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Florence Nightingale’s innovative “rose diagram” of preventable 
deaths revolutionized data-driven disease surveillance.1 Raw hospital mortality 
data collected during the Crimean War were transformed into a compelling, 

visual insight — poor sanitary conditions killed more people than battle wounds 
did. This act of synthesizing noisy, complex data into an elegant, effective message 
was the foundation for a royal commission to track morbidity and mortality and 
thus launched a new era in which analytic methods were used to better monitor 
and manage infectious disease. In the more than 160 years since the first publica-
tion of Nightingale’s rose diagram, tools and technology for translating high-
density data and uncovering hidden patterns to provide public health solutions 
have continued to evolve. Manual techniques are now complemented by machine-
learning algorithms. Artificial intelligence (AI) tools can now identify intricate, 
previously invisible data structures, providing innovative solutions to old problems. 
Together, these advances are propelling infectious-disease surveillance forward.

The coronavirus disease 2019 (Covid-19) pandemic has highlighted the speed 
with which infections can spread and devastate the world — and the extreme 
importance of an equally nimble, expeditious, and clever armamentarium of pub-
lic health tools to counter those effects. Throughout this crisis, we have witnessed 
a multitude of AI solutions deployed to play this role — some much more success-
ful than others. As new pathogens emerge or old challenges return to command 
our attention, the incorporation of the lessons learned into our public health play-
book is a priority. In this review article, we reflect on the effects of new and long-
standing AI solutions for infectious-disease surveillance. AI applications have been 
shown to be successful for a diverse set of functions, including early-warning 
systems,2,3 hotspot detection,4,5 epidemiologic tracking and forecasting,6,7 and resource 
allocation8 (Fig. 1). We discuss a few recent examples.9,11,12 We begin with how AI 
and machine learning can power early-warning tools and help distinguish among 
various circulating pathogens (e.g., severe acute respiratory syndrome coronavirus 
2 [SARS-CoV-2] vs. influenza virus). We then discuss AI and machine-learning 
tools that can backtrack epidemics to their source and an algorithmic method that 
can direct an efficient response to an ongoing epidemic. Finally, we emphasize the 
critical limitations of AI and machine learning for public health surveillance and 
discuss salient considerations to improve implementation in the future.

A I A pplic ations in Dise a se Surv eill a nce

Early Warning

Early-warning systems for disease surveillance have benefitted immensely from 
the incorporation of AI algorithms and analytics.14-16 At any given moment, the 
Web is flooded with disease reports in the form of news articles, press releases, 
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professional discussion boards, and other curated 
fragments of information. These validated com-
munications can range from documentation of 
cases of innocuous infections well known to the 
world to the first reports of emerging viruses 
with pandemic potential. However, the volume 
and distributed nature of these reports consti-
tute much more information than can be made 
sense of promptly by even highly trained per-
sons, making early warning of emerging viruses 
nearly impossible. Enter AI-trained algorithms 
that can parse, filter, classify, and aggregate text 
for signals of infectious-disease events with high 
accuracy at unprecedented speeds. HealthMap, 
just one example of these types of systems, has 
done so successfully for more than a decade.2,17

This Internet-based infectious-disease surveil-
lance system provided early evidence of the 

emergence of influenza A (H1N1) in Mexico18

and was used to track the 2019 outbreak of 
vaping-induced pulmonary disease in the United 
States.19

HealthMap uses natural-language processing 
to search through text posted across the Web for 
signals of infectious-disease events in real time 
by comparing the text with a dictionary of 
known pathogens and geographic areas. Algo-
rithms are trained to ignore noise and parse 
relevant reports by identifying disease-related 
text such as the name of a pathogen and inci-
dence numbers (Fig. 2). HealthMap then sepa-
rates outbreak-related noise from other disease 
reports (e.g., scientific manuscripts and vaccina-
tion campaigns), using a Bayesian machine-
learning classification scheme that was original-
ly trained with data that were manually tagged 

Figure 1. Various Functions of Artificial Intelligence (AI) for Infectious-Disease Surveillance.

Shown is a nonexhaustive list of functions of AI‑aided infectious‑disease surveillance and representative examples 
from the published literature.2‑13 Each example includes the type of AI algorithm, a brief description of its purpose, 
and the associated citation. Covid‑19 denotes coronavirus disease 2019.

!
Early warning

Function Examples

Pathogen classification

Risk assessment

Source identification

Hotspot detection

Tracking and forecasting

• Natural-language processing of news sources to identify outbreaks 
(Freifeld et al., JAMIA 2008)

• Unsupervised machine learning of social media data to detect unknown 
infections (Lim, Tucker, and Kumara, J Biomed Inform 2017) 

• Neural computing engine to correlate sound from hospital waiting rooms with 
influenza spikes (Al Hossain et al., Proc ACM Interact Mob Wearable Ubiquitous 
Technol 2020)

• Multilayer perceptron artificial neural network model to detect spatial clustering 
of tuberculosis (Mollalo et al., Int J Environ Res Public Health 2019) 

• Convolutional neural network model for reading antibiograms (Pascucci et al., 
Nat Commun 2021)

• Convolutional neural network model to automate malaria microscopy and 
diagnosis (Liang et al., IEEE 2016)

• Reinforcement learning of Covid-19 positivity rates to target limited testing 
in Greece (Bastani et al., Nature 2021)

• Machine-learning models including random forest and extreme gradient 
boosting to use syndromic surveillance for Covid-19 risk prediction 
(Dantas, PLoS One 2021)

• Automated data mining of electronic medical records to uncover hidden 
routes of infection transmission (Sundermann et al., Clin Infect Dis 2021)

• Supervised machine learning in combination with digital signal processing 
for genomic tracing of Covid-19 (Randhawa et al., PLoS One 2020)

• Real-time stacking of multiple models to improve forecasts of seasonal 
influenza (Reich et al., PLoS Comput Biol 2019)

• Machine learning to combine new data sources for monitoring Covid-19 
(Liu et al., J Med Internet Res 2020)
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as being relevant. HealthMap also automatically 
extracts geographic information that can be used 
to tie multiple reports together and identify dis-
ease clusters that cross-jurisdictional public 
health authorities may have missed. HealthMap 
uses a continuously expanding dictionary with 
text in more than nine languages. This high-
lights a key advantage of AI for disease surveil-
lance over labor-intensive, continuous manual 
classification — the ability to simultaneously 
provide worldwide coverage and hyperlocal situ-
ational awareness. This dynamic architecture 
enabled the December 30, 2019, HealthMap 
warning of a “cluster of pneumonia cases of 
unknown etiology,” just days after the first case 
of Covid-19 was identified.14,20

 Pathogen Classification

After a potential outbreak has been identified, 
an effective public health response requires 
knowledge of the underlying cause. Similar 
symptom patterns can be manifested by various 
pathogens or even by other, noninfectious 
causes.21 AI has led to advances in diagnostic 
classification in a variety of fields,22 including 
neuroimaging (e.g., improving diagnostic tests 
for Alzheimer’s disease23) and oncology (e.g., 

detecting breast cancer24). Current methods of 
infectious-disease surveillance have similarly 
drawn on AI to differentiate among various 
pathogens or identify variants that have worri-
some characteristics. By defining the pathologic 
characteristics of an outbreak, public health au-
thorities are able to respond accordingly (e.g., by 
ensuring an adequate supply of oseltamivir when 
influenza cases are increasing in a region). Con-
versely, reliance on simple syndromic definitions 
can result in misidentification of an outbreak, 
particularly when pathogens share symptoms and 
routes of transmission. For example, a “Covid-
like illness” syndrome suggested a false wave of 
Covid-19 in Canada, whereas pathogen data in-
stead pointed to circulating seasonal viruses such 
as enterovirus or rhinovirus.21

A recent example of AI applied to determine 
antibiotic resistance highlights the power of an 
AI-driven image classification tool to aid in sur-
veillance. The Kirby–Bauer disk-diffusion test is 
a simple, low-cost technique for determining 
bacterial susceptibility to drugs from the diam-
eter of the area in which growth of the bacteria 
is inhibited around an antibiotic-treated disk in 
a petri dish.9 However, measurement quality is 
user-dependent and can result in misclassifica-

Figure 2. Example of How HealthMap Uses Natural-Language Processing to Classify Infectious-Disease Case Reports.

The natural‑language processing engine of HealthMap parses text reports and can extract information such as pathogen name, location, 
and case numbers. It can also use contextual information to identify data that may not be relevant to this individual report. The engine 
can then combine multiple reports in a geographic region (Washington State, in this hypothetical example) that can be used to track 
disease incidence over time and identify surges before traditional surveillance methods can do so.

New cases of novel coronavirus in Seattle 
area spark concern among local health 
officials. Six individuals diagnosed, which 
brings Washington’s total to fourteen so far. 

Seattle, Washington

Skagit County, Washington3

Kittitas County, Washington 4

6

Lewis County, Washington 1

Pathogen name
Location
Case numbers
Excluded information

14
cases

The Covid-19 outbreak map around Seattle, February 2020
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tion of bacteria as susceptible or resistant, errors 
that affect treatment choices for individual pa-
tients and epidemiologic surveillance capabili-
ties. State-of-the-art laboratories use automated 
readers to solve the problem, but this solution is 
costly and not available to laboratories operating 
on a small budget.

A group of researchers supported by Méde-
cins sans Frontières sought to leverage AI in 
order to solve this problem (Fig. 3). They created 
a mobile application that uses a telephone cam-
era and machine-learning algorithms to ascer-
tain the antibiotic susceptibility of bacteria with 
a highly scalable approach.9 First, the application 
uses a series of image-processing algorithms to 
focus on the disks, determine antibiotic type, 
and measure the growth inhibition zone by 
quantifying pixel intensity around each disk. 
Second, in order to translate the measured 
growth patterns into decisions about the overall 
resistance of the bacteria to each antibiotic disk, 
the application uses an AI-driven “expert system,” 
a type of algorithm that is based on an expert-
informed knowledge base, heuristics, and a pro-
grammed set of rules to emulate human deci-
sion making. The classification is obtained in 
conjunction with a user-validation procedure, and 
the results can be automatically forwarded to 
international institutions such as the Global Anti-
microbial Resistance Surveillance System of the 
World Health Organization (WHO). Thus, the use 
of AI to expand an individual practitioner’s tool-
box for assessing bacteria has the far-reaching 
consequences of enhancing our ability to track 
antibiotic resistance globally.

Source Identification

When an outbreak has been identified, the next 
step is to stop the outbreak by first tracing and 
then cutting off routes of transmission. For 
hospital-based outbreak detection, tracking of 
infections with the use of spatiotemporal clus-
tering and contact tracing can be performed by 
hand to identify targets for intervention.25 Al-
though often effective, this method is extremely 
labor-intensive and can involve large-scale chart 
reviews, random environmental sampling, and 
in-depth interviews. Genetic similarities of 
whole-genome surveillance sequences can also 
be used to tie clinical cases together. However, 
this method cannot be used to identify sources 

of infection, and even when used in conjunction 
with traditional hospital-based outbreak detec-
tion, it may fail to identify complex transmission 
patterns, knowledge of which is required to di-
rect interventions.

In the past few years, a group of researchers 
at the University of Pittsburgh have introduced a 
machine-learning layer into whole-genome sur-
veillance to create an outbreak source identifica-
tion system — the Enhanced Detection System for 
Healthcare-Associated Transmission (EDS-HAT).12 
EDS-HAT works by combining whole-genome 
surveillance sequencing and machine learning 
to automatically mine patients’ electronic medi-
cal records (EMRs) for data related to an out-
break. The algorithm was trained by means of a 
case–control method that parsed the EMR data 
from patients known to have infections from the 
same outbreak (cases) and EMR data from other 
patients in the hospital (controls used to estab-
lish baseline levels of exposure relatedness). This 
form of learning guided the algorithm to iden-
tify EMR similarities (e.g., procedures, clini-
cians, and rooms) of cases with linked infec-
tions. Analysis of EDS-HAT determined that 
real-time machine learning based on EMRs in 
combination with whole-genome sequencing 
could prevent up to 40% of hospital-borne infec-
tions in the nine locations studied and poten-
tially save money.25

In practice, the EDS-HAT algorithm has iden-
tified multiple, otherwise-undetected outbreaks, 
using as clues similarities hidden in the EMR 
data. Notably, it detected outbreaks with hidden 
transmission patterns such as methicillin-resis-
tant Staphylococcus aureus infections in two patients 
who were in two different hospital units, both of 
whom underwent bedside electroencephalo-
graphic monitoring. The connection was diffi-
cult to detect by traditional methods of review 
because the infection culture dates were 8 days 
apart, but it was identified by the EDS-HAT be-
cause the procedures were performed on the 
same day by the same technician. In another 
instance, the source of a Pseudomonas aeruginosa 
outbreak among six patients in multiple units of 
a hospital over a period of 7 months was missed 
because of the wide separation of time and 
space. Genome surveillance suggested that the 
cases were all connected, and the machine-
learning algorithm identified a contaminated 
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gastroscope as the likely source of the outbreak 
— an easy target for intervention. In this sce-
nario, running a real-time AI algorithm to detect 
what was being missed by traditional methods 
resulted in early disease recognition, infection 
prevention, a substantial decrease in potential 
illness, and cost savings.

 Risk Assessment

For widespread infections such as those that 
occur in pandemics, complete elimination of 
infection at a single source is unlikely. In these 
scenarios, vaccination,26 contact tracing,27 and 
nonpharmaceutical interventions such as move-
ment restrictions28 and mask wearing29 can be 

Figure 3. Example of Mobile Application to Measure Antibiotic Susceptibility with AI.

A mobile phone application developed by Pascucci and colleagues9 uses machine learning and AI to classify bacterial susceptibility to 
various antibiotics. Panel A shows the image acquisition setup, and Panel B shows the mobile phone application. The application is de‑
signed to read a Kirby–Bauer disk‑diffusion test, first by using machine‑learning and image‑processing techniques and then by organiz‑
ing the results with the use of an AI‑driven “expert system.” The mobile application supports the ability to make high‑quality reads in 
 resource‑limited settings and to forward the results to global antimicrobial resistance surveillance systems.
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used to reduce transmission. AI and machine-
learning techniques have been introduced broad-
ly for these applications, especially during the 
Covid-19 pandemic. For example, in China, health 
quick-response (QR) codes embedded in widely 
used mobile applications (Alipay and WeChat) 
have allowed for real-time assessment of trans-
mission risk in public locations and connection 
to AI-driven medical chatbots that can answer 
health-related questions.30 In Greece, the gov-
ernment introduced Eva, an AI algorithm to 
screen travelers for Covid-19 at the border of the 
country. This algorithm identified 1.25 to 1.45 
times as many asymptomatic infected travelers 
as those identified with testing based on epide-
miologic metrics (i.e., testing of persons arriving 

from countries with a high number of cases or 
deaths per capita or a high reported positivity 
rate).11

Eva uses reinforcement learning (Fig. 4) to 
target travelers for polymerase-chain-reaction 
(PCR) Covid-19 testing.11 Rather than relying on 
population-based epidemiologic metrics, the algo-
rithm sorts travelers into “types” according to 
their origin country, age, sex, and time of entry. 
Recent testing results from Eva are fed back 
into the system, and travelers are assigned to 
Covid-19 testing on the basis of recent preva-
lence estimates for their type. The system con-
tinues to learn by receiving updated test results 
from high-risk travelers (anonymously) and ex-
ploratory results from types for which it does 

Figure 4. Example of Reinforcement Learning for Covid-19 Border Surveillance.

Eva is a reinforcement learning system used in Greece to allocate a limited supply of Covid‑19 tests at the border 
of the country.11 The algorithm uses information about the travelers in order to assign them to risk categories, with 
polymerase‑chain‑reaction (PCR) tests allocated accordingly. The risk estimate for each category is regularly updated 
to incorporate new information from the most recent batch of test results. Eva also sets testing cutoff levels, based 
on both risk and the available supply of tests, and makes Covid‑19 prevalence estimates for each risk category. 
Pseudonymization refers to a deidentification procedure in which personally identifiable information is replaced 
by other identifiers.
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not have recent prevalence estimates. With con-
tinuous learning, the algorithm can optimize 
allocation of the limited testing resources in 
Greece while identifying substantially more cas-
es than those identified with the use of alterna-
tive strategies. Eva features a crucial advantage 
of AI over even the best-performing traditional 
surveillance models — the ability to continu-
ously adapt and improve without deliberate in-
tervention.

E x tended A pplic ations

We have highlighted just a few examples of how 
AI has advanced infectious-disease surveillance. 
Representative examples of the diverse functions 
and applications in this discipline are outlined 
in Figure 1, but since this is an evolving field, we 
do not provide a comprehensive listing of all 
extant projects. Figure 5 shows how a sample of 
existing and emerging AI and machine learning–
aided tools might be deployed during a hypo-
thetical respiratory outbreak to improve surveil-
lance at multiple time points, at each step 
generating meaningful insights from otherwise 
difficult-to-interpret, multidimensional data. There 
are some advantages and disadvantages of using 
these AI–machine-learning methods (here classi-
fied as either supervised classification methods 
or artificial neural networks) as compared with 
two human-curated surveillance systems: tra-
ditional public health surveillance and nontradi-
tional participatory surveillance.

As an outbreak starts, early signals can be 
detected by wearable devices such as smart-
watches and smart rings, which may pick up on 
infections from subclinical changes (e.g., in-
creases in the resting heart rate) before notice-
able symptoms appear (Fig. 5).31 The population 
aggregate of this signal can warn public health 
officials of an impending outbreak. Similarly, as 
disease courses progress, AI methods can help 
pinpoint outbreak hotspots from the locations 
where many persons have symptoms4 or are 
seeking care.32 These methods can also be used 
to mine social media for cases of illness based 
on information reported from individual per-
sons who are posting online; these case counts 
have been shown to track with government case 
counts.33 Public health officials can leverage AI 
for passive surveillance of adherence to nonphar-
maceutical interventions. For example, closed-

circuit television and image-recognition algo-
rithms can be used to monitor mask wearing,34 
and privacy-preserving measures of the move-
ments of individual persons can be used to 
quantify population mobility and social distanc-
ing.35 These AI-driven approaches complement 
the human-curated ones, including traditional 
public health surveillance, which is highly ac-
curate but has a longer latency, and participatory 
surveillance, which can produce insights in real 
time but lacks the confirmatory nature of tradi-
tional reporting.36

Surv eill a nce Roa dbl o ck s  
a nd Fu t ur e Dir ec tions

Data Volume and Quality

The availability of large quantities of low-latency 
data has played a large part in improving infec-
tious-disease surveillance, but gaps remain, and 
vulnerabilities continue to go unnoticed. “Big 
data hubris” reminds us that even the most ac-
curate AI-trained infectious-disease surveillance 
systems can lead to overfitting (i.e., predictions 
that are not generalizable because they are too 
tailored to specific data) and should comple-
ment rather than replace high-quality traditional 
surveillance.37 Disease-tracking systems that are 
not supplemented by molecular testing may not 
be able to disentangle cocirculating infections 
that have similar clinical manifestations,21 al-
though machine classification systems may be 
able to improve on human intuition. In addition, 
the AI algorithms designed for surveillance of 
diseases such as Covid-19 will require frequent 
recalibration as new pathogen variants emerge 
and exogenous variables (e.g., vaccination) mod-
ify symptom presentations and affected demo-
graphic characteristics.38,39 These systems may 
produce false alarms or fail to capture important 
signals in the presence of noise. Furthermore, 
machine-learning algorithms trained on low-
quality data will not add value, and in some 
circumstances they may even be harmful.

Data Source Representation

Despite tremendous technological strides in im-
proving the precision and accuracy of surveil-
lance systems, they are often built on databases 
with structural underrepresentation of selected 
populations.40 Although ensemble models can 
mitigate the methodologic distortions of indi-
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vidual surveillance streams, they cannot adjust 
for systematic selection bias of an undefined pro-
portion. A recent analysis of U.S. Covid-19 mor-
tality data suggested that the lack of properly 
encoded racial information in surveillance data-
bases was causing disparities in deaths among 
Black and Hispanic persons to be underreported 
by up to 60%.41 This is both a moral and a meth-
odologic issue. The resulting distortion in signal 
means that AI algorithms trained from these 
incomplete data sets or those that fail to incor-
porate race as reported by patients will recapitu-
late inequities and underestimate the resources 
necessary to mitigate disparate outcomes.42

In another instance, researchers used a data-
base of chest radiographs in children as a control 
group when training image-classification algo-
rithms to diagnose Covid-19 in broad popula-
tions.43 Although the algorithms performed well, 
they were simply separating adults from chil-
dren rather than identifying those with Covid-19. 
Researchers at the University of Padua revealed 
the scope of this error when they reported that 
one can entirely remove the lung area from an 
image and still predict from which database the 
data were derived.44 The error in this case and 
the underreported Black and Hispanic mortality 
data noted above exemplify how public health 
surveillance that replaces inclusion, representa-
tion, and critical evaluation of sample selection 
with AI and machine learning may produce de-
ceivingly precise but incorrect conclusions.45

Privacy

As surveillance models incorporate data streams 
from sources such as “digital exhaust” (i.e., extra-
neous data generated by persons interacting with 

the digital world), connected health devices, and 
wearable technology, issues of individual privacy 
will continue to grow in importance.46,47 Consid-
erable care must be given to balancing the re-
quirements of high-quality open data to push 
research boundaries,48 the invasiveness of AI 
tools, and personal privacy needs.

Although approaches to weighing public 
health concerns against personal data rights will 
reflect community needs and surveillance objec-
tives, the use of AI-powered, privacy-preserving 
forms of technology must be considered. One 
such type of technology is federated learning, 
which has recently been used for an infectious-
disease surveillance study performed with the 
use of smartphones.49 Federated learning brings 
distributed models to each participant’s per-
sonal data and devices, where calculations are 
performed locally, and then uses those models 
to iteratively update a centralized model. Thus, 
participants’ data never leave their own devices, 
so participants can contribute to surveillance 
projects without the privacy risks associated 
with centrally stored data.47

The Limits of AI

The spread of infectious diseases is an issue of 
hyperlocal and international concern. The Covid-19 
pandemic has shown that pathogens do not rec-
ognize national borders and that seemingly in-
consequential events can have far-reaching con-
sequences (e.g., the Biogen conference held in 
Boston in February 2020, which was the source 
of hundreds of thousands of infections50). Al-
though technological achievements will contin-
ue to improve our surveillance infrastructure, 
future outbreaks are still likely to occur. AI can-
not replace the cross-jurisdictional and cross-
functional coordination that is truly essential for 
the collective intelligence required to fight novel 
and emerging diseases. Collaborative surveil-
lance networks such as the WHO Hub for Pan-
demic and Epidemic Intelligence in Berlin, the 
Center for Forecasting and Outbreak Analytics 
(recently launched by the Centers for Disease 
Control and Prevention), the Pandemic Preven-
tion Institute of the Rockefeller Foundation, the 
African continent–wide Regional Integrated Sur-
veillance and Laboratory Network, and many 
others are needed for ongoing endemic surveil-
lance if we are to be prepared for the next pan-
demic. These groups will use AI to enhance 

Figure 5 (facing page). AI and Machine-Learning  
Transformations of Individual Behavior into Population 
Health Information.

A diverse and nonexhaustive set of AI and machine-
learning algorithms (here categorized as either a super‑
vised classification algorithm or an artificial neural net‑
work) and human-curated methods can be applied 
throughout a hypothetical respiratory virus outbreak. 
Individual events, when aggregated, create a signal of 
possible infectious disease within a population. Detected 
signals are used to determine actionable surveillance 
measures. Each approach has distinct advantages and 
disadvantages, and in combination, the algorithms con‑
stitute a system for detecting and responding to an 
outbreak. CCTV denotes closed-circuit television.
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their models but will achieve little without inter-
national cooperation to deploy them.

The future of infectious-disease surveillance 
will feature emerging forms of technology, in-
cluding but not limited to biosensors, quantum 
computing, and augmented intelligence. Recent 
advances in large language models (e.g., Genera-
tive Pre-trained Transformer 4 [GPT-4]) hold 
great promise for the future of infectious-disease 
surveillance because these models can process 
and analyze vast amounts of unstructured text 
and may enhance our ability to streamline labor-
intensive processes and spot hidden trends. 
Other types of technology, not yet invented, will 

surely make a difference. However, over the 
course of the Covid-19 pandemic, our current 
methods have been put to the test, and their 
performance has been highly variable. The suc-
cess of the next generation of AI-driven surveil-
lance tools will depend heavily on our ability to 
unravel the shortcomings of our algorithms, 
recognize which of our achievements are gener-
alizable, and incorporate the many lessons 
learned into our future behavior.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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