant in postmenopausal 
women with ER-positive, HER2-negative, PIK3CA-
mutated advanced breast cancer after progression on 
aromatase inhibitors. A small improvement in pro
gression-free survival with taselisib versus placebo was 
observed in PIK3CA-mutant tumours (7·4 months vs 
5·4 months; HR 0·70, 95% CI 0·56–0·89; p=0·0037). 
Grade 3–4 adverse events occurred in 206 (49·5%) of 
416 patients in the taselisib group; 48 (12%) of patients in 
the taselisib group had grade 3–4 diarrhoea.53 In part
icular, patients developed late-onset diarrhoea and colitis, 
thought to reflect immune dysregulation through 
inhibition of p110δ, and further investigation of taselisib 
was discontinued.

Alpelisib is the first oral α-selective PI3K inhibitor, 
selectively inhibiting p110α with approximately 50 times 
more potency than other isoforms. This drug was 
approved by the US Food and Drug Administration (FDA) 
and European Medicines Agency (EMA) in 2019 for use 
in combination with fulvestrant for postmenopausal 
women and men with ER-positive, HER2-negative, 
PIK3CA-mutated advanced or metastatic breast cancer 
after aromatase inhibitors. The phase 3 SOLAR-1 trial54 
showed an improved median progression-free survival of 
11·0 months (95% CI 7·5–14·5) versus 5·7 months 
(3·7–7·4) for alpelisib plus fulvestrant for patients with 
PIK3CA mutations (HR 0·65, 95% CI 0.50–0·85; 
p<0·001). Alpelisib did not show an improvement in 
median progression-free survival in patients with wild-
type PIK3CA tumours (0·85, 0·58–1·25, posterior 
probability of HR <1·0=79·4%).54 The key secondary 
endpoint of overall survival in patients with PIK3CA 
mutations did not meet statistical significance 
(39·3 months [95% CI 34·1–44·9] for alpelisib plus 
fulvestrant vs 31·4 months [26·8–41·3] for placebo plus 
fulvestrant; HR 0·86, 95% CI 0·64–1·15; p=0·15).55 Grade 
3–4 toxicities in patients receiving alpelisib included 
hyperglycaemia in 104 (36·6%) of 284 patients, rash in 57 
(20·1%), and diarrhoea in 19 (6·7%).

AKT inhibitors 
Capivasertib is a potent selective inhibitor of all three 
AKT isoforms, approved by the FDA in 2023 in 
combination with fulvestrant for postmenopausal 
women and men with ER-positive, HER2-negative, PI3K-
AKT pathway-altered tumours. The phase 2 FAKTION 
trial56 recruited postmenopausal women with ER-
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positive, HER2-negative advanced breast cancer with 
previous aromatase inhibitor therapy, treating with 
capivasertib and fulvestrant or placebo and fulvestrant. 
In an updated 5-year analysis, the median progression-
free survival was 10·3 months (95% CI 5·0–13·4) with 
capivasertib versus 4·8 months (3·1–7·9) with placebo 
(HR 0·56, 95% CI 0·38–0·81; p=0·0023). Median overall 
survival in the capivasertib group was 29·3 months 
(95% CI 23·7–39·0) versus 23·4 months (18·7–32·7) in 
the placebo group (HR 0·66, 95% CI 0·45–0·97; 
p=0·035).57 An expanded biomarker analysis defined 
PI3K-AKT pathway-activated cancers as those with 
activating PIK3CA or AKT1 mutations or PTEN 
truncating mutations and variants known to inhibit 
PTEN function. Mutation analysis was performed with a 
combined analysis of archival tissue and baseline plasma 
ctDNA testing, which could detect both primary clonal 
and acquired events. In pathway-altered cancers, median 
progression-free survival was 12·8 months (95% CI 
6·6–18·8) on capivasertib versus 4·6 months (2·8–7·9) 
on placebo (HR 0·44, 95% CI 0·26–0·72; p=0·0014), and 
median overall survival was 38·9 months (95% CI 
23·3–50·7) on capivasertib versus 20·0 months 
(14·8–31·4) on placebo (HR 0·46, 95% CI 0·27–0·79; 
p=0·0047). There were no statistically significant 
differences in progression-free survival or overall survival 
in the non-pathway-altered subgroup, suggesting benefit 
was largely restricted to patients with PI3K-AKT pathway-
altered tumours.57 Overall, the toxicity profile was 
manageable, with grade 3–4 adverse events occurring in 
45 (65%) of 60 patients in the capivasertib group and 35 
(50%) of 70 patients in the placebo group.56

CAPItello-29158 was the subsequent phase 3 study that 
evaluated capivasertib and fulvestrant in patients with 
ER-positive, HER2-negative advanced breast cancer who 
progressed during or after aromatase inhibitor therapy 
with or without a CDK4/6 inhibitor. Patients with 
previous exposure to PI3K or mTOR inhibitors were 
excluded from this study. Median progression-free 
survival was improved with the addition of capivasertib 
in the overall population (7·2 months [95% CI 5·5–7·4]) 
vs 3·6 months [5·5–7·4]; HR 0·60, 95% CI 0·51–0·71; 
p<0·001), and in the 289 (41%) of 708 patients with PI3K-
AKT pathway-altered cancers (defined as in the expanded 
biomarker analysis in FAKTION), median progression-
free survival was 7·3 months (95% CI 5·5–9·0) versus 
3·1 months (2·0–3·7; HR 0·50, 95% CI 0·38–0·65; 
p<0·001). In patients with AKT pathway-unaltered 
tumours, excluding unknown results, median pro
gression-free survival was 5·3 months (95% CI 3·6–7·3) 
versus 3·7 months (3·5–5·1; HR 0·79, 95% CI 
0·61–1·02). The most frequently reported grade 3–4 
adverse events in the capivasertib group were rash, in 
43  (12·1%) of 355 patients, diarrhoea, in 33 (9·3%), and 
hyperglycaemia, in eight (2·3%).58

In contrast with FAKTION56 and CAPItello-291,58 AKT 
inhibitors used in combination with paclitaxel 

chemotherapy have not improved survival outcomes to 
date. The phase 2 BEECH study59 evaluated the efficacy of 
capivasertib combined with paclitaxel in patients with 
ER-positive advanced breast cancer and no previous 
chemotherapy exposure for advanced disease; there was 
no improvement in median progression-free survival 
overall (HR 0·80, 80% CI 0·6–1·06; p=0·308) in these 
patients or in the subpopulation with mutant PIK3CA 
(1·11, 0·73–1·68; p=0·760). A similar study, IPATunity13060 
cohort B, investigated ipatasertib, an inhibitor of all AKT 
isoforms, in combination with paclitaxel in PIK3CA-
mutated tumours, again with no  median progression-
free survival benefit (HR 1·00, 95% CI 0·71–1·40; 
p=0·997). The most probable interpretation of the 
absence of improvement in progression-free survival in 
these two studies is the absence of inhibition of the 
oestrogen receptor and the failure to block its feedback 
activation that occurs with AKT inhibition.

mTOR inhibitors 
mTOR inhibitors were the first compounds developed to 
target PI3K-AKT-mTOR signalling, with everolimus in 
combination with exemestane approved by the FDA and 
EMA in 2012 for patients with ER-positive, HER2-
negative advanced breast cancer after progression on an 
aromatase inhibitor. Everolimus inhibits mTOR through 
allosteric binding to mTORC1. Results from BOLERO-261 
(exemestane with or without everolimus), supported by 
TAMRAD62 (tamoxifen with or without everolimus), 
showed benefit of everolimus in postmenopausal women 
with hormone-refractory, metastatic, ER-positive, HER2-
negative breast cancer. Median progression-free survival 
was improved in both BOLERO-2 (7·8 months vs 
3·2 months; HR 0·45, 95% CI 0·38–0·54; p<0·0001)61 
and TAMRAD (8·6 months [95% CI 5·9–13·9] vs 
4·5 months [3·6–8·7]; HR 0·54, 95% CI 0·36–0·81; 
p<0·01).62 A statistically significant overall survival 
benefit was not seen with everolimus in BOLERO-2; 
median overall survival was 31∙0 months (95% CI 28·0–
34·6) in the everolimus group versus 26∙6 months 
(22·6–33·1) in the control group (HR 0·89; p=0·14).63 A 
similar study, PrE0102,64 evaluated everolimus in 
combination with fulvestrant and showed an improved 
median progression-free survival of 10·3 months (95% 
CI 7·6–13·8) versus 5·1 months (3·0–8·0 HR 0·61, 
95% CI 0·40–0·92; p=0·02). The most common grade 
3–4 adverse events in the everolimus group of the 
BOLERO-2 study were stomatitis (8%), anaemia (6%), 
dyspnoea (4%), hyperglycaemia (4%), and pneumonitis 
(3%).65 Steroid mouth washes to reduce stomatitis 
incidence have     subsequently become a standard of 
care with everolimus.66 Starting at a lower dose and 
escalating dependent on tolerability has also been shown 
to reduce the side-effects of everolimus while maintaining 
efficacy.67 Everolimus is approved irrespective of PIK3CA 
mutation status, and a retrospective analysis of 
BOLERO-2 participants showed similar efficacy against 
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tumours with either wild-type or mutant PIK3CA 
(HR 0·43, 95% CI 0·34–0·56 vs 0·37, 0·27–0·51).68

PI3K–AKT and mTOR inhibitors after CDK4/6 inhibitors 
CDK4/6 inhibitors are now the standard of care first-line 
treatment in combination with endocrine therapy for 
patients with ER-positive, HER2-negative advanced 
breast cancer.69 Multiple trials have shown that 
progression-free survival in later-line endocrine-based 
therapies is shorter after CDK4/6 inhibitors.58,70 Although 
SOLAR-1 completed enrolment before implementation 
of CDK4/6 inhibitors as standard first-line treatment, a 
small subset of patients (n=20 [6%]) had received 
previous CDK4/6 inhibitors and showed a possible 
benefit of alpelisib after CDK4/6 inhibition (HR 0·48, 
95% CI 0·17–1·36).54 BYLieve (NCT03056755) is an 
ongoing phase 2, multicohort, non-comparative trial 
assessing the benefit of alpelisib after CDK4/6 inhibition; 
in cohort A (patients must have received a CDK4/6 
inhibitor plus an aromatase inhibitor as immediate 
previous therapy), the median progression-free survival 
with fulvestrant and alpelisib was 8 months.71 Subsequent 
studies have suggested an expected median progression-

free survival of 2–3 months for fulvestrant in this 
population, suggesting alpelisib activity after CDK4/6 
inhibition. Interestingly, the duration of previous CDK4/6 
inhibition was not associated with progression-free 
survival on alpelisib and fulvestrant.72 Notably, the EMA 
licence for alpelisib is after single-agent hormone 
therapy, whereas FDA licencing allows previous CDK4/6 
inhibitor therapy. The EPIK-B5 trial (NCT05038735) is 
recruiting and aims to confirm the efficacy and safety of 
alpelisib plus fulvestrant in a larger population pretreated 
with a CDK4/6 inhibitor.

In CAPItello-291,58 subgroup analysis of patients with 
(n=489) and without (n=219) previous CDK4/6 inhibitor 
exposure suggested capivasertib activity was unaltered by 
previous CDK4/6 inhibitor exposure (HR 0·59, 95% CI 
0·48–0·72 vs 0·64, 0·45–0·90), although absolute 
progression-free survival was substantially shorter in the 
CDK4/6 inhibitor-pretreated cohort.73 Because the original 
data supporting the use of everolimus pre-dated the 
approval of CDK4/6 inhibitors, the role of mTOR inhibitors 
after CDK4/6 inhibitors is unclear. Retrospective, real-
world analyses suggest previous exposure to CDK4/6 
inhibitors does not substantially affect efficacy.74,75

Patients who 
received previous 
CDK4/6 inhibition, 
n/N (%)*

Efficacy (all) Efficacy (mutations or alterations in 
PI3K-AKT pathway)

Efficacy (wild-type PI3K-AKT pathway)

Response 
rate 

Median 
progression-
free survival, 
months 

Median overall 
survival, 
months 

Response 
rate

Median 
progression-
free survival, 
months 

Median overall 
survival, 
months

Response 
rate

Median 
progression-
free survival, 
months

Median overall 
survival, 
months

Alpelisib 

SOLAR-154,55 20/572 (5·9%) ·· ·· ·· ·· ·· ·· ·· ·· ··

Fulvestrant + placebo ·· NR NR NR 12·8%† 5·7† 31·4† NR 5·6‡51 NR

Fulvestrant + alpelisib ·· NR NR NR 26·6%† 11·0† 39·3† NR 7·4‡51 NR

BYLieve71,78 

Fulvestrant + alpelisib 127/127 (100%) NA NA NA 19%† 8·0† 27·3† NA NA NA

Capivasertib

FAKTION56,57 0/140 ·· ·· ·· ·· ·· ·· ·· ·· ··

Fulvestrant + placebo ·· 8% 4·8 23·4 11%§ 4·6¶ 20·0¶ 13%|| 4·9** 25·2**

Fulvestrant + capivasertib ·· 29% 10·3 29·3 47% § 12·8¶ 38·9¶ 37%|| 7·7** 26·0**

CAPItello-29158 489/708 (69·1%) ·· ·· ·· ·· ·· ·· ·· ·· ··

Fulvestrant + placebo ·· 12·2% 3·6 NR 9·7%¶ 3·1¶ NR NR 3·7** NR

Fulvestrant + capivasertib ·· 22·9% 7·2 NR 28·8%¶ 7·3¶ NR NR 5·3** NR

Everolimus

BOLERO-261,63,65,68 0/724 ·· ·· ·· ·· ·· ·· ·· ·· ··

Exemestane + placebo ·· 0·4% 3·2 26·6 NR 2·96† NR NR 2·69‡ NR

Exemestane + everolimus†† ·· 7·0% 7·8 31·0 NR 7·36† NR NR 6·9‡ NR

PrE010264 0/131 ·· ·· ·· ·· ·· ·· ·· ·· ··

Fulvestrant + placebo ·· 12·3% 5·1 28·3 NR NR NR NR NR NR

Fulvestrant + everolimus‡‡ ·· 18·2% 10·3 31·4 NR NR NR NR NR NR
 
Sequence of results listed is experimental versus control. NR=not reported. NA=not applicable. *Response rate and median progression-free survival are generally reduced in studies with previous CDK4/6 
inhibitor exposure and should be considered when comparing across studies. †Mutated PIK3CA. ‡Wild-type PIK3CA. §Mutated or altered PIK3CA and PTEN. ¶Mutated or altered PIK3CA, AKT, and PTEN. ||Wild-type 
PIK3CA and PTEN. **Wild-type PIK3CA, AKT, and PTEN. ††With exemestane (everolimus plus exemestane licensed indication). ‡‡With fulvestrant (everolimus with fulvestrant frequently used). 

Table 2: Efficacy in key clinical trials of approved PI3K-AKT and mTOR inhibitors in advanced ER-positive, HER-negative breast cancer
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CDK4/6 inhibitors are increasingly added to adjuvant 
endocrine therapy in high-risk, ER-positive, HER2-
negative breast cancer,76,77 but the effect of these drugs on 
response to drugs targeting PI3-AKT or mTOR in the 
advanced or metastatic setting is unknown. The efficacy 
and toxicity of the approved pathway inhibitors are 
compared in tables 2 and 3.

Precision medicine and predictive biomarkers 
Despite substantial research efforts, only mutations or 
alterations that activate the PI3K-AKT pathway have been 
approved by the FDA as predictive biomarkers. PIK3CA 
mutations predict efficacy of α-selective PI3K inhibitors 
but not of the mTOR inhibitor everolimus,80 possibly 
reflecting multiple inputs into mTOR activity other than 
PI3K-AKT pathway signalling.

SOLAR-154 recruited patients with selected PIK3CA 
mutations, including 11-codon substitutions in exons 7, 
9, and 20. Real-world data in patients with other rare 
activating PIK3CA mutations, not eligible for SOLAR-1, 
provide some support for alpelisib activity81 but suggest it 
might be lower with rare PIK3CA 1258T>C (Cys420Arg) 
mutations, which accounted for only 2% of patients in 
SOLAR-1.82 Strong preclinical data suggest that cancers 
with double PIK3CA mutations are particularly sensitive 
to PI3K inhibition, and a small amount of clinical data 
suggests that patients with double PIK3CA mutations 
have higher response rates to taselisib26 and longer 
progression-free survival on alpelisib.83 The presence of a 
double PIK3CA mutation in a tumour is therefore a 
moderately strong selection factor for considering 
alpelisib therapy versus alternative therapies.

Capivasertib is more active in PI3K-AKT pathway-
altered cancers (ie, with specific PIK3CA, AKT1, or PTEN 
alterations) than in cancers without such alterations. In 
CAPItello-291, HRs for progression-free survival were 
0·50 (95% CI 0·38–0·65; p<0.001) in patients with 
alterations and 0·79 (0·61–1·02) in those without.58 For 
overall survival, HRs in FAKTION were 0·46 (0·27–0·79; 

p<0.0047) and 0·86 (0·49–1·52; p=0.60),57 with PI3K-AKT 
pathway alteration a predictive biomarker. The sensitivity 
for detecting homozygous deletions of PTEN is low in 
ctDNA analysis, supporting the preference to test using 
tissue samples. Conversely, ctDNA analysis after 
progression on CDK4/6 inhibitors can detect acquired 
pathway alterations that are not present in an archival 
tissue sample. These findings suggest that combined 
tissue and ctDNA analysis to robustly identify pathway 
alterations might become the standard now that 
capivasertib is licensed.

Resistance and other ongoing challenges 
The clinical benefit of PI3K-AKT and mTOR inhibitors, 
like that of most targeted cancer drugs, is limited by 
intrinsic and acquired resistance. Documented mech
anisms of PI3K inhibitor resistance include reactivation 
of the signalling pathway and activation of compensatory 
parallel signalling cascades,84 promoted by physiological 
feedback loops. For example, inhibition of PI3K-AKT 
induces expression of RTKs and RTK adaptors, such as 
GRB10 and IRS, and suppression of PTEN translation.85,86 
Moreover, these signals can induce key parallel pathways 
such as oestrogen receptor signalling.

In some cases, acquired drug resistance to p110α-
specific inhibitors can be mediated by loss of PTEN, 
which, in turn, leads to increased signalling through 
the PI3K p110β isoform.36,87 Analyses of plasma and 
tumour samples from the phase 1 trial (NCT01870505) 
of alpelisib identified loss-of-function PTEN mutations 
in 25% of patients with de-novo resistance.88 Everolimus 
inhibits the mTORC1 complex, initiating a negative 
feedback loop that induces activation of mTORC2 and 
AKT and potentially causes treatment resistance.89 
Vistusertib, a dual inhibitor of mTORC1 and mTORC2, 
showed high activity in preclinical breast cancer 
models through more potent pathway inhibition. 
Unfortunately, when tested in the MANTA trial, 
vistusertib was less effective than everolimus on a 

Hyperglycaemia Diarrhoea Rash* Stomatitis Pneumonitis

Any grade Grade 3–4 Any grade Grade 3–4 Any grade Grade 3–4 Any grade Grade 3–4 Any grade Grade 3–4

Alpelisib

SOLAR-154 181/284 
(63·7%)

104/284 
(36·6%)

164/284 
(57·7%)

19/284 
(6·7%)

153/284 
(53·9%)

57/284 
(20·1%)

70/282 (24·6%) 7/284 (2·5%) 5/284 (1·8%) 1/284 (<1%)

BYLieve79 74/127 (59%) 46/127 (29%) 76/127 (60%) 7/127 (6%) 54/127 (43%) 24/127 (19%) 34/127 (27%) 2/127 (2%) 1/127 (<1%) 0/127 

Capivasertib

FAKTION56 29/69 (42%) 3/69 (4%) 56/69 (81%) 10/69 (14%) 36/69 (52%) 14/69 (20%) 10/69 (14%) 0/69 0/69 0/69 

Capitello-29158 58/355 
(16·3%)

8/355 (2·3%) 257/355 
(72·4%)

33/355 
(9·3%)

135/355 (38%) 43/355 
(12·1%)

52/355 (14·6%) 7/355 (2%) 0/355 (0%) 0/355(0%)

Everolimus

Bolero-2†65 13% 4% 30% 12% 36% 1% 56% 8% 12% 3%

PrE010264 12/64 (19%) 2/64 (3%) 25/64(23%) 2/64 (3%) 24/64 (38%) 1/64 (2%) 34/64 (53%) 7/64 (11%) 11/64 (17%) 4/64(6%)

Data are n/N (%). *The group term rash includes the preferred terms of rash, rash macular, maculopapular rash, rash papular, and rash pruritic.†Absolute patient numbers were not available.

Table 3: Adverse events in key clinical trials of approved PI3K-AKT and mTOR inhibitors  in advanced ER-positive, HER2-negative breast cancer
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fulvestrant backbone; median progression-free survival 
was 8·0 months (95% CI 5·6–9·9) with fulestrant plus 
vistusertib versus 12·3 months (7·7–15·7) with 
fulvestrant plus everolimus (HR 0·63, 95% CI 
0·45–0·90; p=0·01).90 These conflicting results 
probably reflect dosing in the clinical setting being 
limited by the adverse effects of vistusertib, ultimately 
resulting in less potent mTORC1 inhibition compared 
with everolimus. mTOR inhibition upregulates RTKs, 
including IGFR-1, although combined inhibition of 
IGFR-1 and IGFR-2 with mTOR was ineffective in a 
randomised phase 2 trial, suggesting that IGFRs might 
not be the main upregulated RTKs.91

Drug toxicity and tolerability are the major challenges 
with inhibitors of the PI3K-AKT and mTOR pathways. In 
SOLAR-1, the toxicity of alpelisib remained an issue, with 
71 (25%) of 284 patients discontinuing treatment,54 but 
real-world analyses suggest that, in clinical practice, 
toxicity and discontinuation rates might be higher.92 In 
SOLAR-1, hyperglycaemia was more pronounced in 
patients who were diabetic or prediabetic at baseline.93 In 
CAPitello-291, 46 (13%) of 355 patients discontinued due 
to adverse events;59 the more manageable toxicity profile 
of capivasertib, with a low hyperglycaemia incidence, 
might be partly due to the intermittent dosing schedule 
(ie, twice per day for 4 days followed by 3 days off). 
Rigorous safety monitoring of these side-effects in 
clinical practice is paramount, with prompt action to 
prevent escalation to high-grade events.

Perspectives on selective strategies 
The first-line treatment for most patients with ER-
positive metastatic breast cancer is endocrine therapy 
plus one of three approved CDK4/6 inhibitors, 
irrespective of PIK3CA, AKT1, or PTEN mutation status. 
No studies have investigated replacing CDK4/6 inhibitors 
with PI3K-AKT pathway inhibitors in the first-line 
setting; this change has been considered inappropriate, 
given the overall survival benefit and comparatively 
better safety of CDK4/6 inhibitors.

In the second-line setting, multiple approved options 
depend upon BRCA1 or BRCA2 mutations, PI3K-AKT 
pathway alterations, and ESR1 status. Before the approval 
of capivasertib, alpelisib was generally considered ahead 
of everolimus for patients with PIK3CA-mutant cancers, 
influenced by the substantially improved response rates 
with alpelisib, lower rates of pneumonitis and stomatitis, 
and the concept of precision medicine.

Alpelisib is approved only for the PIK3CA-mutant 
population, whereas the recent approval criteria for 
capivasertib includes tumours with specific alterations 
in PIK3CA, AKT1, or PTEN. The main decision for 
clinicians is the strategic use of PI3K and AKT inhibitors 
for a given patient in clinic. For patients with AKT1 and 
PTEN alterations, the decision to use capivasertib is 
straightforward. For patients with PIK3CA mutations, 
there is a more complex choice between the use of 

alpelisib and capivasertib. In FAKTION, capivasertib 
showed a substantial overall survival benefit in the 
pathway-altered population,57 whereas for alpelisib in 
SOLAR-1, a non-significant increase in overall survival 
was observed55 (table 2). Cross-trial comparison between 
CAPItello-291 and SOLAR-1 is particularly difficult due 
to the differences in the patient populations, in 
particular previous CDK4/6 inhibitor use, which, as 
previously noted, is associated with substantially shorter 
subsequent progression-free survival in the context of 
later-line endocrine-based therapy. Considering these 
factors, alpelisib and capivasertib seem to have similar 
activity with respect to progression-free survival, with 
overall survival comparisons awaiting data from 
CAPItello-291. Additionally, although AKT is the 
dominant signalling node downstream of PI3K, PI3K 
signalling can also occur independent of AKT.94 As such, 
PI3K inhibition might theoretically be superior to AKT 
inhibition. Conversely, PTEN loss is an acquired 
mechanism of resistance to alpelisib but not 
capivasertib.

Safety is a key feature affecting successful targeting of 
the PI3K-AKT and mTOR pathways. As seen with 
vistusertib (dual inhibitor of mTORC1 and mTORC2), a 
theoretically better drug can be less effective in the clinic 
if it is associated with more side-effects. From this 
perspective, the adverse event profile of capivasertib is 
generally more favourable than that of alpelisib. Although 
CAPItello-291 included a much broader population of 
patients (eg, with impaired glucose tolerance and tablet-
controlled diabetes) than SOLAR-1, hyperglycaemia was 
substantially more common with alpelisib, and rash and 
stomatitis were slightly more common; in contrast, 
diarrhoea was more common with capivasertib (table 3). 
The choice of drug might depend on both an individual’s 
comorbidities and the relative importance of these 
toxicities for individual patients. Capivasertib is a 
treatment option for a larger population of patients with 
glucose tolerance issues. Alpelisib might have higher 
rates of adverse effects in Asian individuals.95,96

The BELLE-3 study showed that previous everolimus 
did not affect the efficacy of the PI3K inhibitor 
buparlisib;50 thus, everolimus could have activity after 
alpelisib and vice versa, although aside from this study, 
there are few data available. There are no data on cross-
resistance between capivasertib and mTOR inhibitors as 
patients who had previously received mTOR inhibitors 
were excluded from CAPitello-291.

ESR1 mutations should be considered in the selection 
strategy for sequencing therapies because they occur in 
up to 40% of patients who have received an aromatase 
inhibitor.97 ESR1 mutations are potentially sensitive to 
selective oestrogen receptor degraders (SERDs). The first 
oral SERD, elacestrant, was approved by the FDA in 
January, 2023, for patients with ER-positive, HER2-
negative, ESR1-mutated advanced breast cancer on the 
basis of progression-free survival results from the phase 3 
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EMERALD study.70 Camizestrant is a next-generation oral 
SERD that has shown significantly improved progression-
free survival over fulvestrant in the phase 2 SERENA-2 
study,98 with multiple ongoing phase 3 studies awaited.

Adjuvant and neoadjuvant therapy 
Although everolimus has shown benefit as an adjuvant 
therapy in resected renal cell carcinoma, adjuvant studies 
in breast cancer have shown no benefit. The UNIRAD 
trial99 evaluated everolimus plus hormone therapy in 
patients with high-risk, early stage, ER-positive breast 
cancer and showed no benefit in invasive disease-free 
survival (HR 0·95, 95% CI 0·69–1·32; p=0·77) or overall 
survival (HR 1·09, 95% CI 0·62–1·92; p=0·75).99 The 
phase 3 SWOG S1207 trial, which evaluated everolimus 
in the same clinical setting, also did not show improved 
outcomes in terms of invasive disease-free survival 
(HR 0·93, 95% CI 0·76–1·14) and overall survival 
(HR 0·98, 95% CI 0·75–1·28).100 There are various 
potential explanations for these negative results. For 
example, the studies were conducted before the 
prophylactic use of steroid mouthwashes, leading to high 
incidence of stomatitis (any grade in 417 [66%] of 625), 
with 319 (53%) of 625 patients in the everolimus group of 
UNIRAD discontinuing due to side-effects or personal 
decision.99 In BOLERO-2,61 the majority of benefit was 
improved progression-free survival, with only a minor 
improvement in response rates, suggesting that adjuvant 
everolimus might have resulted in stability as opposed to 
eradication of micrometastatic disease. Finally, mTOR 
signalling is activated as a mechanism of resistance to 
endocrine therapy and might not be important before the 
development of resistance in the adjuvant setting.

The NEO-ORB study investigated the addition of 
neoadjuvant alpelisib to endocrine therapy in post
menopausal women with ER-positive, HER2-negative early 
breast cancer, with no improvement in overall response 
rate in either the PIK3CA-mutant or wild-type cohort and 
low pathological complete response rates in all groups.101 
Only 68 (52%) of 131 patients in the alpelisib group 
completed the full 24 weeks of neoadjuvant alpelisib. These 
generally disappointing results indicate that activation of 
PI3K signalling in advanced endocrine-resistant cancer 
might be important for the efficacy of alpelisib and 
potentially other PI3K-AKT pathway inhibitors.102

Future directions 
Triplet therapy 
Inavolisib is an α-selective PI3K-specific inhibitor that 
also promotes degradation of mutant p110α, potentially 
limiting the consequences of feedback upregulation of 
RTKs.103 Preclinical models have shown synergy between 
CDK4/6 inhibitors and PI3K inhibitors, with PI3K 
inhibitors blocking the development of CDK4/6 inhibitor 
resistance.104

The INAVO120 phase 3 trial compared inavolisib plus 
palbociclib and fulvestrant with placebo in first-line 

therapy of patients with ER-positive, HER2-negative, 
PIK3CA-mutant advanced breast cancer who recurred on 
or within 12 months of adjuvant endocrine therapy.105   
The study was enriched for patients with poorer 
prognosis, with 260 (80%) of 325 patients having visceral 
disease and 168 (50%) having liver metastases. The 
addition of inavolisib more than doubled median  
progression-free survival compared with placebo 
(15·0 months [95% CI 11·3–20·5] vs 7·3 months 
[5·6–9·3]; HR 0·43, 95% CI 0·32–0·59; p<0·0001), with 
a non-significant difference in overall survival at the first 
interim analysis (HR 0·64, 95% CI 0·43–0·97, p=0·0338) 
(Jhaveri KL, Memorial Sloan Kettering Cancer Center, 
personal communication). The toxicity profile of 
inavolisib was manageable, with a discontinuation rate of 
6·8%. Most notably, 51% of patients experienced any-
grade stomatitis  (≥grade 3 in 6%), which, going forward, 
will require prophylactic management. Inavolisib had 
not received regulatory approval at the time of writing, 
although in the future, triplet first-line therapy might 
become a standard for patients with more aggressive 
cancers. CAPItello-292 (NCT04862663) is a phase 3 study 
evaluating the safety and efficacy of capivasertib in triplet 
combination with the CDK/6 inhibitor palbociclib and 
fulvestrant in CDK/6 inhibitor-naive patients.

Anticipated phase 2 and 3 results 
Anticipated results from phase 2 and phase 3 trials 
include those from FAIM (NCT04920708), which is 
evaluating ipatasertib (in combination with palbociclib 
and fulvestrant), and FINER (NCT04650581), which is 
evaluating ipatasertib in combination with fulvestrant in 
patients who have received previous CDK/6 inhibition. 
Capivasertib is also being investigated in triple-negative 
breast cancer (NCT03997123) and prostate cancer 
(NCT04493853). INAVO121 is a phase 3 trial that is also 
evaluating the combination of fulvestrant with inavolisib 
in the second-line setting after CDK/6 inhibition 
(NCT05646862). Ongoing trials of novel PI3K-AKT and 
mTOR inhibitors are reported in table 1.

Novel mutant-specific inhibitors 
The efficacy of PI3K inhibitors in PIK3CA-mutant 
cancers is thought to be primarily driven by the inhibition 
of mutant PI3K, but the dose and clinical activity of the 
approved inhibitor alpelisib is limited by toxicity from 
the non-selective inhibition of wild-type PI3Kα. As such, 
selective inhibition of mutant PI3Kα might result in 
improved therapeutic index and reduced off-tumour 
toxicity. LOXO-783, a potent, mutant-selective allosteric 
PI3Kα-His1047Arg inhibitor, induced additive effects on 
tumour regression in ER-positive, HER2-negative, PI3Kα 
3140A>G (His1047Arg) breast cancer models and is now 
being evaluated in the phase I trial PIKASSO-01 
(NCT053077050).106 The allosteric, pan-mutant, selective 
PI3Kα inhibitor RLY-2608 is being evaluated in 
combination with fulvestrant in the phase 1 ReDiscover 
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trial (NCT05216432), and, to date, has demonstrated 
target inhibition and a favourable toxicity profile, with no 
documented grade 3 hyperglycaemic events.107 

Dual inhibitors 
Preclinical studies have shown that inhibitors of PI3K-
AKT and mTOR induce signalling feedback loops that 
bypass the effects of targeted blockade and limit their 
anti-tumour effects.103 These findings have led to 
research into vertical inhibition of this pathway through 
dual inhibitors to enhance efficacy. Preclinically, vertical 
pathway inhibition with dual PI3K and mTOR inhibitors 
is highly effective at limiting negative feedback. 
However, continuous dual inhibition of PI3K and 
mTOR is not sufficiently safe to be an effective clinical 
strategy. Gedatolisib is a potent intravenous dual 
inhibitor that selectively targets all class I isoforms of 
PI3K and mTOR, with promising antitumour activity 
and a manageable toxicity profile in phase 1 trials. 
VIKTORIA-1, the phase 3 gedatolisib trial 
(NCT05501886) will investigate whether highly potent 
intermittent pathway inhibition, achievable through 
intermittent intravenous therapy, is more effective than 
continuous, less potent pathway inhibition, achievable 
through continuous oral therapy. Capivasertib also 
reportedly inhibits S6K in preclinical studies,108 
potentially contributing to vertical pathway inhibition.

ctDNA-directed therapy
Finally, early changes in ctDNA levels in patients with 
metastatic breast cancer could permit early prediction of 
response to therapy, with rapid decreases in tumours that 
respond to therapy and minor or no decreases in tumours 
that do not respond. Early changes in ctDNA are 
predictive of progression-free survival in patients with 
advanced breast cancer, based on findings from the 
phase 3 PALOMA trial, in which patients without ctDNA 
suppression after 2 weeks of palbociclib and fulvestrant 
had significantly shorter progression-free survival than 
those with ctDNA suppression.109 The FAIM phase 2 
open-label trial (NCT04920708) is recruiting patients 
with advanced ER-positive, HER2-negative breast cancer 
on first-line fulvestrant and CDK/6 inhibitor to ctDNA 
dynamic monitoring, randomly assigning patients 

without ctDNA suppression to fulvestrant plus 
palbociclib with or without ipatasertib. This trial might 
allow escalation to triplet therapy in patients predicted to 
have poor response to doublet therapy, as an alternative 
strategy to INAVO120 and CAPItello-292. SAFIR 03 
(NCT05625087) uses ctDNA dynamics to randomise 
patients to either to ribociclib or alpelisib in combination 
with fulvestrant.

Conclusions 
Despite the huge advances made to date in targeting the 
PI3K-AKT and mTOR pathways, major challenges 
remain. Issues arise from both the toxicity profiles of 
these drugs (due to the essential nature of PI3K-AKT in 
cellular function) and the induction of negative feedback 
loops that oppose pathway inhibition. Continuing to 
develop inhibitors that reduce normal tissue toxicity and 
mitigate feedback remains the biggest challenge for drug 
development. With three inhibitors in the pathway 
licenced, the key clinical issue is the appropriate 
sequencing of these drugs, as well as other therapies, 
such as new oral SERDs and chemotherapies, including 
antibody–drug conjugates. Another clinical challenge is 
the choice of inhibitor for PIK3CA-mutant breast cancer, 
with the adverse event profile the clearest indicator of 
difference between alpelisib and capivasertib. Expanding 
evidence suggests pathway alterations might be acquired 
through endocrine therapy and CDK/6 inhibitor use, 
with precision medicine increasingly suggesting that 
broad analysis of both tumour biopsy and progression 
ctDNA might be required to extensively identify pathway 
alterations. Such serial and comprehensive analysis 
could identify more patients who might benefit from 
these interventions.

Future challenges include the further development of 
drugs with a higher therapeutic index, for which mutant-
selective PI3Kα inhibitors hold promise, the development 
of combinations with oral SERDs, establishment of 
predictive biomarkers, and identification of patients 
requiring early escalated therapy in combination with 
CDK/6 inhibitors. We hope that ongoing prospective 
trials will answer these questions and enable the optimal 
sequencing of these targeted drugs for the correct patient 
populations, with manageable toxicity profiles and at the 
most appropriate time in their cancer journey.
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