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LORENCE NIGHTINGALE’S INNOVATIVE “ROSE DIAGRAM” OF PREVENTABLE
deaths revolutionized data-driven disease surveillance.! Raw hospital mortality
data collected during the Crimean War were transformed into a compelling,
visual insight — poor sanitary conditions killed more people than battle wounds
did. This act of synthesizing noisy, complex data into an elegant, effective message
was the foundation for a royal commission to track morbidity and mortality and
thus launched a new era in which analytic methods were used to better monitor
and manage infectious disease. In the more than 160 years since the first publica-
tion of Nightingale’s rose diagram, tools and technology for translating high-
density data and uncovering hidden patterns to provide public health solutions
have continued to evolve. Manual techniques are now complemented by machine-
learning algorithms. Artificial intelligence (AI) tools can now identify intricate,
previously invisible data structures, providing innovative solutions to old problems.
Together, these advances are propelling infectious-disease surveillance forward.
The coronavirus disease 2019 (Covid-19) pandemic has highlighted the speed
with which infections can spread and devastate the world — and the extreme
importance of an equally nimble, expeditious, and clever armamentarium of pub-
lic health tools to counter those effects. Throughout this crisis, we have witnessed
a multitude of AI solutions deployed to play this role — some much more success-
ful than others. As new pathogens emerge or old challenges return to command
our attention, the incorporation of the lessons learned into our public health play-
book is a priority. In this review article, we reflect on the effects of new and long-
standing Al solutions for infectious-disease surveillance. Al applications have been
shown to be successful for a diverse set of functions, including early-warning
systems,>* hotspot detection,*> epidemiologic tracking and forecasting,” and resource
allocation® (Fig. 1). We discuss a few recent examples.”'*> We begin with how Al
and machine learning can power early-warning tools and help distinguish among
various circulating pathogens (e.g., severe acute respiratory syndrome coronavirus
2 [SARS-CoV-2] vs. influenza virus). We then discuss Al and machine-learning
tools that can backtrack epidemics to their source and an algorithmic method that
can direct an efficient response to an ongoing epidemic. Finally, we emphasize the
critical limitations of Al and machine learning for public health surveillance and
discuss salient considerations to improve implementation in the future.

ATl APPLICATIONS IN DISEASE SURVEILLANCE

EARLY WARNING

Early-warning systems for disease surveillance have benefitted immensely from
the incorporation of Al algorithms and analytics.*® At any given moment, the
Web is flooded with disease reports in the form of news articles, press releases,
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Function Examples

Early warning

Pathogen classification
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Risk assessment

Nat Commun 2021)

Source identification "

=

P

Hotspot detection

Technol 2020)

- Natural-language processing of news sources to identify outbreaks

(Freifeld et al., JAMIA 2008)
A « Unsupervised machine learning of social media data to detect unknown

N infections (Lim, Tucker, and Kumara, J Biomed Inform 2017)
« Convolutional neural network model for reading antibiograms (Pascucci et al.,

« Convolutional neural network model to automate malaria microscopy and
diagnosis (Liang et al., [EEE 2016)

« Reinforcement learning of Covid-19 positivity rates to target limited testing
in Greece (Bastani et al., Nature 2021)

« Machine-learning models including random forest and extreme gradient
boosting to use syndromic surveillance for Covid-19 risk prediction
(Dantas, PLoS One 2021)

« Automated data mining of electronic medical records to uncover hidden
routes of infection transmission (Sundermann et al., Clin Infect Dis 2021)

« Supervised machine learning in combination with digital signal processing
for genomic tracing of Covid-19 (Randhawa et al., PLoS One 2020)

« Neural computing engine to correlate sound from hospital waiting rooms with
influenza spikes (Al Hossain et al., Proc ACM Interact Mob Wearable Ubiquitous

« Multilayer perceptron artificial neural network model to detect spatial clustering
of tuberculosis (Mollalo et al., Int | Environ Res Public Health 2019)

« Real-time stacking of multiple models to improve forecasts of seasonal
influenza (Reich et al., PLoS Comput Biol 2019)

« Machine learning to combine new data sources for monitoring Covid-19
K (Liu et al., J Med Internet Res 2020)

Figure 1. Various Functions of Artificial Intelligence (Al) for Infectious-Disease Surveillance.

Shown is a nonexhaustive list of functions of Al-aided infectious-disease surveillance and representative examples
from the published literature.?™* Each example includes the type of Al algorithm, a brief description of its purpose,
and the associated citation. Covid-19 denotes coronavirus disease 2019.

professional discussion boards, and other curated
fragments of information. These validated com-
munications can range from documentation of
cases of innocuous infections well known to the
world to the first reports of emerging viruses
with pandemic potential. However, the volume
and distributed nature of these reports consti-
tute much more information than can be made
sense of promptly by even highly trained per-
sons, making early warning of emerging viruses
nearly impossible. Enter Al-trained algorithms
that can parse, filter, classify, and aggregate text
for signals of infectious-disease events with high
accuracy at unprecedented speeds. HealthMap,
just one example of these types of systems, has
done so successfully for more than a decade.>"
This Internet-based infectious-disease surveil-
lance system provided early evidence of the

emergence of influenza A (HIN1) in Mexico™
and was used to track the 2019 outbreak of
vaping-induced pulmonary disease in the United
States."

HealthMap uses natural-language processing
to search through text posted across the Web for
signals of infectious-disease events in real time
by comparing the text with a dictionary of
known pathogens and geographic areas. Algo-
rithms are trained to ignore noise and parse
relevant reports by identifying disease-related
text such as the name of a pathogen and inci-
dence numbers (Fig. 2). HealthMap then sepa-
rates outbreak-related noise from other disease
reports (e.g., scientific manuscripts and vaccina-
tion campaigns), using a Bayesian machine-
learning classification scheme that was original-
ly trained with data that were manually tagged
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ADVANCES IN AI FOR INFECTIOUS-DISEASE SURVEILLANCE

"Gi Seattle, Washington

New cases of novel coronavirus in Seattle
area spark concern among local health
officials. Six individuals diagnosed, which
brings Washington’s total to fourteen so far.

Pathogen name
Location

Case numbers
Excluded information

The Covid-19 outbreak map around Seattle, February 2020

° :92 Skagit County, Washington

E °
'a Kittitas County, Washington

ai Lewis County, Washington

Figure 2. Example of How HealthMap Uses Natural-Language Processing to Classify Infectious-Disease Case Reports.

The natural-language processing engine of HealthMap parses text reports and can extract information such as pathogen name, location,
and case numbers. It can also use contextual information to identify data that may not be relevant to this individual report. The engine
can then combine multiple reports in a geographic region (Washington State, in this hypothetical example) that can be used to track
disease incidence over time and identify surges before traditional surveillance methods can do so.

as being relevant. HealthMap also automatically
extracts geographic information that can be used
to tie multiple reports together and identify dis-
ease clusters that cross-jurisdictional public
health authorities may have missed. HealthMap
uses a continuously expanding dictionary with
text in more than nine languages. This high-
lights a key advantage of Al for disease surveil-
lance over labor-intensive, continuous manual
classification — the ability to simultaneously
provide worldwide coverage and hyperlocal situ-
ational awareness. This dynamic architecture
enabled the December 30, 2019, HealthMap
warning of a “cluster of pneumonia cases of
unknown etiology,” just days after the first case
of Covid-19 was identified.!**

PATHOGEN CLASSIFICATION

After a potential outbreak has been identified,
an effective public health response requires
knowledge of the underlying cause. Similar
symptom patterns can be manifested by various
pathogens or even by other, noninfectious
causes.”! Al has led to advances in diagnostic
classification in a variety of fields,” including
neuroimaging (e.g., improving diagnostic tests
for Alzheimer’s disease?®) and oncology (e.g.,
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detecting breast cancer*). Current methods of
infectious-disease surveillance have similarly
drawn on Al to differentiate among various
pathogens or identify variants that have worri-
some characteristics. By defining the pathologic
characteristics of an outbreak, public health au-
thorities are able to respond accordingly (e.g., by
ensuring an adequate supply of oseltamivir when
influenza cases are increasing in a region). Con-
versely, reliance on simple syndromic definitions
can result in misidentification of an outbreak,
particularly when pathogens share symptoms and
routes of transmission. For example, a “Covid-
like illness” syndrome suggested a false wave of
Covid-19 in Canada, whereas pathogen data in-
stead pointed to circulating seasonal viruses such
as enterovirus or rhinovirus.?!

A recent example of Al applied to determine
antibiotic resistance highlights the power of an
Al-driven image classification tool to aid in sur-
veillance. The Kirby-Bauer disk-diffusion test is
a simple, low-cost technique for determining
bacterial susceptibility to drugs from the diam-
eter of the area in which growth of the bacteria
is inhibited around an antibiotic-treated disk in
a petri dish.” However, measurement quality is
user-dependent and can result in misclassifica-
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tion of bacteria as susceptible or resistant, errors
that affect treatment choices for individual pa-
tients and epidemiologic surveillance capabili-
ties. State-of-the-art laboratories use automated
readers to solve the problem, but this solution is
costly and not available to laboratories operating
on a small budget.

A group of researchers supported by Méde-
cins sans Frontieéres sought to leverage Al in
order to solve this problem (Fig. 3). They created
a mobile application that uses a telephone cam-
era and machine-learning algorithms to ascer-
tain the antibiotic susceptibility of bacteria with
a highly scalable approach.’ First, the application
uses a series of image-processing algorithms to
focus on the disks, determine antibiotic type,
and measure the growth inhibition zone by
quantifying pixel intensity around each disk.
Second, in order to translate the measured
growth patterns into decisions about the overall
resistance of the bacteria to each antibiotic disk,
the application uses an Al-driven “expert system,”
a type of algorithm that is based on an expert-
informed knowledge base, heuristics, and a pro-
grammed set of rules to emulate human deci-
sion making. The classification is obtained in
conjunction with a user-validation procedure, and
the results can be automatically forwarded to
international institutions such as the Global Anti-
microbial Resistance Surveillance System of the
World Health Organization (WHO). Thus, the use
of Al to expand an individual practitioner’s tool-
box for assessing bacteria has the far-reaching
consequences of enhancing our ability to track
antibiotic resistance globally.

SOURCE IDENTIFICATION

When an outbreak has been identified, the next
step is to stop the outbreak by first tracing and
then cutting off routes of transmission. For
hospital-based outbreak detection, tracking of
infections with the use of spatiotemporal clus-
tering and contact tracing can be performed by
hand to identify targets for intervention.>® Al-
though often effective, this method is extremely
labor-intensive and can involve large-scale chart
reviews, random environmental sampling, and
in-depth interviews. Genetic similarities of
whole-genome surveillance sequences can also
be used to tie clinical cases together. However,
this method cannot be used to identify sources

of infection, and even when used in conjunction
with traditional hospital-based outbreak detec-
tion, it may fail to identify complex transmission
patterns, knowledge of which is required to di-
rect interventions.

In the past few years, a group of researchers
at the University of Pittsburgh have introduced a
machine-learning layer into whole-genome sur-
veillance to create an outbreak source identifica-
tion system — the Enhanced Detection System for
Healthcare-Associated Transmission (EDS-HAT).'?
EDS-HAT works by combining whole-genome
surveillance sequencing and machine learning
to automatically mine patients’ electronic medi-
cal records (EMRs) for data related to an out-
break. The algorithm was trained by means of a
case—control method that parsed the EMR data
from patients known to have infections from the
same outbreak (cases) and EMR data from other
patients in the hospital (controls used to estab-
lish baseline levels of exposure relatedness). This
form of learning guided the algorithm to iden-
tify EMR similarities (e.g., procedures, clini-
cians, and rooms) of cases with linked infec-
tions. Analysis of EDS-HAT determined that
real-time machine learning based on EMRs in
combination with whole-genome sequencing
could prevent up to 40% of hospital-borne infec-
tions in the nine locations studied and poten-
tially save money.”

In practice, the EDS-HAT algorithm has iden-
tified multiple, otherwise-undetected outbreaks,
using as clues similarities hidden in the EMR
data. Notably, it detected outbreaks with hidden
transmission patterns such as methicillin-resis-
tant Staphylococcus aureus infections in two patients
who were in two different hospital units, both of
whom underwent bedside electroencephalo-
graphic monitoring. The connection was diffi-
cult to detect by traditional methods of review
because the infection culture dates were 8 days
apart, but it was identified by the EDS-HAT be-
cause the procedures were performed on the
same day by the same technician. In another
instance, the source of a Pseudomonas aeruginosa
outbreak among six patients in multiple units of
a hospital over a period of 7 months was missed
because of the wide separation of time and
space. Genome surveillance suggested that the
cases were all connected, and the machine-
learning algorithm identified a contaminated
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A Image acquisition setup
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Figure 3. Example of Mobile Application to Measure Antibiotic Susceptibility with Al.

A mobile phone application developed by Pascucci and colleagues® uses machine learning and Al to classify bacterial susceptibility to
various antibiotics. Panel A shows the image acquisition setup, and Panel B shows the mobile phone application. The application is de-
signed to read a Kirby—Bauer disk-diffusion test, first by using machine-learning and image-processing techniques and then by organiz-
ing the results with the use of an Al-driven “expert system.” The mobile application supports the ability to make high-quality reads in
resource-limited settings and to forward the results to global antimicrobial resistance surveillance systems.

gastroscope as the likely source of the outbreak
— an easy target for intervention. In this sce-
nario, running a real-time Al algorithm to detect
what was being missed by traditional methods
resulted in early disease recognition, infection
prevention, a substantial decrease in potential
illness, and cost savings.

RISK ASSESSMENT
For widespread infections such as those that
occur in pandemics, complete elimination of
infection at a single source is unlikely. In these
scenarios, vaccination,®® contact tracing,” and
nonpharmaceutical interventions such as move-
ment restrictions?® and mask wearing® can be
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Figure 4. Example of Reinforcement Learning for Covid-19 Border Surveillance.

Eva is a reinforcement learning system used in Greece to allocate a limited supply of Covid-19 tests at the border
of the country.!! The algorithm uses information about the travelers in order to assign them to risk categories, with
polymerase-chain-reaction (PCR) tests allocated accordingly. The risk estimate for each category is regularly updated
to incorporate new information from the most recent batch of test results. Eva also sets testing cutoff levels, based
on both risk and the available supply of tests, and makes Covid-19 prevalence estimates for each risk category.
Pseudonymization refers to a deidentification procedure in which personally identifiable information is replaced

used to reduce transmission. Al and machine-
learning techniques have been introduced broad-
ly for these applications, especially during the
Covid-19 pandemic. For example, in China, health
quick-response (QR) codes embedded in widely
used mobile applications (Alipay and WeChat)
have allowed for real-time assessment of trans-
mission risk in public locations and connection
to Al-driven medical chatbots that can answer
health-related questions.*® In Greece, the gov-
ernment introduced Eva, an Al algorithm to
screen travelers for Covid-19 at the border of the
country. This algorithm identified 1.25 to 1.45
times as many asymptomatic infected travelers
as those identified with testing based on epide-
miologic metrics (i.e., testing of persons arriving

1602 N ENGLJ MED 388;17

from countries with a high number of cases or
deaths per capita or a high reported positivity
rate).!

Eva uses reinforcement learning (Fig. 4) to
target travelers for polymerase-chain-reaction
(PCR) Covid-19 testing.* Rather than relying on
population-based epidemiologic metrics, the algo-
rithm sorts travelers into “types” according to
their origin country, age, sex, and time of entry.
Recent testing results from Eva are fed back
into the system, and travelers are assigned to
Covid-19 testing on the basis of recent preva-
lence estimates for their type. The system con-
tinues to learn by receiving updated test results
from high-risk travelers (anonymously) and ex-
ploratory results from types for which it does
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not have recent prevalence estimates. With con-
tinuous learning, the algorithm can optimize
allocation of the limited testing resources in
Greece while identifying substantially more cas-
es than those identified with the use of alterna-
tive strategies. Eva features a crucial advantage
of Al over even the best-performing traditional
surveillance models — the ability to continu-
ously adapt and improve without deliberate in-
tervention.

EXTENDED APPLICATIONS

We have highlighted just a few examples of how
AI has advanced infectious-disease surveillance.
Representative examples of the diverse functions
and applications in this discipline are outlined
in Figure 1, but since this is an evolving field, we
do not provide a comprehensive listing of all
extant projects. Figure 5 shows how a sample of
existing and emerging Al and machine learning—
aided tools might be deployed during a hypo-
thetical respiratory outbreak to improve surveil-
lance at multiple time points, at each step
generating meaningful insights from otherwise
difficult-to-interpret, multidimensional data. There
are some advantages and disadvantages of using
these Al-machine-learning methods (here classi-
fied as either supervised classification methods
or artificial neural networks) as compared with
two human-curated surveillance systems: tra-
ditional public health surveillance and nontradi-
tional participatory surveillance.

As an outbreak starts, early signals can be
detected by wearable devices such as smart-
watches and smart rings, which may pick up on
infections from subclinical changes (e.g., in-
creases in the resting heart rate) before notice-
able symptoms appear (Fig. 5).3' The population
aggregate of this signal can warn public health
officials of an impending outbreak. Similarly, as
disease courses progress, Al methods can help
pinpoint outbreak hotspots from the locations
where many persons have symptoms* or are
seeking care.? These methods can also be used
to mine social media for cases of illness based
on information reported from individual per-
sons who are posting online; these case counts
have been shown to track with government case
counts.® Public health officials can leverage Al
for passive surveillance of adherence to nonphar-
maceutical interventions. For example, closed-

circuit television and image-recognition algo-
rithms can be used to monitor mask wearing,*
and privacy-preserving measures of the move-
ments of individual persons can be used to
quantify population mobility and social distanc-
ing.®® These Al-driven approaches complement
the human-curated ones, including traditional
public health surveillance, which is highly ac-
curate but has a longer latency, and participatory
surveillance, which can produce insights in real
time but lacks the confirmatory nature of tradi-
tional reporting.*

SURVEILLANCE ROADBLOCKS
AND FUTURE DIRECTIONS

DATA VOLUME AND QUALITY

The availability of large quantities of low-latency
data has played a large part in improving infec-
tious-disease surveillance, but gaps remain, and
vulnerabilities continue to go unnoticed. “Big
data hubris” reminds us that even the most ac-
curate Al-trained infectious-disease surveillance
systems can lead to overfitting (i.e., predictions
that are not generalizable because they are too
tailored to specific data) and should comple-
ment rather than replace high-quality traditional
surveillance.’” Disease-tracking systems that are
not supplemented by molecular testing may not
be able to disentangle cocirculating infections
that have similar clinical manifestations,” al-
though machine classification systems may be
able to improve on human intuition. In addition,
the Al algorithms designed for surveillance of
diseases such as Covid-19 will require frequent
recalibration as new pathogen variants emerge
and exogenous variables (e.g., vaccination) mod-
ify symptom presentations and affected demo-
graphic characteristics.>®** These systems may
produce false alarms or fail to capture important
signals in the presence of noise. Furthermore,
machine-learning algorithms trained on low-
quality data will not add value, and in some
circumstances they may even be harmful.

DATA SOURCE REPRESENTATION

Despite tremendous technological strides in im-
proving the precision and accuracy of surveil-
lance systems, they are often built on databases
with structural underrepresentation of selected
populations.*® Although ensemble models can
mitigate the methodologic distortions of indi-
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Figure 5 (facing page). Al and Machine-Learning
Transformations of Individual Behavior into Population
Health Information.

A diverse and nonexhaustive set of Al and machine-
learning algorithms (here categorized as either a super-
vised classification algorithm or an artificial neural net-
work) and human-curated methods can be applied
throughout a hypothetical respiratory virus outbreak.
Individual events, when aggregated, create a signal of
possible infectious disease within a population. Detected
signals are used to determine actionable surveillance
measures. Each approach has distinct advantages and
disadvantages, and in combination, the algorithms con-
stitute a system for detecting and responding to an
outbreak. CCTV denotes closed-circuit television.

vidual surveillance streams, they cannot adjust
for systematic selection bias of an undefined pro-
portion. A recent analysis of U.S. Covid-19 mor-
tality data suggested that the lack of properly
encoded racial information in surveillance data-
bases was causing disparities in deaths among
Black and Hispanic persons to be underreported
by up to 60%.*! This is both a moral and a meth-
odologic issue. The resulting distortion in signal
means that Al algorithms trained from these
incomplete data sets or those that fail to incor-
porate race as reported by patients will recapitu-
late inequities and underestimate the resources
necessary to mitigate disparate outcomes.*

In another instance, researchers used a data-
base of chest radiographs in children as a control
group when training image-classification algo-
rithms to diagnose Covid-19 in broad popula-
tions.” Although the algorithms performed well,
they were simply separating adults from chil-
dren rather than identifying those with Covid-19.
Researchers at the University of Padua revealed
the scope of this error when they reported that
one can entirely remove the lung area from an
image and still predict from which database the
data were derived.** The error in this case and
the underreported Black and Hispanic mortality
data noted above exemplify how public health
surveillance that replaces inclusion, representa-
tion, and critical evaluation of sample selection
with Al and machine learning may produce de-
ceivingly precise but incorrect conclusions.*

PRIVACY

As surveillance models incorporate data streams
from sources such as “digital exhaust” (i.e., extra-
neous data generated by persons interacting with

the digital world), connected health devices, and
wearable technology, issues of individual privacy
will continue to grow in importance.*®*” Consid-
erable care must be given to balancing the re-
quirements of high-quality open data to push
research boundaries,”® the invasiveness of Al
tools, and personal privacy needs.

Although approaches to weighing public
health concerns against personal data rights will
reflect community needs and surveillance objec-
tives, the use of Al-powered, privacy-preserving
forms of technology must be considered. One
such type of technology is federated learning,
which has recently been used for an infectious-
disease surveillance study performed with the
use of smartphones.* Federated learning brings
distributed models to each participant’s per-
sonal data and devices, where calculations are
performed locally, and then uses those models
to iteratively update a centralized model. Thus,
participants’ data never leave their own devices,
so participants can contribute to surveillance
projects without the privacy risks associated
with centrally stored data.*

THE LIMITS OF Al

The spread of infectious diseases is an issue of
hyperlocal and international concern. The Covid-19
pandemic has shown that pathogens do not rec-
ognize national borders and that seemingly in-
consequential events can have far-reaching con-
sequences (e.g., the Biogen conference held in
Boston in February 2020, which was the source
of hundreds of thousands of infections®). Al-
though technological achievements will contin-
ue to improve our surveillance infrastructure,
future outbreaks are still likely to occur. Al can-
not replace the cross-jurisdictional and cross-
functional coordination that is truly essential for
the collective intelligence required to fight novel
and emerging diseases. Collaborative surveil-
lance networks such as the WHO Hub for Pan-
demic and Epidemic Intelligence in Berlin, the
Center for Forecasting and Outbreak Analytics
(recently launched by the Centers for Disease
Control and Prevention), the Pandemic Preven-
tion Institute of the Rockefeller Foundation, the
African continent-wide Regional Integrated Sur-
veillance and Laboratory Network, and many
others are needed for ongoing endemic surveil-
lance if we are to be prepared for the next pan-
demic. These groups will use AI to enhance
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their models but will achieve little without inter-
national cooperation to deploy them.

The future of infectious-disease surveillance
will feature emerging forms of technology, in-
cluding but not limited to biosensors, quantum
computing, and augmented intelligence. Recent
advances in large language models (e.g., Genera-
tive Pre-trained Transformer 4 [GPT-4]) hold
great promise for the future of infectious-disease
surveillance because these models can process
and analyze vast amounts of unstructured text
and may enhance our ability to streamline labor-
intensive processes and spot hidden trends.
Other types of technology, not yet invented, will

surely make a difference. However, over the
course of the Covid-19 pandemic, our current
methods have been put to the test, and their
performance has been highly variable. The suc-
cess of the next generation of Al-driven surveil-
lance tools will depend heavily on our ability to
unravel the shortcomings of our algorithms,
recognize which of our achievements are gener-
alizable, and incorporate the many lessons
learned into our future behavior.

Disclosure forms provided by the authors are available with
the full text of this article at NEJM.org.

We thank Kimon Drakopoulos, Lee Harrison, and Amin
Madoui for their aid in interpreting their respective projects.
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