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KEY POINTS

� Tumor-infiltrating lymphocyte and gene-engineered T-cell receptor T-cell therapy target-
ing human papilloma virus (HPV) viral antigens have each demonstrated the ability to
induce tumor regression in patients with HPV-associated epithelial cancer including
head and neck cancer.

� Tumor-intrinsic defects in genes important for antigen presentation and interferon
response seem to portend resistance to adoptively transferred T cells and may be over-
come by earlier treatment with adoptive cell therapy (ACT).

� One approach to enhance the function of adoptively transferred T cells with membrane-
tethered cytokines is being explored.

� Further clinical advances using ACT in head and neck cancer may come through targeting
of non-HPV antigens including Epstein-Barr virus viral proteins and cancer germline
antigens.
INTRODUCTION

Adoptive cell therapy (ACT) is a promising new treatment modality that has demon-
strated clinical activity in hematologic cancers and a subset of solid tumors. The
most clinically successful type of ACT thus far has been chimeric antigen receptor
(CAR) T-cell therapy. CAR T-cell therapies targeting the lineage-restricted antigen
CD19 have been approved by the US Food and Drug Administration (FDA) for the
treatment of B cell malignancies.1–3 CAR T cells express synthetic receptors that
engage target antigens on the surface of tumor cells. Clinical application of CAR
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T-cell therapy has thus far been limited to hematologic malignancies because of the
lack of cell surface antigens that can be safely targeted in solid tumors.4,5 Early studies
targeting cell surface antigens in solid tumors with CAR T cells resulted in significant
toxicity through targeting of vital healthy tissue. A previous study testing CAR T-cell
therapy targeting carbonic anhydrase IX in patients with metastatic renal cell carci-
noma led to significant on-target, off-tumor toxicity.6,7 Careful selection of target an-
tigen is necessary to apply this therapy to common epithelial cancers like head and
neck cancer.5

Tumor-infiltrating lymphocyte (TIL) and gene-engineered T-cell receptor (TCR)
T-cell therapies have demonstrated clinical activity in a subset of solid cancers. TIL
and TCR T-cell therapy have the advantage of targeting antigens that are from pro-
teins residing inside of the cell or on the cell surface. Therefore, a broad range of
tumor-specific antigens can be targeted with highly potent T cells with minimal to
no targeting of vital healthy tissue. In TIL therapy, autologous tumor-specific T cells
are harvested from resected metastatic tumor deposits. The natural T cells are
expanded ex vivo to large quantities and administered back to the patient by intrave-
nous infusion. These T cells have been shown to target mutated neoantigens, cancer
germline antigens, and viral antigens expressed by cancer cells.8,9 TIL therapy has its
foundation in the successful treatment of metastatic melanoma.10 Gene-engineered
TCR T-cell therapy involves isolation of peripheral blood lymphocytes by apheresis.
These T cells are then genetically engineered to express a high-affinity TCR that rec-
ognizes a peptide from a tumor antigen in the context of a specific HLAmolecule. Early
studies with TCR T-cell therapy targeting the cancer germline antigen New York
esophageal squamous cell carcinoma-1 (NY-ESO-1) demonstrated clinical activity
in patients with synovial cell sarcoma and melanoma.11 Recent clinical studies testing
TIL and TCR-T cell therapy in treatment-refractory human papilloma virus (HPV)-pos-
itive epithelial cancers including head and neck cancer demonstrated clinical activity
in the last-line setting.12–14
ADVANCES IN ADOPTIVE T-CELL THERAPY IN HEAD AND NECK CANCER

HPV-associated oropharyngeal cancer is a common type of head and neck cancer
that harbors viral antigens that can be targeted by ACT.15,16 These viral antigens
are ideal target antigens for T-cell therapy, because they are not present in vital
healthy tissue, important for the transformation and survival of cancer cells, and
constitutively expressed by cancer cells.17,18 T cells targeting the viral antigens E6
and E7 have been identified in tumor-infiltrating lymphocytes from cervical cancer
specimens, and better clinical outcomes have been associated with T cell reactivity
against these antigens, indicating that ACT with HPV-specific T cells may be an effec-
tive treatment for HPV-associated cancers.19,20

The first attempt to target these antigens with adoptively transferred T cells was with
TIL therapy. In a phase II clinical trial, patients with HPV-associated epithelial cancers
were treated with autologous TIL generated preferentially from T cell subcultures reac-
tive toward the E6 and E7 viral antigens.13 Patients received a conditioning chemo-
therapy regimen of cyclophosphamide 60 mg/kg for 2 days and fludarabine 25 mg/
m2 for 5 days followed by a single infusion of TIL and high-dose aldesleukin. Objective
tumor responses were seen in 5 of 18 (28%) patients with cervical cancer and 2 of 11
(18%) patients with other HPV-positive cancers including head and neck. Two of the
responses in patients with cervical cancer were complete and have been ongoing now
for more than 6 years. One of 5 patients with HPV-associated head and neck cancer
had an objective response. The patient was a 60-year-old man with squamous cell
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carcinoma of the tonsil. He was previously treated with 6 systemic anticancer agents
and had multiple thoracic metastases that were progressing prior to therapy.
Following treatment, he had complete regression of his thoracic disease. He subse-
quently developed new brain metastases that were resected. He has been without ev-
idence of disease now for more than 5 years. Exploratory analysis from this trial
demonstrated that administered TILs displaying a greater frequency of HPV-
reactive T cells (as measured by the frequency of T cells responding to E6 and E7 pep-
tide stimulation) and higher concentrations of HPV-specific interferon (IFN)-g release
correlated with response. Furthermore, the frequency of HPV-reactive T cells in pe-
ripheral blood 1 month after treatment correlated positively with clinical response.13

Viral and nonviral antigens were targeted by the TIL administered to the 2 patients
who had complete tumor regression.12 Based on these results, a multicenter, multico-
hort, nonrandomized, industry-sponsored trial is being conducted to test TIL therapy
(LN-145) in patients with recurrent and metastatic squamous cell carcinoma of the
head and neck (NCT03083873).
Gene-engineered TCR T-cell therapy is a next-generation approach to ACT that

does not require surgery and creates a cell therapy product with well-defined spec-
ificity toward a target antigen. A TCR targeting the HPV16 E629-38-peptide presented
in the context of HLA-A*02:01 was discovered from the tumor-infiltrating lymphocyte
in a patient with metastatic HPV16-associated anal cancer.21 A first-in-human, sin-
gle-center, phase I/II study was then conducted using this TCR in patients with met-
astatic HPV16-associated epithelial cancer.14 In this study, patients received a
conditioning chemotherapy regimen followed by a single infusion of autologous pe-
ripheral blood T cells genetically engineered to express the HLA-A*02:01-restricted,
HPV16 E629-38-specific TCR (E6 TCR-T cells) and high-dose aldesleukin adminis-
tered to patient tolerance. The starting dose of cells was 1 x 109, and the highest
cell dose was 1-2 x 1011. Twelve patients were treated (1 patient with head and
neck cancer). No autoimmune toxicities or DLTs were observed. There were no
acute toxicities associated with cell infusion, and no cytokine storm occurred at
any dose level. Two of 12 patients (2 of 9 patients at the highest cell dose) attained
objective tumor responses. One patient with metastatic anal squamous cell carci-
noma who was previously treated with 5 systemic anticancer agents including TIL
therapy experienced a partial response, with complete regression of 1 lung tumor
and partial regression of 2 lung tumors. The remaining 2 lung tumors were resected
at the time of progression. She has been without evidence of disease now for more
than 4 years. All patients demonstrated high levels of peripheral blood engraftment
with E6 TCR-T cells following treatment (median 30%, range 4% to 53%). The num-
ber of infused E6-reactive T cells did not correlate with response.14 This study
demonstrated the ability of TCR T-cell therapy to mediate regression of metastatic
HPV-associated cancers.
The clinical testing of E6 TCR-T cells was followed by the discovery of a HPV16 E7-

specific, HLA-A*02:01-restricted TCR from an infiltrating lymphocyte in a uterine cer-
vix biopsy from a woman with cervical intraepithelial neoplasia.22 This TCR (E7 TCR)
displayed higher functional avidity than the E6 TCR with the ability to recognize
cognate peptide at concentrations as low as 10 pmol.22 The E7 epitope targeted by
this TCR was also found to be highly conserved across different strains of HPV16.23

A phase I clinical trial was conducted testing the E7 TCR in patients with metastatic
HPV16-associated cancers. Twelve patients were treated (4 with head and neck can-
cer), with 6 patients having objective tumor response. These responses included
regression of bulky tumors and complete elimination of some tumors in patients.
Four of these responses were in patients with disease refractory to PD-1 inhibitors.
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There were 2 responses in patients with head and neck cancer. One response was in a
65-year-old man with metastatic squamous cell carcinoma of the oropharynx with tu-
mors in the lungs, pleura, mediastinum, abdominal wall, retroperitoneum, and bone
who was previously treated with 6 systemic anticancer agents including a PD-1 inhib-
itor and TIL therapy.24 This study demonstrated the ability of E7 TCR T cells to mediate
regression of treatment-refractory, widely metastatic epithelial cancers including PD-1
refractory head and neck cancer. An ongoing phase II clinical trial is currently under-
way at the National Cancer Institute (NCI) Genitourinary Malignancies Branch to
further assess the clinical activity of the E7 TCR (NCT02858310).
FUTURE OF ADOPTIVE T-CELL THERAPY FOR HUMAN PAPILLOMA VIRUS-
ASSOCIATED HEAD AND NECK CANCER

The TCR T-cell trials in HPV-associated cancers provide a unique model of studying
mechanisms of response and resistance by having constrained variation in both
T-cell antigen-targeting and tumor antigen expression. Investigation of T-cell factors
in these studies did not provide clear insight into mechanisms of treatment failure.
However, the investigation of tumor factors revealed tumor-intrinsic defects in antigen
presentation and INF response that demonstrated clear mechanisms of tumor resis-
tance. In the clinical trial testing E6 TCR-T cells, 1 tumor from a patient who did not
have a response to therapy was found to have loss of HLA-A*02:01, the antigen pre-
sentation molecule required for E6 TCR T-cell recognition of cognate peptide. Another
tumor from a patient who did not respond to therapy revealed a truncating mutation in
INF-gamma receptor 1, a crucial molecule for tumor sensitivity to T cells. In contrast, a
tumor from a patient who did respond to therapy did not have these defects.14 Simi-
larly, in the clinical trial testing E7 TCR-T cells, 3 resistant tumors demonstrated ge-
netic defects in either HLA-A*02:01 or B2M (necessary components of the E7 TCR
target complex), and 1 tumor demonstrated copy loss with decreased expression of
genes important for antigen presentation and IFN response including TAP1, TAP2,
IFNGR1, and IFNGR2. Three sensitive tumors did not show genetic defects encoding
these molecules. These findings suggest that tumors acquire somatic mutations and
copy loss defects that confer resistance to T cell-mediated tumor engagement and
effector function.24 Awareness of the development of immune resistance, especially
as cancers evolve over time and through multiple therapies, is driving a movement
in oncology toward earlier application of immunotherapy including adoptive T-cell
therapy.25,26 A clinical trial at the NCI Genitourinary Malignancies Branch will test E7
TCR-T cell therapy in stage II/III HPV16-positive oropharyngeal cancer in the induction
setting (NCT04015336).
Another approach to increase the efficacy of adoptive T-cell therapy is to combine

administration of tumor-specific T cells with cytokines such as interleukin-12 (IL-12),
which is a potent activator of the innate and adaptive immune system.27,28 Unfortu-
nately, systemic administration of IL-12 as a single agent can result in significant
toxicity.29 One strategy is to preferentially localize IL-12 to the tumor through genetic
engineering of tumor-specific T cells. Toward this end, a clinical trial treating patients
with metastatic melanoma using autologous TIL genetically engineered to secrete IL-
12 was conducted. Clinical activity was seen even at low doses of adoptively trans-
ferred T cells, but severe IL-12-related toxicity limited the development of this
approach.30 A potentially safer approach has been developed where IL-12 is tethered
to the membrane of adoptively transferred T cells using a transmembrane anchor
domain. In preclinical mouse models of cancer, adoptively transferred T cells express-
ing membrane-tethered IL-12 demonstrated increased antitumor efficacy, low
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circulating levels of IL-12 and IFN-g, and no weight loss indicating a lack of systemic
toxicity.31

ADOPTIVE T-CELL THERAPY FOR NONHUMAN PAPILLOMA VIRUS-ASSOCIATED
HEAD AND NECK CANCER

Epstein-Barr Virus (EBV) has been linked to the development of a subset of head and
neck cancers and expresses viral proteins that are ideal targets for adoptive T-cell
therapy.5 Adoptive T-cell therapy with EBV-specific cytotoxic T lymphocytes (CTLs)
has been studied for decades as a treatment for EBV after transplantation lymphopro-
liferative disorder occurring after allogenic hematopoietic stem cell transplanta-
tion.32,33 Clinical trials are testing EBV-specific CTL therapy in patients with
EBV-associated nasopharyngeal carcinoma (NCT03769467,NCT02578641). A limita-
tion of EBV-specific CTL therapy is the variable level of T-cell avidity toward the target
antigen. In an attempt to consistently target EBV antigens with a significantly large
quantity of high-affinity EBV-specific T cells, an active area of investigation is the dis-
covery of high-avidity TCRs targeting EBV viral antigens that could then be tested in
patients with EBV-associated diseases such as nasopharyngeal carcinoma.34

Cancer germline (CG) antigens are another group of antigens that are rationale tar-
gets for ACT. CG antigens are normally expressed by germ cells but can also be
expressed by cancer cells. Because germ cells lack expression of MHC class I mole-
cules, they are unable to be recognized by TCRs. Testis-restricted and certain testis-
selective CG antigens are rational targets for TCR-T cell therapy.5 CG antigens have
been successfully targeted using TCR T-cell therapy in patients with synovial cell sar-
coma and melanoma.11 Melanoma-associated antigen 4 (MAGE-A4) is a member of a
gene family of MAGE proteins. Expression is thought to be restricted to immune-
privileged sites and has been found to be expressed in head and neck cancer.35,36

A clinical trial is testing this TCR in patients with multiple different cancers including
head and neck (NCT03132922). Other MAGE protein family members may also be
appropriate targets for ACT in head and neck cancer.37

Another CG antigen that may be a target for ACT in head and neck cancer is Kita-
Kyushu lung cancer antigen 1 (KK-LC-1). KK-LC-1 (encoded by CT83) is a CG antigen
that has been reported to have restricted expression in germ cells and in certain
epithelial cancers including lung, gastric, breast, and head and neck.38–40 A TCR tar-
geting KK-LC-1 was identified from the tumor-infiltrating lymphocyte of a patient with
metastatic cervical cancer who had a complete response to TIL therapy.12,40 The sin-
gle KK-LC-1 TCR clonotype was the dominate clone in the TIL infusion cell product,
comprising 67% of the infused T cells. This TCR clonotype was also present at high
levels following TIL therapy, suggesting that it might have contributed to cancer
regression in this patient.12 Preclinical studies demonstrated the ability of T cells
genetically engineered to express the KK-LC-1 TCR to mediate regression of KK-
LC-1 positive epithelial cancers.40 These findings support the clinical testing of KK-
LC-1 TCR-T cells in patients with KK-LC-1 expressing epithelial cancers including
head and neck cancer.

SUMMARY

The potential for durable regression of highly refractory tumors makes adoptive T-cell
therapy a promising treatment modality for head and neck cancer. Recent success of
TIL and gene-engineered TCR-T cell therapy in HPV-associated cancers including
head and neck highlight the ability of this therapy to treat advanced epithelial cancers.
Strategies to overcome tumor-intrinsic mechanisms of resistance to ACT are being
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investigated. Further clinical advances using ACT in head and neck cancer may come
through targeting of non-HPV antigens including EBV viral proteins and CG antigens.
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